用户名: 密码: 验证码:
介孔MCM-48分子筛膜的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序介孔分子筛膜因其独特的结构优势,及其在许多跨学科领域中巨大的应用潜力,正成为材料科学家们研究的热点。介孔膜是指孔径在2~50 nm之间的多孔膜,它不仅具有无机材料良好的化学稳定性、机械强度、耐热性、抗菌性、无毒等优点,还具有普通无机膜所不具备的特殊尺寸效应、功能性等优点。有序介孔膜范畴中具有三维孔道结构的薄膜材料由于其三维可通的孔道结构,有利于物料的扩散与传输而更具应用潜力。由三维介孔MCM-48分子筛所形成的支撑膜,更以其均一的孔径分布和较大的孔道结构在膜反应器、超滤分离、传感器和微电子绝缘层等方面的应用有着巨大的潜在优势。
     然而,MCM-48膜的制备条件比较苛刻且水热稳定性较差,因此有关MCM-48膜制备及生长机理的研究很少,还有许多问题亟待解决。开展MCM-48膜分子筛膜的制备及膜层改性处理增强其水热稳定性和MCM-48膜应用的研究具有重要的意义。本文采用多种处理方法对MCM-48膜的合成工艺及机理进行了深入系统的研究,并对MCM-48膜进行烷基化处理增强膜的水热稳定性和疏水性,然后利用烷基化MCM-48膜对乙酸乙酯(EA)和水混合物的分离效果与机理进行研究。利用烷基化MCM-48膜与固定化木瓜蛋白酶组装成填充式的酶膜反应器,研究酶催化反应的连续性和MCM-48膜的分离性能。本研究所得到的具体成果如下:
     1、在孔径约1μmα-Al_2O_3载体上通过优化合成次数原位制备了较为完整的MCM-48膜,膜对N_2的渗透通量约为3.2×10~(-7) mol/(m~2.s.Pa),且H_2/N_2分离因数可达2.95。经考察发现膜的完整性主要由载体的孔径尺寸、膜的合成次数等因素决定。膜层内部应力随着合成次数的增加也逐渐累积,多于三次的合成MCM-48膜开始出现裂纹,导致膜性能不再继续转好;同时在膜组装界面处,除了存在无机前躯体与模板剂的自组装过程,也存在原膜层在碱性溶胶中的部分解聚,导致膜厚不随合成次数增多而增加。
     2、利用硅溶胶浸渍法对两种不同孔径(A类,3-5μm;B类,~1μm)的α-Al_2O_3载体进行预处理,改善载体的表面状况。经研究发现硅溶胶浸渍法能有效阻止合成溶胶向载体内部渗透,且利于MCM-48膜与载体以Si-O-Si键牢固结合。但是在焙烧过程中由于干硅胶和MCM-48膜的应力释放而产生较多裂纹,导致在膜对N_2的总渗透通量中努森扩散只占到70%(A)和85.7%(B)。然后利用涂覆过渡层法在B类载体表面涂覆一层SiO_2,并发现SiO_2层可以在阻止合成溶胶渗透的同时,在载体表面形成裂缝较少的MCM-48膜,其对N_2的渗透通量为4.52×10~(-7)mol/(m~2.s.Pa),H_2/N_2分离因数和努森扩散率分别为3.1和87%。
     3、利用提拉法在B类载体表面涂覆介孔品种,经研究发现介孔晶种层可以诱导完整的MCM-48膜在载体表面生长,但由于晶种层不足够致密而容易导致部分合成溶胶向载体内部渗透。而真空涂敷晶种层法可以避免这个问题,借助压差驱动力将晶种均匀牢固地镶嵌在载体表面孔口。此法既可以有效地收缩载体表面孔径,又可以阻挡合成溶胶的渗透。在此载体上经过三次水热合成就可以制备出对N_2不透的完整MCM-48膜。经过焙烧,膜对N_2的渗透通量为1.91×10~(-7)mol/(m~2.s.Pa),H_2/N_2分离因数和努森扩散率分别可高达3.33和97.8%。
     4、利用不同烷基链长的硅烷偶联剂对MCM-48膜进行烷基化,考察了烷基化对膜水热稳定性的影响,并将烷基化后的MCM-48膜应用到EA/H_2O混合物体系的分离,发现烷基化MCM-48膜对含EA wt5%的EA/H_2O体系有比较好的分离浓缩效应。应用C_8H_(17)-MCM-48膜在室温下分离此体系可以得到的分离因数高达71,总通量为1.5kg/(m~2.h)。换用链长较短的C_3H_7-MCM-48膜或CH_3-MCM-48膜虽然可以得到更大的总渗透通量,但是分离因数却有所降低,分别为62和36。疏水膜由嫁接的烷基链和吸附在之上的EA分子组成,膜层对疏水性的EA分子选择性的吸附,进而产生分离效能。
     5、将固定化木瓜蛋白酶封闭在介孔MCM-48膜管式分离器的壳程组装成填充式酶膜反应器,建立连续酶解酪蛋白的催化模型。结果表明:烷基化MCM-48膜能有效地阻止较大酶分子和蛋白质分子渗透,同时可以使小分子的水和反应产物酪氨酸分子透过而初步实现产物的分离。随着连续反应时间的延长,酪蛋白的降解量和分离样品在275nm处的特征吸收都经历从急速下降到相对稳定的过程。当进料量为5ml/min和10ml/min且连续反应5h时,酪蛋白的降解量和渗透液的吸光度分别相对稳定在24.6%和0.35,18.4%和0.26。
The ordered mesostructured membranes are becoming research focus in chemistry field, owing to their superior properties and great potential applications in many scientific fields. Mesoporous membranes with pore size of 2-50 nm not only have excellent properties, such as thermal and chemical stability, mechanical strength, antibacterial and so on, that inorganic membranes possess but have regular arrays of uniform channels and the dimensions. Among the mesoporous membranes, the type which possess 3D pore structures have more and more attentions for the good transportation. And the MCM-48 membrane with 3D pore structure is a promising material for membrane-based separation processes, catalysts, and chemical sensors, etc.
