用户名: 密码: 验证码:
反应熔渗法制备C_f/(HfC+MC)复合材料机理及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强超高温陶瓷(C_f/UHTCs)复合材料具有优异的耐超高温抗氧化烧蚀性能,可望成为有氧环境下使用的新型耐超高温材料;反应熔渗工艺具有制备周期短、工艺简单、可实现近尺寸成型、无环境污染等特点,成为制备C_f/UHTCs复合材料的热门工艺。为此,本文开展了反应熔渗法制备C_f/(HfC+MC)复合材料的可行性研究,探讨了不同特性铪基合金反应熔渗C/C预制体的机制进行了理论机制,研究了熔渗工艺对C_f/(HfC+MC)复合材料组织结构的影响,考察了材料的抗氧化性能和烧蚀性能,具有一定的学术和应用价值。
     针对反应熔渗工艺的特点,以及Hf、Zr、Ta、Si四种组元的高温氧化时的作用原理,设计并制备了50Hf10Zr37Si3Ta和22Hf78Si两种合金作为熔渗用合金,用所设计的两种铪基合金反应熔渗分别制得了密度为1.88 g/cm~3和2.32 g/cm~3、显气孔率小于10%和4%的C_f/(HfC+ZrC+SiC)复合材料和C_f/(HfC +SiC)复合材料。
     采用XRD、SEM等手段分析了所制得的复合材料的微观组织结构,并使用Pandat相图软件结合热力学原理验证了两种不同合金的反应熔渗机理。研究表明,高熔点50Hf10Zr37Si3Ta合金(熔点2440℃)在1900℃实现了反应熔渗,其根源在于合金中Hf有最强的碳化物形成能力、优先与C/C预制体表面的碳发生碳化反应;合金先后碳化反应产物不同,产生两种成分不同的液相,是形成特殊熔渗反应组织的原因。相比而言,22Hf78Si合金的反应熔渗机理则是由于熔渗温度高于合金熔点,合金熔化后以液相的形式渗入多孔预制体,进而发生碳化反应。
     采用50Hf10Zr37Si3Ta合金反应熔渗制备C_f/(HfC+ZrC+SiC)复合材料,受熔渗机制的限制,熔渗层较浅,在高温火焰(温度>1800℃)及激光烧蚀下,试样表面形成一层致密的Hf(Zr、Ta)O2层,表现出优良的抗氧化烧蚀性能,激光烧蚀(1000 W/cm2,60 s)线烧蚀率仅为0.008 mm/s。采用22Hf78Si合金反应熔渗制备C_f/(HfC+SiC)复合材料,由于合金渗透能力强,可完全渗透试样,制得的材料抗弯强度可达237MPa,其弯曲断裂表现出假塑性断裂特征。试样也表现出较好的抗氧化烧蚀性能,激光烧蚀(1000 W/cm2,60 s)线烧蚀率仅为0.012 mm/s。
     实验表明,两种复合材料在1300℃的静态抗氧化性能不佳。熔渗反应生成的碳化物、氧化过程形成的氧化物与碳基体之间物理性能的差异,使复合材料中存在热失配问题,对材料低温下静态抗氧化性能不利。
Carbon fiber reinforced ultra-high temperature ceramic (C_f/UHTCs) composites, with excellent high temperature performance and anti-ablation performance, are one of the most promising materials. Reactive melt infiltration (RMI), with many advantages such as short preparation, simple process, no pollution, has been demonstrated as an effective method to prepare C_f/UHTCs composites. This dissertation has investigated the preparation of C_f/(HfC+MC) composite by reactive melt infiltration, disscussed the infiltration mechanism of different Hf-based alloys into the porous C/C performs, studied the effects of the RMI process on the microstructure of the composites, and examined their anti-oxidation and ablation performance.
     According to the characteristics of the RMI process and the oxidation behavior of Hf, Zr, Si and Ta components at elevated temperatures, 50Hf10Zr37Si3Ta and 22Hf78Si alloys were designed and prepared. C_f/(HfC+ZrC+SiC) composites and C_f/(HfC+SiC) composites with the average densities of 1.88 g/cm~3 and 2.32g/cm~3, the apparent porosity less than 10% and 4%, respectively, were prepared by RMI.
