用户名: 密码: 验证码:
碳纤维/铜和CuO纳米线/碳纤维复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作者研究了粉末冶金方法制备的碳纤维增强无铅锡青铜基复合材料(基体成分质量分数:Sn 4%和Zn 6%其余为铜)的力学性能以及减摩擦抗磨损性能。并探讨了热氧化方法制备的CuO纳米线/碳纤维复合材料的磁性和吸波性能。
     (1)研究了镀铜时的PH值、镀铜时间和镀铜工艺次序对碳纤维表面镀铜薄膜质量的关系,制备了铜薄膜厚度约2μm质地均匀的镀铜碳纤维。基本解决了碳纤维与锡青铜基体之间润湿性差的问题,为制备高强度、耐磨损、减摩擦的碳纤维增强铜基复合材料奠定了坚实的基础。也为制备宽频、强吸收、轻质的纳米氧化物吸波复合材料提供了优良的前驱体。
     (2)通过温压、复压复烧的方式制备出了高致密度、高硬度、高抗拉强度和减摩耐磨的碳纤维增强锡青铜基复合材料。通过性能表征显示9%体积分数的碳纤维增强锡青铜基复合材料的硬度、抗拉强度、比磨损率、摩擦系数都优于ZQ663锡青铜合金。其中碳纤维体积分数为9%左右时,复合材料的硬度达到最大值HV138.2 MPa,与ZQSn663锡青铜合金的硬度相比提高了大约80%。复合材料的抗拉强度也达到了最大值302 MPa,与ZQSn663锡青铜合金的抗拉强度相比提高了大约68%。且复合材料的比磨损率只有ZQ663锡青铜合金的比磨损率的1%,摩擦系数也远小于ZQ663锡青铜合金。所制备的金属基复合材料,取代了锡青铜(ZQ663)基体中全部的铅和部分贵金属锡;使复合材料不仅对环境无害,而且降低了成本,节约了资源,是一种符合生态环境协调性要求的金属基复合材料。
     (3)通过热氧化的方法在400℃焙烧4 h条件下,制备了CuO纳米线/碳纤维复合材料,其纳米线长度从几百纳米到几个微米不等,直径在50 nm到100 nm不等。通过VSM在室温条件下表征,结果显示CuO纳米线/碳纤维复合材料表现出微弱的磁性。通过Agilent E8363BPNA矢量网络分析仪测试了50%质量分数的CuO纳米线/碳纤维复合材料在电磁波频率1~18 GHz范围内的电磁参数。其最强吸收在7.9 GHz,达到了-32 dB(吸收率>99.9%),厚度仅为1.8 mm。CuO纳米线/碳纤维复合材料在反射率分别小于-4 dB和-10 dB时,电磁波频率分别覆盖了2.5~18 GHz和3~16.4 GHz,满足了高频和宽频吸收的要求。反射率小于-20 dB(吸收率>99%)的条件下,吸收电磁频率也覆盖了3~9.8 GHz,满足了在低中频强吸收的需要。本试验制备的复合材料与报道的相同吸收率的材料相比,具有更薄的厚度。
     (4)通过热氧化方法在400℃的条件下,制备了CuO纳米线/钴/碳纤维复合材料。其中氧化铜薄膜的厚度约50 nm,钴薄膜的厚度约200 nm,涂层表面有稀疏的直径约10 nm的纳米线,其余部分以纳米小颗粒的形态存在。在外加磁场从-9000 Oe到9000 Oe的范围内,CuO/钴/碳纤维复合材料的饱和磁化强度达到了29.8 emu/g,大约是CuO/碳纤维复合材料饱和磁化强度的1 150倍。质量分数为30%的CuO纳米线/钴/碳纤维复合材料具有更低的反射率,且当厚度为2 mm和外加频率在10.75 GHz时,复合材料具有最低的反射率-42.7 dB(吸收率>99.9%)。当复合材料的厚度在1.3~2.2 mm的范围内,CuO纳米线/钴/碳纤维复合材料的强吸收(反射率<-10 dB,吸收率>90%)覆盖了频率8.72~18 GHz。在强吸收和相同厚度的前提条件下(反射率<-10 dB,吸收率>90%),CuO纳米线/钴/碳纤维复合材料具有较宽的吸收频率(3 GHz)。因此,CuO纳米线/钴/碳纤维复合材料是一种较优异的吸收材料。
     (5)通过热氧化方法在400℃合成了ZnO纳米片状结构。根据发光性能测试,结果表明了ZnO纳米片结构/碳纤维复合材料在325 nrn激发条件下表现的橙红光是由碳的间隙原子和锌的间隙原子所致,绿光由材料内部的氧空位产生。
     (6)结合粉末冶金和热氧化方法制备了纳米注射器结构和微米正四面体结构MgZnO。随着焙烧温度增高,MgZnO形貌发生了改变,发光谱也明显红移(从500 nm移向560 nm),这表明光致发光性能与其形貌密切相关。
     (7)通过粉末冶金和热氧化方法制备SnZnO材料并对其光致发光性能进行了研究。结果发现SnZnO为纳米纤维结构,其直径大约50 nm,长度大约60μm。在325 nm激发的条件下,纳米纤维结构的SnZnO在室温条件下激发出较强的绿光(493 nm)。
     (8)通过电化学沉积和热氧化方法制备了微米仙人球状CuO,并对其进行了表征。在350℃条件下热氧化4 h后薄膜表面合成了微米尺寸仙人球状CuO,球体表面为发散状的CuO纳米线,球体直径大约6微米。
The lead free tin bronze matrix composite with chemical composition of Cu-4wt.%Sn-6wt.%Zn reinforced by carbon fibers (CF/tin bronze composite)is prepared bypowder metallurgy,and the mechanical,tribological and wear properties areinvestigated.The preparation and microwave absorbing properties of cupric oxidenanowire/carbon fiber composites (CuONW/CF composites)prepared by thermaloxidation are also investigated.