     However, it is difficult to prepare a compact MCM-48 membrane which has good hydrothermal stability, so the researches on theoretical foundation of the formation of MCM-48 membrane are very few, many problems are urgently to be solved. Study on the preparation, modification and application of MCM-48 membrane will have a theoretical and practical significance. In this works, the preparation and mechanism of the compact mesoporous MCM-48 membrane on the porousα-Al_2O_3 tube were studied in detail. The MCM-48 membranes were also silylated to enhance the hydrothermal stability and hydrophobic property, which were suitable for the separation of EA/H_2O system. Besides this, the immobilized enzyme membrane reactor was installed by the immobilized papain and the silylated MCM-48 membrane, which could separate the products as the reaction was continuous. This thesis mainly includes several aspects:
     1. The MCM-48 membranes were in-suit prepared on the supports with pore size of about 1μm with optimized synthesis. The membranes had the permeation for N_2 of 3.2×10~(-7) mol/(m~2.s.Pa) and the H_2/N_2 separation factor of 2.95. The results showed that the factors including the large pore size of the supports and the times of hydrothermal synthesis played an important role in the compactness of membrane. The stress in the membrane was increased with increasing the times of synthesis at the presence of large pore size. With more than three time's synthesis the membrane tended to be crack. At the same time, in the high alkaline sol, there present not only the self-assembly of the inorganic precursor and the surfactant, but also the partly depolymerization of the in-suit membrane. As a result, the membrane could not grow much thicker and thicker with increasing the times of synthesis.
     2. The MCM-48 membranes were formed on the porous supports (A, 3-5μm; B,~1μm) which were prefilled by silica sol. The silica sol could reduce the pore size of the supports to prevent the penetration of the synthesis sol and favor for the growing of the MCM-48 membrane on surface by the bond of Si-O-Si. But because of the exiting of much stress contained in the dry silicon gel, the membrane would be much crack in the process of calcinations. As a result, the Knudsen contribution to the total flux for N_2 was about 70% and 85% for A and B tube, respectively. Basing on the good effect of the prefilled methods, a silica transition was made on the surface of B tube. The results showed that the transition layer not only prevented the penetration of the synthesis sol, but also favored for the formation of more compact membrane with little crack. The membrane had the permeation for N_2 of 4.52×10~(-7) mol/(m~2.s.Pa), and relative high H_2/N_2 separation factor and Knudsen contribution (K%), 3.1 and 87%, respectively.
     3. More compact MCM-48 membrane was prepared on the B supports with dip-coating seeds layer. The mesoporous seeds had a good effect on inducing the growing of membrane on the supports. But the dip-coating seeds layer was not tight for synthesis sol and resulted to the penetration into the supports. Fortunately, the problem could be resolved by the vacuumed coating methods. The MCM-48 particles with appropriate size could stuff the mouths of the surface pores strongly by pressure-driven. Then a thin and compact mesoporous MCM-48 membrane impermeable for N_2 had been successfully synthesized on B supports with optimized synthesis. After calcinations, the MCM-48 membrane had the the permeation for N_2 of 1.91×10~(-7) mol/(m~2.s.Pa), and the relative high H_2/N_2 separation factor and the Knudsen contribution (K%), 3.1 and 87%, respectively.
     4. The MCM-48 membranes were silylated by silane coupling agent with different alkyl chain. The effect on the hydrothermal stability of MCM-48 membrane was investigated. And the silylated MCM-48 membrane was successfully applied in the separation of EA/H_2O mixture. The results showed that the silylated MCM-48 membrane had a good effect on the separation of EA/H_2O system with EA concentration of 5% (w/w). The C_8H_(17)-MCM-48 membrane had a relative high separation factor for EA/H_2O and large total flux, 71 and 1.5 kg/(m~2.h), respectively. Although the C_3H_7-MCM-48 and CH_3-MCM-48 membranes had the larger total flux, the separation factor was decreased to 62 and 36, respectively. The hydrophobic membrane was formed by the interconnection of the alkyl group and the adsorpted EA molecules. The EA molecules could penetrate the membrane selectively following the adsorption-diffusion mechanism.
     5. The immobilized enzyme membrane reactor was prepared by enclosing the immobilized papain in the shell pass of tubular MCM-48 membrane separator. The little molecules, such as H_2O and tyrosine, could penetrated through the silylated MCM-48 membrane, while the larger molecules could be rejected in the shell pass. As the reaction time went on, both the degradation rate of casein and the absorbance at 275nm of penetration liquid underwent a process from dramatic decline to relatively stable period. When the reaction was continuous for 5hours, the degradation rate and the absorbance of penetration liquid were 24.6% and 0.35, 18.4% and 0.26, respectively for the feed back 5ml/min and 10ml/min.
引文
[1]阎子峰.纳米催化技术.北京:化学工业出版社,2003.
    [2]Au L T Y,Yeung K L.An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes.J.Membr.Sci.,2001,194(1):33-55.
    [3]Zorn M E,Rahne K A,Anderson M A.Characterization of gas-phase adsorption on metal oxide thin films uUsing a magnetoelastic resonance microbalance.Anal.Chem,2003,75(22):6223-6230.