     The microstructure and composition of the composites were studied by XRD and SEM and the infiltration mechanisms of both alloys were analyzed by phase diagram calculating software Pandat? combined with thermodynamics fundamentals. The infiltration of the 50Hf10Zr37Si3Ta alloy, whose melting point is 2440℃, was realized at 1900℃. The primary reason of the realization of the RMI process at a relative low temperature is that the Hf component with the most strong carbide-forming ability prefers to react with the carbon in the surface layer of the C-C preform, leading to a phase composition change of the alloy at the interface, generating liquid and forming a specific multi-layer RMI structure. Compared with the 50Hf10Zr37Si3Ta alloy, the infiltration mechanism of the 22Hf78Si alloy is that the alloy melts at temperature higher than its melting point and the melt infiltrates into the porous preform by capillary action, and reacts with carbon, which results in a dense matrix.
     The C_f/(HfC+ZrC+SiC) composite prepared from 50Hf10Zr37Si3Ta alloy exhibits excellent anti-oxidation ablative properties, because a layer of dense Hf(Zr, Ta)O2, which can protect the specimen from damaging, is formed on the specimen surface when tested in oxyacetylene flame and by laser. The linear ablation rate by laser (1000 W/cm2, 60 s) is only 0.008 mm/s. The infiltration depth of 50Hf10Zr37Si3Ta alloy is low, which is attributed to the RMI mechanism.
     For the C_f/(HfC+SiC) composite material prepared from 22Hf78Si alloy, because of the good penetrability of the alloy, the bending strength of the composite reaches 237 MPa, and the fracture behavior shows a pronounced pseudoplastic fracture characteristics. The linear ablation rate by laser (1000 W/cm2, 60 s) is only 0.012 mm/s.
     The static anti-oxidation ability of both composites at 1300℃in the air was adverse, because the thermal mismatch between carbide from RMI, oxide from oxidation and the composite matrix is large.
引文
[1]陈朝辉.先驱体结构陶瓷[M].长沙:国防科技大学出版社, 2003,1.
    [2]王零森.特种陶瓷[M].长沙:中南大学出版社, 2005, 2.
    [3]王其坤.先驱体浸渍裂解工艺制备Cf/UHTCs/SiC复合材料及其性能研究[D].长沙:国防科技大学, 200890.
    [4]杨国威. C/C-ZrB2(ZrC、TaC)超高温陶瓷基复合材料制备工艺及性能研究[D].长沙:国防科技大学, 200890.
    [5]益小苏,杜善义,张立同主编.中国工程大典第十卷复合材料工程.北京:化学工业出版社,2006.639.
    [6]苏君明,陈林泉,王书贤,等.石墨渗铜喉衬的烧蚀特性[J].固体火箭技术,2004, 27(1): 69-72.
    [7]苏君明,陈林泉,王书贤,等.石墨渗铜喉衬材料的微观结构与抗热震性能[J].固体火箭技术, 2003, 26(3): 58-61.
    [8]陈林泉,王书贤,张胜勇,等.石墨渗铜喉衬材料的烧蚀机理分析[J].固体火箭技术, 2004, 27(1): 57-59.
    [9] S. F Maustafa, S. A El-Badry, A. M Sanad, et al. Friction and wear of copper graphite composites made with Cu-coated and uncoated graphite powders Wear[J], 2002(253): 699-710.
    [10]刘军,熊翔,王建营,等.耐超高温材料研究[J].宇航材料工艺, 2005, (1): 6-9.
    [11]丘哲明.固体火箭发动机材料与工艺[M].北京:宇航出版社, 1995: 111-113.
    [12] Srtanley R. Levine, Elizabeth J. Opila, Jonathan A. Lorincz, et al. UHTC Composites for Leading Edges. 2004, NASA Glenn Research Center.
    [13]《难熔金属科学与工程》,第七届全国难熔金属学术交流会文集[A].西安:陕西科学出版社, 1991.
    [14] Chen L C. Dilatometric analysis of sintering of tungsten and tungsten with ceria and hafnia dispersions [J]. Refrac Met Hard Mater, 1994, 12: 41.