     (1)In order to prepare the high strength,anti-friction and anti-wear CF/tin bronzecomposite,the effects of plating solution PH,plating time and plating processes areinvestigated and the coated copper carbon fibers (Cu/CFs,2μm in thickness)areprepared.In addition,the Cu/CFs are used as starting reagent to prepare the effectivemicrowave absorption materials with the properties of wide frequency range,strongabsorption,low density and high resistivity.
     (2)The CF/tin bronze composites are prepared by warm pressing,repressing andre-sintering (powder metallurgy).The CF/tin bronze composites show high relativedensity,high hardness,high tensile strength,excellent anti-friction and anti-wearproperties.The hardness,tensile strength,friction and wear rate of 9 vol.% CF/tinbronze composites are better than that of the tin bronze ZQ663.In particular,the 9 vol.% CF/tin bronze composite has hardness of HV138.2 MPa,which is about 1.8 timeshigher than that of tin bronze 6-6-3.The 9 vol.% CF/tin bronze composite shows atensile strength of 302 MPa,which is about 1.68 times higher than that of tin bronzeZQ663.The wear rate of 9 vol.% CF/tin bronze composite is only 1% of that of tinbronze ZQ663.The friction coefficient of 9 vol.% CF/tin bronze composite is far lowerthan that of tin bronze ZQ663.Additionally,since lead in tin bronze is harmful to theenvironment and tin is a kind of valuable metal,CF/tin bronze composites eliminatelead and reduce tin addition in the composite matrix that show the excellent propertiesof the environment compatibility.
     (3)The CuONW/CF composites are synthesized by thermal oxidation of Cu/CFsat 400℃for 4 hours in air.The results of transmission electron microscope images indicate that the nanowires are about 50 nm in diameter and several microns in length.The magnetic properties of CuO nanowires are measured with a vibrating samplemagnetometer (VSM).It is interesting that the CuO nanowires on the carbon fibersshow ferromagnetic at room temperature.Agilent E8363B PNA vector networkanalyzer is used to measure microwave absorption property of CuONW/CFs.Theelectromagnetic parameter of 50 wt.% CuONW/CFs is measured by the coaxial linemethod at 1-18 GHz.The results show that the lowest reflectivity of CuONW/CFs is-32 dB (absorptivity>99.9 %)at 7.9 GHz,and the corresponding thickness is 1.8 mm.The reflectivity of CuONW/CFs is less than-4 dB over the range of 2.5~18 GHz,-10dB over the range of 3~16.4 GHz and-20 dB over the range of 3~9.8 GHz.TheCuONW/CFs is thinner than those in other reports when the reflectivity is equivalent.
     (4)The CuONW/Co/CF composites are synthesized by thermal oxidation ofCu/CFs at 400℃for 4 hours in air.The thicknesses of cobalt and CuO are about 200and 50 nm,respectively.CuO nanowires (10 nm in diameter)and nanoparticles areobtained on the film surfaces.Due to the function of cobalt the saturation magnetizationvalue of CuO/Co/CF composites is raised to 28.7emu/g at an external field of 9 kOe,which is 1150 times higher than that of CuO/CF composites.The strongest reflectivityloss is further enhanced to-42.7 dB at 10.8 GHz for a layer of 2.0 thickness of thecomposites,and the strong absorption (RL<-10 dB)is between 8.72 and 18 GHz withthe thickness of 1.3-2.2 mm.The reflectivity loss bandwidth of CuO/Co/CF compositesis more than 3 GHz when the thickness and absorption of materials are fixed.TheCuO/Co/CF composites are believed to be ideal for making a lightweight,strongabsorption and wide-frequency microwave absorbing materials.
     (5)The ZnO nanosheet/carbon fiber composites are synthesized by thermaloxidation of Zn/carbon fiber composites at 400℃for 4 hours in air.The opticalproperties were characterized with photoluminescence (PL)spectrum by RF-540 in 325nm.The results show that a broad orange-red emission covering range from 620nm to700nm by 325 excitation wavelength at room temperature.It is indicated that theorange-red emission is resulted from the interstitial carbon atoms of ZnOnanosheet/carbon fiber composites,and green emission results from the oxygen vacancies.
     (6)The nanosyringe-like and micromethane-like ZnMgO are synthesized byannealing the ZnMg alloy at 400℃for 4 hours in air.ZnMg alloys are prepared bycold press and sintering (powder metallurgy).The red shift from 500nm to 560nm ismore pronounced with increasing annealing temperature.The nanosyringe-like samplesexhibit broad green and yellow defect emission.The optical properties of ZnMgO arerelated to the morphologies.
     (7)The ZnSnO nanofibers are synthesized by thermal oxidation of ZnSn alloys.ZnSn alloys are prepared by powder metallurgy.The diameter and length of ZnSnOnanofibers are about 50nm and 60μm,respectively.The room temperaturephotoluminescence spectra of ZnSnO nanofibers show the near-band-edge emission at~391 nm and a broad green emission at~493 nm.
     (8)The radial structure CuO microspheres are synthesized by thermal oxidationof copper deposited on Indium Tin Oxides conducting glass.The microspheres areabout 6 microns in diameter.