    [4]Bein T.Synthesis and applications of molecular sieve layers and membranes.Chem.Mater,1996,8(8):1636-1653.
    [5]Chiola V,Ritsko J E,Vanderpool C D.Process for producing low-buck density silica.US Patent 3 556725.1971.
    [6]Yanagisawa T,Shimizu T,Kurda K,et al.The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials.Bull.Chem.Soc.Jpn.,1990,63:988-992
    [7]Kresge C T,Leonowicz M E,Roth W J et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature,1992,359:710-712.
    [8]Beck J S,Vartuli J C,Roth W J,et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates.J.Am.Chem.Soc.,1992,114:10834-10843.
    [9]Corma A.,Martinez A.Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41aluminosilicates catalysts.J.Catal.,1995,153:25-31.
    [10]Blasco T,Corma A,Navarro T.Synthesis,characterization,and catalytic acitivity of Ti-MCM-41structures.J.Catal.,1995,156:65-74.
    [11]Zhou W,Klinowski J.The mechanism of formation in the mesoporous molecular sieve MCM-41.Chem.Phys.Lett.,1998,292:207-212.
    [12]Choi H J,Cho M S,Ahn W S.Synthesis of polyanilne/MCM-41 nanocomposite and its electrorheological property.Synth.Metals,2003,135:711-712.
    [13]Adhyapak P V,Karandikar P,Vijayamohanan K et al.Syhthesis of silver nanowires inside mesoporous MCM-41 host.Mater.Lett.,2004,58:1168-1171.
    [14]Bore M T,Pham H N,Switzer E et al.The role of pore size and structure on thethermal stability of gold nanoparticles within mesoporous silica.J.Phys.Chem.B,2005,109(7):2873-2880.
    [15]赵修松,王清遐,徐龙伢等.一种新型中孔3.8nm沸石MCM-41的合成.科学通报.1995,40(16):1476-1479.
    [16]赵修松,王清遐,徐龙伢等.中孔沸石新材料MCM-41的合成、酸性及稳定性.催化学报,1995,16(5):415-419.
    [17]孙研,林文勇,庞文琴等.中孔分子筛MCM-41的合成与表征.高等学校化学学报,1995,16(9):1334-1338.
    [18]袁忠勇,刘述全,龙湘云等.含钛MCM-41分子筛的合成与表征.离子交换与吸附,1995,11(4):354-359.
    [19]刘持标,叶兴凯,吴越.铁1,10-菲咯啉/MCM-41催化苯酚羟化反应的研究.科学通报,1996,41(9):795-799.
    [20]袁忠勇,陈铁红,王敬中等.中孔分子筛MCM-41形成机理的考察.物理化学学报,1997,13(5):452-454.
    [21]何农跃,鲍书林,须沁华.含La的Si-MCM-41的合成及其水热稳定性.科学通报,1997,42(2):165-168.
    [22]何静,段雪,Howe R F.Cr/MCM-41催化剂的结构特征及其纳米尺寸孔内聚乙烯的形成.化学学报,1999,57:125-131.
    [23]李晓芬,何静,马润宇等.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究.化学学报,2000,58(2):167-171.
    [24]郑珊,高濂,郭景坤.金属Pt团簇在氧化钛修饰MCM-41中的组装.无机材料学报,2001,16(6):1235-1238.
    [25]申宝剑,任申勇,郭巧霞.茂锆金属配合物在介孔分子筛MCM-41上的接枝研究.分子催化,2004,18(2):93-97.
    [26]Israelachvili J N.Intermolecular and Surface Forces,2nd edition.San Diego:Academic Press,1992.
    [27]Israelachvili J N,Mitchell D J,Ninham B M.J.Chem.Sos.Faraday Trans.2.1976.72:1525-1568.
    [28]Monnier A,Sch(u|¨)th F,Huo Q et al.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures.Science,1993,261:1299-1303.
    [29]Raman N K,Anderson M T,Brinker C J.Template-based approaches to the preparation of amorphous,nanoporous silicas.Chem.Mater.,1996,8(8):1682-1701
    [30]Pena M L,Kan Q,Corma A,Rey F,Syntesis of cubic mesoporous MCM-48 materials from the system SiO_2:CTAOH/Br:H_2O.Micro.Meso.Mater.,2001,44-45:9-16.
    [31]Landmesser H,Kosslick H,K(u|¨)rschmer U,et al.Synthesis of acidic Al-MCM-48:influence of the Si/Al ratio,degree of the surfactant hydroxyl exchange,and post-treatment in NH_4F solution.J.Chem.Soc,Faraday Trans.1998,94:971.
    [32]Kosslick H,Lischke G,Landmesser H,et al.Acidity and catalytic behavior of substituted MCM-48.J.Catal,1998,176:102-114.
    [33]Dapurkar S E,Selvam P,et al.Mesoporous H-Al-MCM-48:highly efficient solid acid catalyst.Appl.Catal.A,2003,254:239-249.
    [34]Campelo J M,Luna D,Luque R.Synthesis of acidic Al-MCM-48:influence of the Si/Al ratio,degree of the surfactant hydroxyl exchange,and post-treatment in NH4F solution.J.Catal.,2005,230:327-338.
    [35]Xia Y,Mokaya R.Comparative evaluation of MCM-48 materials assembled from zeolite seeds.J.Mater.Chem.,2004,14:3427-3435.
    [36]Chen X Y,Huang L M,Ding G Z et al.Characterization and catalytic performance of mesoporous molecular sieves Al-MCM-41 materials.Catal.Lett.,1997,44:123-128.