    [15] Kitsunai Y, Kurishita H. Kayano H. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC [J]. J Nucl Matert, 1999, 271:423.
    [16] Mabuchi M, Saito N, Nakanishi M. Tensile properties at elevated temperature of W-1%LaB2BOB3 [J]. Mat sci Eng A, 1996, 214: l74.
    [17]宋桂明,孟庆昌,王玉金,等. TiC和ZrC颗粒增强钨基复合材料的烧蚀研究[J].固体火箭技术, 2001, 24(2): 48-52.
    [18] Oshimi K, Nakatani S, Nomura N, et al. Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures [J]. Intermetal-Iics, 2003, I 1: 787-794.
    [19] Yoko Y M, Yoshiksau Ro, Nakamwa S, et al. High temperature strength of Ir-based refractory superaloys [J]. J. Jap. Ins. Met., 2000, 64(11): 1068-1075.
    [20] Chazen M L. Materials property test results of rhenium [C]. TMS Annual Meeting, Rhenium and Rhenium Alloys, 1997: 301-308.
    [21] Fischer B, Lupton D F, Freund D. Stress rupture strength of rhenium at very high temperatures [C]. TMS Annual Meeting, Rhenium and Rhenium Alloys, 1997:311-320.
    [22] Sherm an A J, Tuffias R H, Fortini A J, et al. Impact of the mechanical properties of rhenium on structura1design [C]. TMS Annual Meeting,Rhenium and Rhenium Alloys, 1997: 291-300.
    [23] Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000℃hypersonic aerosurfaces: Theoretical considerations and historical experience [J]. J. Mater. Sci., 2004, 39(19): 5887-5904.
    [24] Ohriner E K.Rhenium and iridium[C]. TMS Annual Meeting, Rhenium and Rhenium Alloys, 1997: 409-423.
    [25] L. Scatteia, A. Riccio, G. Rufolo, et al. PRORA-USV SHS: Ultra High Temperature Ceramic Materials for Sharp Hot Structures. AIAA, 2005.
    [26] Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use [J]. Journal of the European Ceramic Society, 2002, 22: 2757-2768.
    [27] Yigal Blum, Jochen Marschall. Low Temperature, Low Pressure Fabricati on of Ultra High Temperature Ceramics [R]. AFRL-ML-WP-TR-2006-4200, 2006.
    [28]萨姆索落夫ГB.难熔化合物手册[M].北京:中国工业出版社, 1965: 145-289.
    [29] Opeka mark M, Talmy G, Zaykoski, James A. Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999; 19: 2405-2414.
    [30] Cecilia Bartuli, Teodoro Valente, Mario Tului. Plasma spray depositions and high temperature characterization of ZrB2-SiC protective coatings[J]. Surface and Coatings Technology, 2002; 155: 260-273.
    [31] I. G. Talmy, J. A. Zaykoski, M. M. Opeka, S. Dallek. Oxidation of ZrB2 Ceramics Modified With SiC and Group IV-VI Transition Metal Diborides[J]. Elec. Chem. Soc. Proc., 12 144-158 (2001).
    [32] Elizabeth Opila, Stanley Levine, Jonathan Lorincz. Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effect of Ta Additions.
    [33] X. Zhang, P. Hu, J. Han, L. Xu, and S. Meng,“The Addition of Lanthanum Hexaboride to Zirconium Diboride for Improved Oxidation Resistance,”Scripta Mater., 57 1036-39 (2007).
    [34] Ronald Loehman, Erica Corral, Hans Peter Dumm, et al. Ultra High Temperature Ceramics for Hypersonic Vehicle Applications[R]. SAND 2006-2925.
    [35]李金平,韩杰才,等. ZrB2-SiCw超高温陶瓷材料的研究[J].兵器材料科学与工程, 2006, 29(1): 53-56.
    [36]吴世平,杜善义,等.碳短纤维对ZrB2-SiC基超超高温陶瓷力学性能的影响[J].材料工程, 2007, (5): 15-18.
    [37]沈曾明.新型碳材料[M].北京:化学工业出版社,1999.8-22.
    [38]杨尊社. C/C复合刹车材料及防氧化技术研究进展.炭素,2000(1):26-31.