引文
[1]R.B.Mathur,O.P.Bahl,K.D.Kundra,Characterization of modified PAN precursors,J.Mater.Sci.Lett.5 (2005) 757-759.
    [2]W.Watt,W.Johnson,Effect of length changes during the oxidation of polyacrylonitrile fibers on the young's modulus of carbon fibers,Appl.Polymer.Symp.9 (1969) 215-217.
    [3]D.J.Johnson,C.N.Tyson,The fine structure of graphitized fibers,J.Appl.Phys.2 (1969) 787.
    [4]黎小平,张小平,王红伟,碳纤维的发展及其应用现状,高科技纤维与应用,30(2005)24-30.
    [5]孙浩伟,李涛,碳纤维及其复合材料在国内外军民领域的应用,纤维复合材料,3(2005)65-67.
    [6]王荣国,武卫莉,谷万里,复合材料概论,哈尔滨工业大学出版社,8(1999) 53.
    [7]秋实,我国碳纤维生产开始实现产业化,建材工业信息,3(2004)50.
    [8]S.J.Chen,Development of Aviation Composite Technology in Near Term-The Review of 2005 JEC Composite Show,Europe,Engineering & Technology.[9]K.K.Chawla,Composite Materials:Science and Engineering,Nork:Springer,1987,110.
    [10]王国荣,武卫莉,古万里,复合材料概论,哈尔滨工业大学出版社,1999.
    [11]张国定,赵昌正,金属基复合材料,上海交通大学出版社,1996.
    [12]郝元恺,肖加余,高性能复合材料学,化学工业出版社,2003,7.
    [13]吴人洁,复合材料,天津大学出版社,2000.
    [14]王广钦,金属基复合材料的制备与力学性能,浙江大学出版社,1999,46.
    [15]松山芳治,三谷裕康,铃木寿,周安生,高一平,王颖等译,粉末冶金,科学出版社,1978.
    [16]李建明,磨损金属学,冶金工业出版社,1990,246.
    [17]温诗铸,摩擦学原理,清华大学出版社,1990,402-430.
    [18]刘瑞堂,刘文博,刘锦云,工程材料力学性能,哈尔滨工业大学出版社,2002, 163-170.
    [19]刘家浚,材料磨损原理及其耐磨性,清华大学出版社,1993,51-52.
    [20]A.N.Yusoff,M.H.Abdullah,S.H.Ahmad,S.F.Jusoh,A.A.Mansor,S.A.A.Hamid,Electromagnetic and absorption properties of some microwave absorbers,J.Appl.Phys.92 (2002) 876.
    [21]R.Ramprasad,P.Zurcher,M.Petras,M.Miller,P.Renaud,Magnetic properties of metallic ferromagnetic nanoparticle composites,J.Appl.Phys.96 (2004) 519.
    [22]P.Qu(?)ff(?)lec,D.Bariou,P.Gelin,A predictive model for the permeability tensor of magnetized heterogeneous materials,IEEE Trans.Magn.41 (2005) 17.
    [23]郭瑞萍,国外陆军隐身技术发展动向,国外兵器动态,4(2000)1-4.
    [24]刘春生,刘樟树,纳米技术对未来电子战系统的影响,飞航导弹,2(2002)1-6.
    [25]王海,雷达吸波材料的研究现状和发展方向,上海航天,1(1 999)55-59.
    [26]刑丽英,隐身材料,北京,化工出版社,2004.
    [27]R.H.Baughman,A.A.Zakhidov,W.A.Heer,Carbon Nanotubes-the Route Toward Applications,Science 297 (2002) 787.
    [28]张立德,牟季美,纳米材料科学,第一版,辽宁科技出版社,1994.
    [29]B.Louis,Diffusion-conirolled reactions:A variational formula for the optimum reaction coodinate,J.Chem.Phys.79 (18) 5 (1983) 563.
    [30]B.Louis,Electron-electron and electron-hole interactions in small semiconductor crystallite:the side dependence of the lowest excited electronic state,J.Chem.Phys.80 (16) (1984) 4403.
    [31]P.Jinag,F.Jona,P.M.Marcus,Surface effects in metal microclusters,Phys.Rev.B 36 (1987) 6336.
    [32]曾戎,章明秋,曾汉民,高分子纳米复合材料研究进展,宇航材料工艺,3(1999)1.
    [33]王旭,黄锐,濮阳楠,聚合物基纳米复合材料的研究进展,塑料,4(2000)25.
    [34]赵东林,周万成,纳米雷达波吸收剂的研究进展,材料工程,53(5)(1998)3-5.
    [35]张卫东,冯小云,孟秀兰,国外隐身材料研究进展,宇航材料工艺,3(2000)1。
    [36]Y.Wang,Herron,Nnaometer-sized semiconductor clusters:Metal synthesis,quantum size effective and photophsical properties,J.Chem.Phys.95 (1) (1991)52.
    [37]Y.Wang,Local field effect in small semiconductor clusters and particles,J.Phy.Chem.95 (5) (1991) 1119.
    [38]陈次平,任新民,半导体超微粒子的光学特性,化学通报,9(1992)10.
    [39]宛德福,马兴隆,磁学物理学,北京,电子工业出版社,1999.
    [40]廖绍彬,铁磁学(下册),北京,科学出版社,2000.
    [41]李东英,安黛宗,刘衍,均匀沉淀法制备纳米氧化锌和片状氧化锌粉体,云南化工,30(2003)151-153.