    [37]Tuel A,Gontier S.Synthesis and characterization of trivalent metal containing mesoporous silicas obtained by a neutral templating route.Chem.Mater.,1996,8:114-122.
    [38]Romero A A,Alba M D,Klinowski J.Aluminosilicate mesoporous molecular sieve MCM-48.J.Phys.Chem.B,1998,102:123-128.
    [39]Eswaramoorthy M N,Rao C N R.High catalytic efficiency of transition metal complexes encapsulated in a cubic mesoporous phase.J Chem Soc,Chem.Commun.,1998,615-616.
    [40]Tanev P T,Chibwe M,Pinnavaia T J.Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds.Nature,1994,368:321-323.
    [41]Zhang W Z,Pinnavaia T J.Transition metal substituted derivatives of cubic MCM-48 mesoporous molecular sieves.Catal.Lett.,1996,38:261-265.
    [42](E|¨)ye G,Axelrod E,Feldman Y.Dielectric properties and Fourier transform IR analysis of MCM-48,Al-MCM-48 and Ti-MCM-48 mesoporous materials.Colloid Polym.Sci.,2000,278:517-523.
    [43]Kosslick H,Lischke G,Landmesser H et al.Acidity and catalytic behavior of substituted MCM-48.J.Catal.,1998,176:102-114.
    [44]Echchahed B,Moen A,Nicholson D.Iron-modified MCM-48 mesoporous molecular sieves.Chem.Mater.,1997,9:1716-1719.
    [45]Reddy K M,Moudrakovski I,Sayari A.Synthesis of mesoporous vanadium silicate molecular sieves.J.Chem.Soc.,Chem.Commun.,1994,1059-1060.
    [46]Zhao D,Goldfarb D.Synthesis of mesoporous manganosilicates Mn-MCM-41,Mn-MCM-48 and Mn-MCM-L at low surfactant/Si ratio.Stud.Surf.Sci.Catal.,1995,97:181-188.
    [47]Huo Q,Leon R,Petroff P M et al.Mesostructure design with gemini surfactants-supercage formation in a 3-dimensional hexagonal array.Science,1995,268:1324-1327.
    [48]Van Der Voort P,Mathieu M,Mees F,et al.Synthesis of high-quality MCM-48 and MCM-41 by means of the GEMINI surfactant method.J.Phys.Chem.B,1998,102:8847-8851.
    [49]Han S,Xu J,Hou W,et al.Synthesis of high-quality MCM-48 mesoporous silica using gemini surfactant dimethylene-1,2-bis(dodecyldimethylammonium bromide).J.Phys.Chem.B,2004,108:15043-15048.
    [50]Widenmeyer M.,Anwander R et al.Pore size control of highly ordered mesoporous silica MCM-48.Chem.Mater.2002,14:1827-1831.
    [51]Xu J,Luan Z,He H,et al.A reliable synthesis of cubic mesoporous MCM-48 molecular sieve.Chem.Mater.1998,10:3690-3698.
    [52]Gallis K W,Landry C C.Synthesis of MCM-48 by a Phase Transformation Process.Chem.Mater.1997,9:2035-2038.
    [53]Czechura K,Sayari A.Synthesis of MCM-48 silica using a gemini surfactant with a rigid spacer.Chem.Mater,2006,18:4147-4150.
    [54]Chen F,Huang L,Li Q.Synthesis of MCM-48 using mixed cationic-anionic surfactants as templates,Chem.Mater,1997,9:2685-2686.
    [55]Chen F,Yah X,Li Q.Effect of hydrothermal conditions on the synthesis of siliceous MCM-48 in mixed cationic-anionic surfactants systems.Stud.Surf.Sci.Catal.,1998,117:273-280.
    [56]Chen F,Song F,Li Q.Mixed cationic-anionic templating route to Al-MCM-48.Micro.Meso.Mater.,1999,29:305-310.
    [57]Zhao W,Kong L,Luo Y et al.Study of the influence factors on the synthesis of Fe-MCM-48 with binary mixed cationic and anionic surfactants.Micro.Meso.Mater.,2007,100:111-117.
    [58]颜学武,陈海鹰,李全芝.以混合中性-阳离子表面活性剂为模板合成McM-48.化学学报,1998,56(12):1214-1217.
    [59]Ryoo R,Joo S H,Kim J M.Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures.J.Phys.Chem.B,1999,103:7435-7440.
    [60]Zhao W,Yao J D,Huang X D et al.Synthesis of mesoporous MCM-48 with a mixed nonionic cationic surfactant templating pathway.Chinese Sci.Bull.,2001,46:1436-1439.
    [61]Kong L,Liu S,Yan X,Synthesis of hollow-shell MCM-48 using the ternary surfactant templating method.Micro.Meso.Mater.,2005,81:251-257
    [62]Xu J,Luan Z,He H et al.A reliable synthesis of cubic mesoporous MCM-48 molecular sieve.Chem.Mater.1998,10:3690-3698.
    [63]Huo Q,Margolese D I,Stucky G D.Surfactant control of phases in the synthesis of mesoporous silica-based materials.Chem.Mater.1996,8:1147-1160.
    [64]曲凤玉,李建华,刘凤华.低温下MCM-48的高产量合成.高等学校化学学报,2008,7:1304-0306.
    [65]St(o|¨)ber W,Fink A,Bohn E,Coil J.Interf.Sci.,1968,26:62.
    [66]Schumacher K,Cr(u|¨)n M,Unger K K.Novel synthesis of spherical MCM-48.Micro.Meso.Mater.,1999,27:201-206.