    [39]郭正,赵稼祥.炭/炭复合材料的研究进展.宇航材料工艺,1995(5):1-5.
    [40]冉丽萍,易茂中,蒋建献,等.炭/炭复合材料MoSi2-/SiC高温抗氧化复合涂层的制备及其结构.新型炭材料,2006.21(3):231-235.
    [41] Junhua C, Guangli C, Haoran G, et al. Microstructure and properties of SiC gradiently coated Cf/C composites prepared by a RCLD method. International Journal of Minerals, Metallurgy and Materials,2009,16(3):334-338.
    [42] Hejun L, Hui X, Yongjie W, et al. A MoSi2-SiC-Si oxidation protective coating for carbon/carbon composites. Surface & coating technology,2007.201:9444-9447.
    [43]邹林华,航空刹车用C/C复合材料的结构及其性能:[博士学位论文].长沙:中南工业大学,1999:60-63.
    [44] Ning C, Yunqiang B, Quansheng M, et al. Biological behavior of hydroxyapatite coating on carbon/carbon composites produced by plasma spraying. New Carbon Materials,2008,23(2):144-148.
    [45] Gu O, Kettunen P. Carbon/carbon composites. Material Science and Engineering. 1997,A234~236:223-225.
    [46] Chung G.Y., McCoy B.J., Smith J.M., et al.Chemical vapor infiltration:modelling solid matrix deposition for ceramic composites reinforced with layered woven fabrics.Chemical Engineering Science,1992.47(2):311-323.
    [47]张笔锋,先驱体转化C/SiC复合材料本征及服役性能研究[D].长沙:国防科技大学,2010.
    [48] Schmidt S, Beyer S, Knabe H et al. Advanced ceramic matrix composites materials for current and future propulsion technology applications[C]. Germany:IAC-03-S.3, 03 sep, 2003.
    [49] US 6,723,382,B2.
    [50] US 6,723,381,B1.
    [51] Imuta M, Gotoh J. Development of High Temperature Materials Including CMCs for Space Application[J]. Key E ng.Mater. ,1999(164-165): 439-444.
    [52] H.G.Wulz, U.Trabandt. Large integral hot CMC structures designed for future reusable launchers. AIAA-97-2485.
    [53] Doug Freitag. The Advanced Ceramics Industry“An Increasingly Strategic Material”. USACA report, 2004.
    [54]闫联生,王涛,邹武,等.国外复合材料推力室技术研究进展[J].固体火箭技术, 2003, 26(1): 64-70.
    [55] A.Athieu, B.Montenuis, V.Gount. Ceramic Matrix Composite Materials for a low thrist brprelant rocket engine, AIAA, 1990, 2054.
    [56] Kodama H, Sakamoto H, Miyoshi T. High-tech ceramics view points and perspectives[J]. Am. Ceram. Soc, 1989, 72: 551-556.
    [57] Jamet JF. Lamicq PJ. High-temperature Ceramic Matrix Composites[A]. Edited by Naslain R. London: Woodhead Publications. 1993, 735-739.
    [58]杨尊社. C/C复合刹车材料及防氧化技术研究进展.炭素,2000(1):26-31.
    [59]郭正,赵稼祥.炭/炭复合材料的研究进展.宇航材料工艺,1995(5):1-5.
    [60]冉丽萍,易茂中,蒋建献,等.炭/炭复合材料MoSi2-/SiC高温抗氧化复合涂层的制备及其结构.新型炭材料,2006.21(3):231-235.
    [61] Junhua C, Guangli C, Haoran G, et al. Microstructure and properties of SiC gradiently coated Cf/C composites prepared by a RCLD method. International Journal of Minerals, Metallurgy and Materials,2009,16(3):334-338.
    [62] Hejun L, Hui X, Yongjie W, et al. A MoSi2-SiC-Si oxidation protective coating for carbon/carbon composites. Surface & coating technology,2007.201:9444-9447.
    [63] Russell A. Ellis. Testing of Novol tex 3D Carbon/Carbon Integral Throat and Exit Cones. AIAA, 1988, 3361.
    [64] Srtanley R. Levine, Elizabeth J. Opila, Jonathan A. Lorincz, et al. UHTC Composites for Leading Edges. 2004, NASA Glenn Research Center.