    [42]田周玲,娇庆泽,水热法制备氢氧化镍纳米线,无机化学学报,20(2004)1449-1452
    [43]K.H.Wu,W.C.Huang,C.C.Yang,J.S.Hsu,Sol-gel auto-combustion synthesis of Ni_(0.5)Zn_(0.5)Fe_2O_4/(SiO_2)_x (x= 10,20,30wt.%) nanocomposites and their characterizations,Mater.Researeh Bulletin 40(2) (2005) 239-248.
    [44]Z.X.Yue,J.Zhou,L.T.Li,H.G.Zhang,Z.L.Gui,Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method,J.Magn.Magn.Mater.208 (2000) 55-60.
    [45]K.H.Wu,T.H.Ting,M.C.Li,W.D.Ho,Sol-gel auto-combustion synthesis of SiO_2-doped NiZn ferrite by using various fuels,J.Magn.Magn.Mater.298 (2000) 25-32.
    [46]Z.X.Yue,L.T.Li,J.Zhou,H.G.Zhang,Z.L.Gui,Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels Mater.Sci.Eng.B 64 (1999),68-72.
    [47]肖军,潘晶,刘新才,高能球磨法及其在纳米晶磁性材料制备中的应用,磁性材料及器件,36(2005)6-10.
    [48]沈鸿等,机械工程手册,机械工业出版社,3(1982)15-48.
    [49]廖自基,微量元素的环境化学及生物效应,中国环境科学出版社,1992,371-372.
    [50]胡大禄,张世琼,苏云生,锡青铜替代材料的研制,云南冶金,1(1993)44。
    [51]A.N.施巴金,耐磨合金,冶金工业出版社,1959,263-279.
    [52]K.Hirotaka,T.Masahiro,Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide,Wear 255 (2003) 573-578.
    [53]S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Microwave absorption behaviors of polyaniline nanocomposites containing TiO_2 nanoparticles, Curr. Appl.Phys. 8 (2008) 391-394.
    [54]R. Sharma, R. C. Agarwala, V. Agarwala, Development of radar absorbing nano crystals by microwave irradiation, Mater. Lett. 62 (2008) 2233-2236.
    [55]K. Lakshmi, H. John, K. T. Mathew, R. Joseph, K. E. George, Microwave absorption, reflection and EMI shielding of PU-PANI composite, Acta Mater. 57 (2009) 371-375.
    [56]D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, G. J. Weisel, Microwave absorption in percolating metal-insulator composites, Appl. Phys. Lett. 93 (2008) 214103.
    [57]M. S. Cao, X. L. Shi, X. Y. Fang, H. B. Jin, Z. L. Hou, W. Zhou, Microwave absorption properties and mechanism of cagelike ZnO/SiO_2 nanocomposites, Appl. Phys. Lett. 91 (2007) 203110.
    [58]G. A. Basheed, S. N. Kaul, Resonant microwave absorption determination of characteristic magnetic length in magnetic-field-annealed vitroperm, Appl. Phys. Lett. 91 (2007) 033105.
    [59]B. W. Li, Y. Shen, Z. X. Yue, C. W. Nan, Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites, Appl. Phys. Lett. 89 (2006) 132504.
    [60]X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G Zhu, B. Lv, J. P. Lei, Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett. 89 (2006) 053115.
    [61]A. Ohlan, K. Singh, A. Chandra, S. K. Dhawan, Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz, Appl. Phys. Lett. 93 (2008) 053114.
    [62]X. G. Liu, D. Y. Geng, Z. D. Zhang, Microwave-absorption properties of FeCo microspheres self-assembled by Al_2O_3-coated FeCo nanocapsules, Appl. Phys. Lett. 92 (2008) 243110.
    [63]X. G Liu, D. Y. Geng, H. Meng, P. J. Shang, Z. D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules, Appl. Phys. Lett. 92 (2008) 173117.
    [64]H. Bosman, Y. Y. Lau, R. M. Gilgenbach, Microwave absorption on a thin film, Appl. Phys. Lett. 82 (2003) 1353.
    [65]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.
    [66]A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas, K. V. Pao, H_2S gas sensing mechanism of SnO_2 films with ultrathin CuO dotted islands, J. Appl. Phys. 92 (2002) 2172.
    [67]K. L. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, J. Y. C. Ching, Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate, Nanotechnology 18 (2007) 275607.
    [68]C. K. Xu, Y. K. Liu, G D. Xu, G H. Wang, Preparation and Characterization of CuO Nanorods by Thermal Decomposition of CuC_2O_4 Precursor, Mater. Res. Bull. 37 (2002) 2365-2372.
    [69]S. Z. Li, H. Zhang, Y. Ji, D. Yang, CuO nanodendrites synthesized by a novel hydrothermal route, Nanotechnology 15 (2004) 1428.
    [70]C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, Synthesis of Well-ordered CuO Nanofibers by a Self-catalytic Growth Mechanism, Appl. Phys. Lett. 82 (2003) 3316-3318.
    [71]Y. Qin, X. D. Wang, Z. L. Wang, Microfiber-Nanowire Hybrid Structure for Energy Scavenging, Nature 451 (2008) 809-914.
    [1]G.C.C.Yang,C.M.Tsai,Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process,J.Membrane Sci.321 (2008) 232-239.
    [2]M.Das,A.K.Bas,S.Ghatak,A.G.Joshi,Carbothermal synthesis of boron nitride coating on PAN carbon fiber,J.Eur.Ceram.Soc.2009,In press.