    [67]Gr(u|¨)n M,B(u|¨)chel G,Kumar D,Schumachcr K.Rational design,tailored synthesis and charactersation of ordered mesoporous silicas in the micron and submieron size range.Stud.Surf.Sci.Catal.,2000,128:155-165.
    [68]Cr(u|¨)n M,Unger K K,Matsumuto A,Tsutsumi K.In:Science Publ.81,Proc.Characterisation of Porous Solids 4,1997,Elsevier,1997.
    [69]Schumacher K,du Fresne von Hohenesehe C,Unger K K.The synthesis of spherical mesoporous molecular sieves MCM-48 with heteroatoms incorporated into the silica framework.Adv.Mater,1999,11:1194-1198.
    [70]Kumar D,Schumacher K,du Fresne yon Hohenesche C.MCM-41,MCM-48 and related mesoporous adsorbents:their synthesis and eharacterisation.Coll.Surf.A:Physicochemical and Engineering Aspects,2001,187-188:109-116.
    [71]闰明涛,张大余,吴刚.介孔分子筛MCM-48的室温合成与表面修饰.无机化学学报.2005,21:1165-1169.
    [72]姚云峰,张迈生,杨燕生.纳米介孔分子筛MCM-41的微波辐射合成法.物理化学报.2001,17(12):1117-1121.
    [73]张青山,张辉淼,郭炳南.以双子表面活性剂为模板全微波辐射合成介孔分子筛MCM-48.北京理工大学学报.2003,23:394-396.
    [74]Bandyopadhyay M,Gies H.Synthesis of MCM-48 by microwave-hydrothermal process.C.R.Chimie,2005,8:621-626.
    [75]Vartuli J C,Schmitt K D,Kres C T et al.Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves:Inorganic Mimicry of Surfaetant Liquid-Crystal Phases and Mechanistic Implications,Chem.Mater,1994,6:2317-2326.
    [76]Xu J,Luan Z,He H.A reliable synthesis of cubic mesoporous MCM-48 molecular sieve,Chem.Mater,1998,10:3690-3698.
    [77]Lian-Zhou Wang,Jian-Lin Shi,Jian Yu,et al.Temperature control in the synthesis of cubic mesoporous silica materials,Mater.Lett.,2000,45:273-278.
    [78]Huo Q,Feng J,Schu T et al.Preparation of hard mesoporous silica spheres.Chem.Mater,1997,9:14-17.
    [79]Karl W.Gallis,Christopher C.Landry.Synthesis of MCM-48 by a phase transformation process.Chem.Mater,1997,9:2035-2038.
    [80]Abdelhamid Sayari,et al.Novel synthesis of high-quality MCM.48 silica.J.Am.Chem.Soc.2000,122:6504-6505.
    [81]Kao H M,Wu H M,Liao Y W et al.Aluminosilicate MCM.48 mesostructures assembled from dried zeolite precursors and Gemini surfactant,Micro Meso Mater,86(2005) 256-267.
    [82]Firouzi A,Atef F,Oertli A G et al.Alkaline lyotropic silicate-surfactant liquid crystals,J.Am.Chem.Soc.1997,119(15) 3596-3610.
    [83]Chen X Y,Ding J Z,Chen H Y.Formation at low surfactant concentrations and characterization of mesoporous MCM-41.Sci.China Ser B-Chem,1997,40:589-596.
    [84]Kim W J,Yoo J C,David T.Hayhurst,et al.Synthesis of MCM.48 via phase transformation with direct addition of NaF and enhancement of hydrothermal stability by post-treatment in NaF solution,Micro.Meso.Mater.,2002,49:125-137.
    [85]Chen C Y,Li H X,Davis ME,et al.Studies on mesoporous materials.I.Synthesis and characterization of MCM.41,Micro.Mater.,1993,2:17-26.
    [86]Chen C Y,Burkette S L,Li H X,et al.Studies on mesoporous materials.Ⅱ.Synthesis mechanism of MCM-41,Micro.Mater.,1993,2:27-34.
    [87]Stucky G D,Huo Q,Firouzi A,et al.Directed synthesis of organic/inorganic composite structures.Pro gress in Zeolite and Mieroporous Materials,1997,3-28.
    [88]Firouzi A,Kumar D,Bull L M,et al.Cooperative Organization og Inorganic-Surfactant and Biomimetic Assemblies.Science,1995,267:1138-1143.
    [89]Huo Q S,Margolese D I,Ciesla U.Generalized synthesis of periodic surfactant/inorganic composite materials.Nature,1994,368:321-323.
    [90]Landry C C,Tolbert S H,Gallis K W,et al.Phase Transformations in Mesostructured Silica/Surfactant Composites.Mechanisms for Change and Applications to Materials Synthesis,Chem.Mater,2001,13(5) 1600-1608.
    [91]Ogawa M.Formation of novel oriented transparent films of layered silica-surfactant nanocomposites.J.Am.Chem.Soc.,1994,116:7941-7942.
    [92]Ogawa M,Masukawa N,et al.Preparation of transparent thin films of lamellar,hexagonal and cubic silica-surfactant mesostructured materials by rapid solvent evaporation methods.Micro.Meso.Mater.,2000,38:35-41.
    [93]Lu Y,Ganguli R,Drewien C et al.Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating.Nature,1997,389:364-368.
    [94]Yang H,Kuperman A,Coombs N et al.Synthesis of oriented films of mesoporous silica on mica.Nature,1996,379:703-705.
    [95]Aksay A,Trau M,Manne S et al.Biomimetic pathways for assembling inorganic thin film.Science,1996,273:892-898.
    [96]Manne S,Gaub H.Molecular organization of surfactants at solid-liquid interfaces.Science,1995,270(5241):1480-1482.