    [65] S. T. SCHWAB, C. A. STEWART, K. W. DUDECK, et al. Polymeric precursors to refractory metal borides [J]. Journal of materials science, 2004, 39: 6051-6055.
    [66] Daniel Doni Jayaseelan, Rafael Guimar?es de Sá, Peter Brown,et al. Reactive infiltration processing (RIP) of ultra high temperature ceramics (UHTC) into porous C/C composite tubes[J]. Journal of the European Ceramic Society 31(2011)361-368.
    [67]相华,化学液相浸渗法制备C/C-TaC复合材料及其烧蚀性能研究[D].西安:西北工业大学,20060301.
    [68]谢翀博,徐永东,成来飞,等.料浆浸渍法结合CVI制备3D C/SiC-TaC复合材料及其烧蚀性能研究[J].材料工程,2009(7):16-22.
    [69] Zou LH, Wali N, Yang JM, Bansal NP. J Eur Ceram Soc 2010; 30: 1527.
    [70] Xue-Tao Shen, Ke-Zhi Li,et al.The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame[J]. Corrosion Science 53 (2011) 105–112.
    [71] Bai SX, Tong YG, Zhang H. Preparation and characterization of C/C-SiC composites by alloyed melt infiltration. Internation Conference on Materials for Advanced Technologies; 2011: 51
    [72]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科学技术大学博士学位论文, 2003.
    [73] U.S.Patent 5079195.
    [74] Mehan. Effect of SiC content and orientation on the properties of Si/SiC ceramic composite [J]. J.Mater Sci. 1978, 13: 358.
    [75] Hillig et al. Silicon/Silicon carbide composites. Ceramic bulletin.1975, 54: 1054.
    [76] U.S. Patent: 3325346.
    [77] Willam.B.Hillig. Making ceramic composites by melt infiltration [J]. American ceramic society bulletin. 1994, 73(4): 56-62.
    [78]王林山,熊翔,肖鹏.反应熔渗法制备C/C-SiC复合材料及其影响因素的研究进展[J].粉末冶金材料科学与工程, 2002, 7(4): 300-307.
    [79]王林山. RMI法制备C/C-SiC复合材料及其性能的研究[D].长沙:中南大学, 2003.
    [80]仇沱,马眷荣.工程陶瓷弯曲强度试验方法[M].北京:中国建筑材料科学研究院, 1986.
    [81] http://www.ultramet.com.
    [82]闫联生,李贺军,崔红.超高温抗氧化材料研究进展[J].材料导报, 2004, 18(12): 41-43
    [83] Shimada S. TEM observation of the ZrC/ZrO interface formed by oxidation of ZrC crystals. J Mater Synth Process, 1998, (6): 191
    [84] Srtanley R. Levine, Elizabeth J. Opila. Tantalum Addition to Zirconium Diboride for Improved Oxidation Resistance.2003, NASA Glenn Research Center.
    [85] Ye DL. Handbook of Thermodynamic Data for Applied Inorganic Material. BeiJing: The metallurgical industry press; 2002.
    [86]钦征骑主编.新型陶瓷材料手册.江苏:江苏科技出版社.
    [87] Y. Wang, et al, Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration, Ceram. Int. (2011), doi:10.1016/j.ceramint.2010.12.002.
    [88] Y.G.Wang,W. Liu, L.F. Cheng, L.T. Zhang, Preparation and properties of 2D C/ZrB2–SiC ultra high temperature ceramic composites, Mater. Sci. Eng. A 524 (2009) 129–133.
    [89] Y. Wang, Y.D. Xu, Y.G. Wang, L.F. Cheng, L.T. Zhang, Effects of TaC addition on the ablation resistance of C/SiC, Mater. Lett. 64 (2010) 2068-2071.
    [90] Lulu Li, Yiguang Wang, Laifei Cheng, Litong Zhang. Preparation and properties of 2D C/SiC-ZrB2-TaC composites. Ceramics International 37 (2011) 891–896.
    [91]王林山. RMI法制备C/C-SiC复合材料及其性能的研究[D].长沙:中南大学,20030401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700