    [3]A.Bakkar,V.Neubert,Corrosion behaviour of carbon fibres/magnesium metal matrix composite and electrochemical response of its constituent,Electrochim.Acta 54 (2009) 1597-1606.
    [4]Z.J.Dong,X.K.Li,G.M.Yuan,Y.Cong,N.Li,Z.Y.Jiang,Z.J.Hu,Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts,Thin solid films,517 (2008) 3248-3252.
    [5]B.Li,C.R.Zhang,F.Cao,S.Q.Wang,B.Chen,J.S.Li,Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si_3N_4 composites,Mater.Sci.Eng.A,471 (2007) 169-173.
    [6]G.Hackl,H.Gerhard,N.Popovsk,Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition Thin Solid Films 513 (2006) 217-222.
    [7]J.S.N.Dutt,M.F.Cardosi,S.Wilkins,C.Livingstone,Characterisation of carbon fibre composites for decentralised biomedical testing,J.Davis,Mater.Chem.Phys.97 (2006) 267-272.
    [8]W.Z.Shen,Q.J.Guo,Y.S.Zhang,Y,Liu,J.T.Zheng,J.Cheng,J.Fan,The effect of activated carbon fiber structure and loaded copper,cobalt,silver on the adsorption of dichloroethylene,Colloid.Surface.A,273 (2006) 147-153.
    [9]Y.Jang,S.Kim,S.Lee,D.Kim,M.Um,Fabrication of carbon nano-sized fiber reinforced copper composite using liquid infiltration process,Compos.Sci.Technol.65 (2005) 781-784.
    [10]J.Korab,P.Stefanik,S.Kavecky,P.Sebo,G.Korb,Thermal expansion of cross-ply and woven carbon fibre-copper matrix composites, Compos.: Part A 33 (2002) 133-136.
    [11]S. R. Dong, J. P. Tu, X. B. Zhang, An investigation of the sliding wear behavior of Cu-matrix composite rein-forced by carbon nanotubes, Mater. Sci. Eng. A, A 313 (1-2) (2001) 83-87.
    [12] C. F. Wang, M. F. Ying, Z. B. Wang, High temperature compatibility of carbon fiber with its copper coatings, Proceedings of the 6th International Conference on Composite Materials, London: Elsevier Applsed Science,1987,441-448.
    [13]Q. Q. Li, S. S. Fan, W. Q. Han, C. Sun, W. Liang, Coating of carbon nanotube with nickel by electroless plating method, Jpn. J. Appl. Phys. 36 (4B) (1997) L501-L503.
    [14]Z. H. Yang, X. H. Li, J. Li, Study on the purifying of carbon nanotubes, J. Central South University Technol. 30(4) (1999) 390-391.
    [15]F. Caturla, F. Molina, S. M. Molina, Electroless plating of graphite with copper and nickel, J. Electrochem. So. C, 142(12) (1995) 4084-4089.
    [16]X. L. Kong, Y. B. Liu, Z. Y. Cao, Copper matrix composites with nanocrystal-line Cu-Zn surface, Chin. J. Nonferrous Met. 12(4) (2002) 687-692.
    [17]S. R. Dong, J. P. Tu, X. B. Zhang, An investigation of the sliding wear behavior of Cu-matrix composite rein-forced by carbon nanotubes, Mater. Sci. Eng. A, A313(1-2) (2001) 83-87.
    [18]Y. Feng, M. F. Ying, C. F. Wang, Relation between thermal expansion coefficients of CF/Cu composites and distribution of fibers, Acta Metal-lurgica Sinica, 30(9) (1994) 13432-13434.
    [19]J. Zeng, P. Tao, S. Wang, J. C. Xu, Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers. Appl. Sur. Sci. 255 (2009) 4916-4920.
    [20]J. Zeng, J. C. Xu, L. Xia , X. Y. Deng, S. Wang, P. Tao, X. M. Ma, J. Yao, C. Jiang, L. Lin, Wear performance of the lead free bronze matrix composite reinforced by short carbon fibers. Appl. Sur. Sci. 255 (2009) 6647-6651.
    [1]G.C.C.Yang,C.M.Tsai,Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process,J.Membrane Sci.321 (2008) 232-239.
    [2]B.J.Kim,S.J.Park,Antibacterial behavior of transition-metals-decorated activated carbon fibers,J.Colloid Interface Sci.325 (2008) 297-299.
    [3]R.M.Santos,C.F.Lourenco,A.P.Piedade,R.Andrews,F.Pomerleau,P.Huettl,G.A.Gerhardt,J.Laranjinha,R.M.Barbosa,A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue,Biosensors and Bioelectronics 24 (2008) 704-709
    [4]D.Y.Liu,Q.M.Luo,H.X.Wang,J.H.Chen,Direct synthesis of micro-coiled carbon fibers on graphite substrate using co-electrodeposition of nickel and sulfur as catalysts,Mater.Des.30 (2009) 649-652
    [5]C.Wang,K.Z.Li,H.J.Li,G.S.Jiao,J.H.Lu,D.S.Hou,Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites,Mater.Sci.Eng.A 487 (2008) 52-57.
    [6]T.Lin,D.C.Jia,P.G.He,M.R.Wang,D.F.Liang,Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites,Mater.Sci.Eng.A 497 (2008) 181-185.
    [7]M.Akay,G.R.Spratt,Evaluation of thermal ageing of a carbon fibre reinforced bismalemide,Compos.Sci.Technol.68 (2008) 3081-3086.