    [97] Yao N, Ku A Y, Nakagawa N et al. Disorder-order transition in mesoscopic silica thin films. Chem.Mater., 2000,12:1536-1548.
    
    [98] Hozumi A, Yokogawa Y, Kameyama T et al. Morphology of mesoporous silica grown on organic surfaces: effects of surface functional groups and microstructures. Mater. Res. Soc. Symp. Proc, 2000,255: 599.
    [99] Trau M, Yao N, Kim E et al. Microscopic patterning of oriented mesoscopic silica through guided growth. Nature, 1997,390: 674-675.
    
    [100] Yang P, Deng T, Zhao D et al. Hierarchically ordered oxides. Science, 1998, 282: 2244-2246.
    [101] Hillhouse H W, Okubo T, Van Egmond J W et al. Preparation of supported mesoporous silica layers in a continuous flow cell. Chem. Mater., 1997,9:1505-1507.
    [102] Hillhouse H W, Van Egmond J W, Tsapatsis M et al. Highly oriented mesostructured thin films:shear-induced deposition of optically anisotropic coatings of tungsten oxide/surfactant composites.Langmuir, 1999,15:4544-4550.
    [103] Hillhouse H W, Van Egmond J W, Tsapatsis M et al. Synthesis and characterization of ordered arrays of topological defects in mesoporous silica films. Chem. Mater., 2000,12: 2888-2893.
    [104] Manne S, Schaffer T E, Huo Q et al. Gemini surfactant at solid-liquid interfaces: control of interfacial aggregate geometry. Langmuir, 1997,13: 6382-6387.
    [105] Tolbert S H, Schaffer T E, Feng J et al. A new phase of oriented mesoporous silicate thin films.Chem. Mater., 1997,9:1962-1967.
    [106] Miyata H, Kuroda K. Alignment of mesoporous silica on glass substrate by a rubbing method. Chem.Mater., 1999,11: 1609-1614.
    [107] Miyata H, Kuroda K. Preferred alignment of mesochannels in a mesoporous silica film grow on a silica (110) surface. J. Am. Chem. Soc., 1999,121: 7618-7624.
    [108] Miyata H, Kuroda K. Formation of a continuous mesoporous silica film with fully aligned mesochannels on a glass substrate. Chem. Mater., 2000,12:49-54.
    [109] Yang H, Coombs N, Sokolov I et al. Free-standing and oriented mesoporous silica films grown at the air-water interfaces. Nature, 1996, 381: 589-592.
    [110] Brown A S, Holt S A, Dam T et al. Mesoporous silicate film growth at the air-wate interface-direct observation by X-ray reflectivity. Langmuir, 1997,13: 6363-6365.
    [111] Brown A S, Holt S A, Reynolds P A et al. Growth of highly ordered thin film silicate films at the air-water interface. Langmuir, 1998,14: 5532-5538.
    [112] Holt S A, Foran G J, White J W. Observation of hexagonal crystalline diffraction from growing silicate films. Langmuir, 1999, 15: 2540-2542.
    [113] Holt S A, Ruggles J L, Reynolds P A et al. Structural development of silicated films self-assembled at the air-water interface. Physica. B, 2003, 336: 193-203.
    [114] Roser S J, Patel H M, Lovell M R et al. X-ray reflection studies on the momolayer-mediated growth of mesostructured MCM-41 silica at the air-water interface. Chem. Commun., 1998,829-830.
    [115] Yang P D, Wirnsberger G, Huang H C et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science, 2000,287: 465-467.
    [116] Ruggles J L, Holt S A, Reynolds P A et al. Observation of a cubic phase in mesoporous silicate films grown at the air/water interface. Phys. Chem., 1999, 1: 323-328.
    [117]Edler K J,Roser S J,Mann S.In situ Brewster angle microscopy and surface pressure studies on the interfacial growth of mesostructured silica thin films.Chem.Commun.,2000,773-774.
    [118]Edler K J,Goldar A,Hughes A V et al.Structural studies on surfactant templated silica films grown at the air/water interface.Micro.Meso.Mater.,2001,44-45:661-670.
    [119]Zhao D,Yang P,Chmelka B F et al.Multiphase assembly of mesoporous-macroporous membranes.Chem.Mater.,1999,11:1174-1178.
    [120]Zhang J L,Li W,Meng X K et al.Synthesis of mesoporous silica membranes oriented by self-assembles of surfactants.J.Membr.Sci.,2003,222:219-224.
    [121]Schacht S,Huo Q,Voigt-Martin I G et al.Oil-water interface templating of mesoporous macroscale structures.Science,1996,273:768-771.
    [122]Faget L,Berman A,Regev O.Synthesis of unsupported mesoporous silica interphasic films at the oil-water boundary.Thin Solid Films,2001,386(1):6-13.
    [123]Doshi D A,Gibaud A,Liu N et al.In-situ X-ray scattering study of continuous silica-surfactant self-assembly during steady-state dip coating.J.Phys.Chem.B,2003,107:7683-7688.
    [124]McCool B A,Hill N,Dicarlo Jet al.Synthesis and characterization of mesoporous silica membranes via dip-coating and hydrothermal deposition techniques.J.Membr.Sci.,2003,218:55-67.
    [125]Zhao D,Yang P,Melosh N et al.Continuous mesoporous silica films with highly ordered large pore structures.Adv.Mater.,1998,10(16):1380-1385.
    [126]Grosso D,Soler-lllia G J,BaBonneau F et al.Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels.Adv.Mater.,2001,13(14):1085-1090.
    [127]Crepaldi E L,Soler-lllia G J,Crepaldi E L et al.Design and post-functionalisation of ordered mesoporous zirconia thin films.Chem.Commun.,2001,17:1582-1583.
    [128]Grosso D,Balkenende A R,Albouy P A et al.Structural analysis of hexagonal mesoporous silica films produced from triblock-copolymer structuring sol-gel.Stud.Surf.Sci.Catal.,2000,129:673-682.
    [129]Klotz M,Albouy P,Ayral A et al.The true structure of hexagonal mesophase templated silica films as revealed by X-ray scattering:effects of thermal treatments and of nanoparticle seeding.Chem.Mater.,2000,12:1721-1728.
    [130]Brinker C J,Scherer G W.Sol-Gel Science.The Physics and Chemistry of Sol-Gel Processing.Academic Press,1990.
    [131]Ogawa M,Ishikawa H,Kikuchi T.Preparation of transparent mesoporous silica films by rapid solvent evaporation method.J.Mater.Chem.,1998,8:1783-1786.
    [132]Besson S,Ricolleau C,Gacoin T et al.A new 3D organization of mesoporous oriented CTAB silica films.J.Phys.Chem.B,2000,104:12095-12097.
    [133]Yun H,Kiyazawa K,Zhou H et al.Synthesis of mesoporous thin TiO_2 films with hexagonal pore structures using triblock copolymer templates.Adv.Mater.,2001,13(18):1377-1380.
    [134]Song C,Villemure G.Electrode modification with spin-coated films of mesoporous molecular sieve silicas.Micro.Meso.Mater.,2001,44-45:679-689.
    [135]Yamada T,Asai k,Endo A et al.Size controlled mesoporous silicate thin films using block copolymers as template(1).Stud.Surf.Sci.Catal.,2001,132:631-634.
    [136]Yusuf H M,Imai H,Hirashima H et al.Preparation of mesoporous TiO_2 thin films by surfactant templating.J Non-Cryst Solids,2001,285:90-95.
    [137]Zhao D,Yang P,Margolese D I et al.Synthesis of continous mesoporous silica thin films with three-dimensional accessible pore structures.Chem.Commun.,1998,2499-2500.
    [138]Honma I,Zhou H,Kundu D et al.Structural control of surfactant-ternplated hexagonal,cubic and lamellar mesoporous silicate thin films prepared by spin-coating.Adv.Mater.,2000,12(20):1529-1533.
    [139]Kim Y-S,Yang S-M et al.Preparation of continuous mesoporous silica thin film on a porous tube.Adv.Mater.,2002,14:1078-1081.
    [140]Nishiyama N,Koide A,Egashira Yet al.Mesoporous MCM-48 membrane synthesized on a porous stainless steel.Chem.Commun.,1998,2147-2148.
    [141]张慧波,乔志刚,孙向东等.McM-48介孔分子筛膜的制备.抚顺石油学院学报.1998,1:16-19.
    [142]Nishiyama N,Park D-H,Koide A et al.A mesoporous silica(MCM-48) membrane:preparation and characterization.J.Membr.Sci.,2001,182:235-244.
    [143]Park D-H,Nishiyama N,Egashira Y et al.Enhancement ofhydrothermal stability and hydrophobicity of a silica MCM-48 membrane by silylation.Ind.Eng.Chem.Res.,2001,40:6105-6110.
    [144]Nishiyama N,Saputra Hens,Park D-H et al.Zirconium-containing mesoporous silica Zr-MCM-48for alkali resistant filtration membranes.J.Membr.Sci.2003,218:165-171.
    [145]Park D-H,Nishiyama N,Egashira Y et al.Separation of organic/water mixtures with silylated MCM-48 silica membrane.Micro.Meso.Mater.,2003,66:69-76.
    [146]Liu C,Wang J.Mesoporous silica MCM-48 membrane synthesized on a come-pore α-Al_2O_3ceramic tube,Chem.Res.Chinesen.2005,21(2):131-133.
    [147]Iglesia O,Pedernera M,Mallada R.Synthesis and characterization of MCM-48 tubular membranes.J.Membr.Sci.,2006,280:867-875.
    [148]Liu C,Wang J,Rong Z.Mesoporous MCM-48 silica membrane synthesized on a large-pore α-Al_2O_3ceramic tube,J.Membr.Sci.,2007,287:6-8.
    [149]Liu C,Wang L,Ren W et al.Synthesis and characterization of a mesoporous silica(MCM-48)membrane on a large-pore α-Al_2O_3 ceramic tube,Micro.Meso.Mater.,2007,106:35-39.
    [150]Kumar P,Ida J,Kim S et al.Ordered mesoporous membranes:Effects of support and surfactant removal conditions on membrane quality,J.Membr.Sci.,2006,279:539-547.
    [151]Boissie're C,Marco A.U.Martines,Patdcia J.Kooyman,et al.Ultrafiltration Membrane Made with Mesoporous MSU-X Silica.Chem.Mater.2003,15:460-463.
    [152]Nishiyama N,Park D H,Egashira Y et al.Pore size distributions of silylated mesoporous silica MCM-48 membranes,Sep.Purif.Technol.,2003,32:127-132.
    [153]Humphrey H P Yiu,Paul A Wright,Nigel P Botting.Enzyme immobilisation using siliceous mesoporous molecular sieves.Micro.Meso.Mater.,2001,44-45:763-768.
    [154]Diaz J F,Kenneth J.Balkus Jr.Enzyme immobilization in MCM-41 molecular sieve.Journal of Molecular Catalysis B:Enzymatic,1996,2:11-126.
    [155]Wang Y,Caruso F.Mesoporous silica spheres as supports for enzyme immobilization and encapsulation.Chem.Mater,2005,17:953-961.