    [8]U.Beier,F.W.Fabris,F.Fischer,J.K.W.Sandier,V.Altstadt,G.Hiilder,E.Schmachtenberg,H.Spanner,C.Weimer,T.Roser,W.Buchs,Mechanical performance of carbon fibre-reinforced composites based on preforms stitched with innovative low-melting temperature and matrix soluble thermoplastic yarns,Compos.:Part A 39 (2008) 1572-1581.
    [9]Y.P.Tang,L.Liu,W.W.Li,B.Shen,W.B.Hu,Interface characteristics and mechanical properties of short carbon fibers/A1 composites with different coatings,Appl.Sur.Sci.255 (2009) 4393-4400.
    [10]J.Wolfrum,S.Eibl,L.Lietch,Rapid evaluation of long-term thermal degradation of carbon fibre epoxy composites,Compos.Sci.Technol.69 (2009) 523-530.
    [11]J.D.Eshelby,C.W.A.Newey,P.L.Pratt,A.B.Lidiard,Charged dislocations and the strength of ionic crystals,Phil.Mag.3 (1958) 75-89.
    [12]果世驹,粉末烧结理论,北京,冶金工业出版社,1998.
    [13]J.Zeng,J.C.Xu,L.Xia,X.Y.Deng,S.Wang,P.Tao,X.M.Ma,J.Yao,C.Jiang,L.Lin,Wear performance of the lead free bronze matrix composite reinforced by short carbon fibers.Appl.Sur.Sci.255 (2009) 6647-6651.
    [14]训方,方孝淑,关来泰,材料力学,高等教育出版社,1993,40-41。
    [15]赵品,谢辅洲,孙振国,材料科学基础教程,哈尔滨工业大学出版社,2003.
    [16]J.C.Xu,H.Yu,L.Xia,X.L.Li,H.Yang,Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite,Mater.Des.25 (2004) 489-493.
    [17]J.Korab,P.Stefanik,S.Kavecky,P.Sebo,G.Korb,Thermal conductivity of unidirectional copper matrix carbon fibre composites,Compos.:Part A 33 (2002) 577-581.
    [18]S.Nannaji,K.S.Nelson,E.Turgay,Friction and wear of fiber-reinforced metal-matrix composites,Wear,157 (1992) 339-357.
    [19]Q.J.Guo,L.Z.Yun,Study on the tribological characteristics of carbon fiber-copper matrix composite,Tribology (in Chinese),12 (1992) 153-155.
    [20]戴雄杰,摩擦学基础,上海科学技术出版社,1984,40-41.
    [21]程继贵,应美芳,王成福,碳纤维对轴瓦合金减摩耐磨性能的影响,合肥工业大学学报,15(1992)1-7.
    [1]A.C.F.M.Costa,A.P.Diniz,V.J.Silva,R.H.G.A.Kiminami,D.R.Cornejo,A.M.Gama,M.C.Rezende,L.Gama,Influence of calcination temperature on the morphology and magnetic properties of Ni-Zn ferrite applied as an electromagnetic energy absorber,J.Alloy.Compd.2008,In Press.
    [2]K.Li,C.Wang,H.J.Li,L.J.Guo,J.H.Lu,Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites,J.University of Sci.Technology Beijing,15 (2008) 808.
    [3]W.Xie,H.F.Cheng,Z.Y.Chu,Y.J.Zhou,H.T.Liu,Z.H.Chen,Effect of FSS on microwave absorbing properties of hollow-porous carbon fiber composites,Mater.Des.30 (2009) 1201-1204.
    [4]Y.Z.Fan,H.B.Yang,X.Z.Liu,H.Y.Zhu,G.T.Zou,Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite,J.Alloy.Compd.461 (2008) 490-494
    [5]C.Wang,K.Z.Li,H.J.Li,L.J.Guo,G.S.Jiao,Influence of CVI treatment of carbon fibers on theelectromagnetic interference of CFRC composites,Cem.Concr.Compos.30 (2008) 478-485.
    [6]刑丽英,隐身材料,化学工业出版社,2004.
    [7]U.R.Lima,M.C.Nasar,R.S.Nasar,M.C.Rezende,J.H.Ara(?)jo,Ni-Zn nanoferrite for radar-absorbing material,J.Magn.Magn.Mater.2008,320,1666-1670.
    [8]L.Y.Xing,Stealth material,Chem.Industry Press 2004,49.
    [9]D.D.Edie,G.J.Hayes,H.E.Rast,C.C.Fain,Processing of noncircular pitch-based carbon fibers,High Temp.High Pressure 22 (1990) 289-298.
    [10]G.E.Stoner,D.D.Edie,J.M.Kennedy,Mechanical properties of noncircular pitch-based carbon fibers,High Temp.High Pressure 22 (1990) 299-308.
    [11]X. C, Jiang, T. Herricks, Y. N. Xia, CuO nanowires can be synthesized by heating copper substrates in air, Nano lett. 2 (2002) 1333-1338.
    [12]J. Zeng, P. Tao, S. Wang, J. C. Xu, Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers, Appl. Sur. Sci. 255 (2009) 4916-4920.
    [13]C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. ifshitz, S. T. Lee, Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates, Adv. Funct. Mater. 14 (2004) 589-594.
    [14]Z. Wang, Q. Zhao, Y. Zhang, B. Xiang, D. P. Yu, Microstructure characterization of Al_2O_3 nanowires with networked rectangular nanostructure, Eur. Phys. J. D, 34 (2005) 303-305.
    [15] F. Garcia-Labiano, L.F. Diego, J. Ad(?)nez, A. Abad, P. Gay(?)n, Characteristics of non-uniform reaction blocks for chemical heat pump, Chem. Eng. Sci. 60 (2005) 1401-1409.
    [16]R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett. 4 (1964) 89.
    [17]X. F. Duan, C. M. Lieber, General Synthesis of Compound Semiconductor Nanowires, Adv. Mater. 12 (2000) 298-302.
    [18]S. Aggarwal, A. P. Monga, S. R. Perusse, R. Ramesh, V. Ballarotto, E. D. Williams, B. R. Chalamala, Y. Wei, R. H. Reuss, Spontaneous ordering of oxide nanostructures, Science 287 (2000) 2235.
    [19]S. R. Shinde, A. S. Ogale, S. B. Ogale, S. Aggarwal, V. Novikov, E. D. Williams, R. Ramesh, Self-organized pattern formation in the oxidation of supported iron thin films. I. An experimental study, Phys. Rev. B 64 (2001) 035408.
    [20]A. Kumar, A. K. Srivastava, P. Tiwari, R. V. Nandedkar, The effect of growth parameters on the aspect ratio and number density of CuO nanorods, J. Phys. Condens. Matter. 16 (2004) 8531-8543.
    [21]J. T. Chen, F. Zhang, J. Wang, G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan, P. X. Yan, CuO nanowires synthesized by thermal oxidation route, J. Alloy. Compd. 454 (2008) 268-273.
    [22]X.C.Jiang,T.Herricks,Y.N.Xia,CuO nanowires can be synthesized by heating copper substrates in air,Nano Lett.2 (2002) 1333-1338.
    [23]李培森,物性测量原理与测试分析方法,兰州大学出版社,1994.
    [24]J.B.Forsyth,P.J.Brown,B.M.Wanklyn,J.Phys.C 1988,21,2917.
    [25]B.X.Yang,T.R.Thurston,J.M.Tranquada,G.Shirane,Magnetic neutron scattering study of single-crystal cupric oxide,Phys.Rev.B,39 (1989) 4343-4349.
    [26]M.Ain,A.Menelle,B.M.Wanklyn,E.F.Bertaut,Magnetic structure of CuO by neutron diffraction with polarization analysis,J.Phys.:Condens.Matter,4 (1992) 5327-5337.
    [27]P.Monod,A.A.Stepanov,V.A.Pashchenko,J.P.Vieren,G.Desgardin,J.Jegoudez,Paramagnetic and antiferromagnetic resonance of CuO,J.Magn.Magn.Mater.177-181 (1998)739-740.
    [28]A.B.Kuz'menko,D.Marel,P.J.M.Bentum,E.A.Tishchenko,C.Presura,A.A.Bush,Phonon anomalies versus magnetic ordering in CuO,Phys.B,284-288 (2000) 1396-1397.
    [29]M.Ohashi,A.Tashiro,G.Oomi,Effect of pressure on the magnetic phase transition in cupric oxide,Phys.Rev.B,73 (2006) 134421.
    [30]J.Zeng,J.C.Xu,S.Wang,P.Tao,W.Hua,Ferromagnetic behavior of CuO nanowires on carbon fiber surface synthesized by thermal oxidation,Mater.Charact.2009,In Press.
    [31]T.V.Chandrasekhar,V.C.Sahni,Magnetic transitions in cupric oxide:the effect of oxygen defects,J.Phys.Cond.Matter.1994,6,L 423-L426.
    [32]S.J.Chen,Y.C.Liu,Y.M.Lu,J.Y.Zhang,D.Z.Shen,X.W.Fan,Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies,J.Crystal Growth 289 (2006) 55-58.
    [33]A.M.Nicolson,G.F.Ross,Measurement of intrinsic properties of materials by time domain techniques,IEEE Trans.on IM,19 (1970) 377-382.
    [34]J.Baker-Jarvis,Transmission/reflection and short-circuit line permittivity measurements,NIST Technical Note 1341,1990.
    [35]C.K.Po,G.L.Dai,S.Sung,H.K.Geun,Low-observable radomes composed of composite sandwich constructions and frequency selective surfaces, Compos. Sci. Technol. 68 (2008) 2163-2170.
    [36]S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO_2 nanoparticles and carbon nanotubes, Synth. Met. 158 (2008) 251-258.
    [37]G. H. Mu, N. Chen, X. F. Pan, K. Yang, M. Y. Gu, Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites, Appl. Phys. Lett. 91 (2007)043110.
    [38]X. L. Dong, X. F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92 (2008) 013127.
    [39]Q. L. Liu, D. Zhang, T. X. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites, Appl. Phys. Lett. 93 (2008) 013110.
    [40]R. F. Zhuo, H. T. Feng, L. Qiang, J. Z. Liu, J. T. Chen, Yan D, J. J. Feng, H. J. Li, S. Cheng, B. S. Geng, X. Y. Xu, J. Wang, Z. G. Wu, P. X. Yan, G. H. Yue, Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. J. Phys. D: Appl. Phys. 41 (2008) 185405.
    [41]Y. J. Chen, M. S. Cao, T. H. Wang, Q. Wan, Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett. 84 (2004) 3367.
    [42]X. L. Dong, X. F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations, Appl. Phys. Lett. 92 (2008) 013127.
    [43]N. Q. Zhao, T. C. Zou, C. S. Shi, J. J. Li, W. K. Guo, Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites. Mater. Sci. and Eng. B 127 (2006) 207-211.