    [156]Yang X,Li Z,Liu Bet al."Fish-in-Net" Encapsulation of Enzymes in Macroporous Cages as Stable,Reusable,and Active Heterogeneous Biocatalysts.Adv.Mater,2006,18:410-414.
    [157]Mureseanu M,Galarnean A,Renard G,et al.A new mesoporous micelle templated silica route for enzyme encapsulation.Langmuir.2005,21:4648-4655.
    [158]Humphrey H P Yiu,Paul A Wright.Enzymes supported on ordered mesoporous solids:a special case of an inorganic-organic hybrid.J.Mater.Chem.2005,15:3690-3700.
    [159]Xue P,Lua G,Guo Y et al.A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase.J.Molec.Catal.B:Enzymatic,2004,30:75-81.
    [160]Hagit F M,David A.Sol-Gel Materials as Efficient Enzyme Protectors:Preserving the Activity of Phosphatases under Extreme pH Conditions.J.Am.Chem.Soc.2005,127:8077-8081.
    [161]Bressolier P,Petit J M,Julien R.Enzyme hydrolysis of plasma proteins in a CSTR ultrafiltration reactor:performances and modeling.Biotechnol.Bioeng,1998,31:650-658.
    [162]Sannier F,Pio t J M,Dhustler P,Guillochon D.Stability of a mineral membrane ultrafiltration reactor for peptic hydrolysis of hemoglobin.J.Chem.Technol.Biotechnol,1994,61:43-47.
    [163]Bodzek M,Bohdziewicz J,Malgorzata M.Immobilized enzyme membranes for phenol and cyanide decomposition.J.Membr.Sci.,1996,113:373-384.
    [164]Aide P,Unai U.Continuous hydrolysis of whey proteins in a membrane recycle reactor.Enzyme Mierob.Technol.,1996,18:29-34.
    [165]Drott J,Rosengren E,Lindstrom K,Laurell T.Porous silicon as the cartier matrix in microstructured enzyme reactors yielding high enzyme activities.J.Micromech.Microeng.,1997,7:14-23.
    [166]Lopez J L,Matson S L.A multiphase/extractive enzyme membrane reactor for production of diltiazem chiral intermediate.J.Membr.Sci.,1997,125:189-211.
    [167]Giorno L,Molinari R,Natoli M,Drioli E.Hydrolysis and regioselective transesterification catalyzed by immobilized lipases in membrane bioreaetors.J.Membr.Sci.,1997,125:177-187.
    [168]Wendy A.Loughlin,Biotransformations in organic synthesis.Biores.Technol.,2000,74:49-62.
    [169]Lozano P,De Diego T,Belleville M P,Rios G M,Iborra J L.A dynamic membrane reactor with immobilized chymotrypsin for continuous kyotorphin synthesis in organic media.Biotechnol Lett.,2000,22:771-775.
    [170]Paolucci-Jeanjean D,Belleville M P,Rios G M.A comprehensive study of the loss of enzyme activity in a continuous membrane reactor.J.Chem.Technol.Biotechnol,2001,76:273-278.
    [171]Belleville M P,Lozano P,Iborra J L,Rios G M.Preparation of hybrid membranes for enzymatic reaction.Sep.Purif.Teehnol.,2001,25:229-233.
    [172]Akay G,Erhan E,Keskinler B,Algur O F.Removal of phenol from water by membrane-immobilized enzymes.Part Ⅱ.Cross-flow filtration.J.Membr.Sci.,2002,206:61-68.
    [173]Sasaki K,Hara S,Itoh N.Optical resolution of racemic 2-hydroxy octanoic acid using biphasic enzyme membrane reactor.Desalination,2002,149:247-252.
    [174]Guadix A,Camacho F,Guadix E M et al.Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor.J.Food Eng.,2006,72(4):398-405.
    [175]刘春燕.介孔氧化硅分子筛膜的仿生合成与表征:(博士学位论文).大连:大连理工大学,2005.
    [176]Walcarius A,Sibottier E,Etienne M.Electrochemically assisted self-assembly of mesoporous silica thin films.Nature materials,2007,6:602-608.
    [177]冯霄,何潮洪等.化工原理.北京:科学出版社,2001.
    [178]Nooney R I,Thirunavukkarasu D,Chen Y et al.Synthesis of nanoscale mesoporous silica spheres with controlled particle size.Chem.Mater.,2002,14:4721-4728.
    [179]Kumar P,Kim S,Ida J,Guliants V V.Polyethyleneimine-modified MCM-48 membranes:effect of water vapor and feed concentration on N_2/CO_2 selectivity.Ind.Eng.Chem.Res.2008,47:201-208.
    [180]Giorno L,Zhang J C,Drioli E.Study of mass transfer performance of naproxen acid and ester through a multiphase enzyme-loaded membrane system.J.Membr.Sci.,2006,276(1-2):59-67.
    [181]Ceynowa J,Rauchfleisz M.Resolution of racemic trans-methy-1-cyclohexanol by lipase-catalysed transesterification in a membrane reactor.J.Mole.Catal.B:Enzymatic,2001,15(1-3):71-80.
    [182]Tsai S W,Shaw S S.Selection ofhydrophobic membranes in the lipase-catalyzed hydrolysis of olive oil.J.Membr.Sci.,1998,146:1-8.
    [183]Kim T W,Kleitz F,Paul B,Ryoo R.MCM-48-1ike large mesoporous silicas with tailored pore structure facile synthesis domain in ternary triblock copolymer-butanol-water syntem.J.Am.Chem.Soc.2005,127:7601-7610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700