    [44]H. L. Fan, W. Yang, Z. M. Chao, Microwave absorbing composite lattice grids, Compos. Sci. Technol. 67 (2007) 3472-3479.
    [1]B.Oregan,M.Gratzel,A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films,Nature 353 (1991) 737.
    [2]J.Suehire,N.Nakagawa,S.I.Hiaka,M.Ueda,K.Imasaka,M.Higashihata,T.Okada,M.Hara,Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,nanotechnology 17 (2006) 2567-2573.
    [3]K.H.Woong,J.K.Bong,W.K.Tae,J.Gunho,S.Sunghoon,S.K.Soon,Y.Ahnsook,A.S.Eric,L.Takhee,Electrical properties of ZnO nanowire field effect transistors by surface passivation,Colloid.Surface A 313-314 (2008) 378-382.
    [4]D.Bera,L.Qian,S.Sabui,S.Santra,P.H.Holloway,Photoluminescence of ZnO quantum dots produced by a sol-gel process,Optical mater.30 (2008) 1233-1239.
    [5]Y.R.Yang,X.H.Yan,Y.Xiao,Z.H.Guo,The optical properties of one-dimensional ZnO:A first-principles study,Chem.Phys.Lett.446 (2007) 98-102.
    [6]X.D.Wang,Y.Ding,C.J.Summer,Z.L.Wang,Large-scale synthesis of six-nanometer-wide ZnO nanobelts,J.Phys.Chem.B 108 (2004) 8773-8777.
    [7]X.Wang,Q.W.Li,Z.B.Liu,J.Zhang,Z.F.Liu,R.M.Wang,Low-temperature growth and properties of ZnO nanowires,Appl.Phys.Lett.84 (2004) 4941.
    [8] D. J. Lee, J. Y. Park, Y. S. Yun, Y. S. Hong, J. H. Moon, B. T. Lee, S. S. Kim, Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates, J. Cryst. Growth 276 (2005) 458-464.
    [9] Y. Tak, K. J. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, J. Phys. Chem. B 109 (2005) 19263-19269.
    [10] J. Zeng, S. Wang, P. Tao, J. C. Xu, Luminescence properties of nanostructure ZnO-covered carbon fibers prepared by thermal oxidation. Chin. Phys. Lett. 26 (2009) 057802.
    [11]X. Xing, K. Zheng, H. Xu, F. Fang, H.Shen, J. Zhang, J. Zhu, C. Ye, G. Cao, D. Sun, G. Chen, Synthesis and electrical properties of ZnO nanowires, Micron 37 (2006) 370-373.
    [12]C. Klingshirn, The luminescence of ZnO under high one- and two-quantum excitation, Phys. Status solidi B 71 (1975) 547.
    [13]A. Umar, Y. B. Hahn, ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties, Nanotechnology 17 (2006) 2174-2180.
    [14]S. J. Chen, Y. C. Liu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies, J. Crystal Growth 289 (2006) 55-58.
    [15]D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, W. K. Chan, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Appl. Phys. Lett. 85 (2004) 1.601.
    [16]S. A. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys. 84 (1998) 2287.
    [17]X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Lett. 78 (2001) 2285.
    [18]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79(1996)7983.
    [19] J. G. Zhou, F. Y. Zhao, Y. L. Wang, Y. Zhang, L. Yang, Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties, J. Lumin. 122-123 (2007) 195-197.
    [20]X. Liu, X. Wu, H. Cao, R.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, J. Appl. Phys. 95 (2004) 3141.
    [21]Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, J. H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO, Appl. Phys. Lett. 87 (2005) 211912.
    [22]A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission J. Lumin. 87-89 (2000) 454.
    [23]A. B. Djurisic, Y. H. Leung, K. H. Tarn, L. Ding, W. K. Ge, H. Y. Chen, S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength, Appl. Phys. Lett. 88 (2006) 103107.
    [24]J. Zeng, S. Wang, P. Tao, J. C. Xu, Luminescence properties of nanostructure MgZnO prepared by thermal oxidation. J. Alloy. Compd. 276 (2009) 60-63.
    [25]S. Kumar, V. Gupte, K. Sreenivas, Structural and optical properties of magnetron sputtered Mg_xZn(i-x)O thin films, J. Phys. Condes. Matter 18 (2006) 3343-3354.
    [26]W. I. Park, G. C. Yi, H. M. Jang, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(i-x)MgxO (0 ≤ x ≤ 0.49) thin films, Appl. Phys. Lett. 79 (2001) 2022.
    [27]C. X. Wu, Y. M. Lu, D. Z. Shen, Z. P. Wei, Z. Z. Zhang, B. H. Li, J. Y. Zhang, Y. C. Liu, X. W. Fan, Ultraviolet Luminescence in Mg_(0.12)Zn_(0.88)O alloy films, Chin. Phys. Lett. 22(10) (2005) 2655-2658.
    [28] J. Zeng, P. Tao, C. E. Xu, S. Wang, J. C. Xu, A novel method for preparing ZnSnO nanofibers, Mod. Phys. Lett. B, Accept.
    [29]L. L. Yang, J. H. Yang, D. D. Wang, Y. J. Zhang, Y. X. Wang, H. L. Liu, H. G. Fan, J. H. Lang, Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(l 0 0) via vapor-liquid-solid process, Phys. E 40 (2008) 920-923.
    [30]J. M. Ting, K. H. Liao, T. L. Chou, One-dimensional carbon and ZnO, Thin Solid Films 515 (2007) 5123-5130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700