用户名: 密码: 验证码:
共形天线及阵列的分析和综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共形天线由于其独有的优点在现代雷达中得到广泛地应用:首先,与其载体表面共形,对载体本身的空气动力学性能影响不大;其次,在保证天线性能的条件下,采用共形天线可以简化天线安装;而且目前普遍采用的平面相控阵列天线还存在很多问题,如:①波束扫描范围窄;②天线单元之间的互耦效应与扫描角相关等。共形天线阵可以采用圆形、球形阵列等形式,可有效地避免上述缺点,它们可以在扫描过程中基本保持天线的波束形状和增益,同时使互耦维持在一定水平上。
     本论文就基于复杂载体上共形微带天线单元及阵列进行分析和综合研究,对现阶段共形天线研究中的重点、难点以及一些前沿问题进行了较为深入地探讨。围绕共形微带天线的精确分析方法、共形微带天线单元及阵列的优化方法等,论文系统而深入地研究了以下几个方面的内容:
     第一、基于体面线积分方程(VSWIE)的共形微带天线精确分析。
     本文采用体、面、线及线面结合的四种基函数结合的VSWIE方程,精确计算任意形状、有限大介质和地板、探针馈电的共形微带天线辐射和阻抗特性。四种不同的基函数分别代表介质体内的体位移电流、金属表面的面电流、馈电探针上的线电流以及探针同天线结合处的电流。利用矩量法(MOM)建立线性方程组,通过求解这个线性方程组,得到各个基函数上的电流值,从而很容易地计算出天线的辐射和阻抗特性。
     第二、基于VSWIE的共形微带天线阵列精确分析。
     由于介质部分采用体剖分,其未知量大,直接采用MOM很难处理相关的阵列问题,所以有必要使用快速算法加速计算。因此,本文采用多层快速多极子(MLFMA)方法提高计算效率,减小了计算机的资源消耗。同时,针对电大载体上的微带共形天线及阵列的数值计算问题,本文还将物理光学法(PO)同VSWIE结合,在微带天线阵列区使用VSWIE方法,在金属载体区使用PO,大大提高了算法在实际问题中的应用范围。
     第三、适合共形的微带天线单元设计。
     由于微带天线共形于载体之上,其介质厚度不宜过大,本章对共形微带天线的讨论均建立在单层薄介质材料之上。针对如何展宽微带天线带宽问题,文中详细介绍了采用MOM和遗传算法(GA)开发的宽频带微带天线设计工具,以及两款宽频带微带天线。同时,由于载体上可供天线的安装空间有限,本章还对微带天线中的可重构技术展开研究,提出了:①新型频率可重构天线;②新型方向图可重构天线:③新型宽带方向图可重构天线;④新型的极化可重构天线。
     第四、空间映射技术(SM)在共形天线优化中的应用。
     文中使用SM技术针对复杂载体上的共形天线进行优化。采用SM技术后,共形天线的整体优化时间降低了约一个数量级左右。由于粗模型选用平面微带天线,因此对不同载体上的同类型的共形微带天线优化能够使用相同的粗模型。同时在深入研究后,本文还总结出了如何合理选择响应函数以加快优化速度的方法。
     第五、共形天线阵列的精确快速综合设计
     现代天线设计及优化问题往往涉及天线的各个参数,需要优化的天线参数不只一个。经典的多目标优化方法中,通常把多个目标函数整合成单个目标,将多目标优化问题转变为单目标优化问题。然而当优化目标改变时,其优化过程必须重启,同时存在多个目标函数之间量纲不同、难以统一,加权值的分配带有较强的主观性等缺点。因此本章对多目标优化算法进行了研究,在多目标优化算法的研究中,针对非支配遗传-Ⅱ(NSGA-Ⅱ)算法的不足之处,文中进行了三点改进,从而提出了一种改进的非支配遗传算法(INSGA-Ⅱ)。通过数值实验证明,改进算法提高了收敛速度和种群多样性,使种群收敛更加均匀,同时应用它来优化共形天线阵列,取得了很好的结果。
Conformal antennas have been widely used in modern radar systems with theirspecial advantages. First of all, because the antenna attaches with aircraft surface, itdoesn't affect the performance in aerodynamics. Then, with the same performance,conformal antennas can simplify the fixing, too. Plane phased antenna arrays have lotsof disadvantages such as narrow scanning angle and variable mutual couple related withthe scanning angle. However, the conformal antenna arrays such as circle array, spherearray, as a result of keeping the mutual couple balance, could avoid these defectsefficiently.
     This paper focus on analysis and synthesis of conformal microstrip antennas andarrays, and also make a further research in conformal microstrip antennas analysis,conformal microstrip antennas and arrays synthesis for solving the important, difficultyand front problems in present study. Several problems are studied systematic by thenumbers and deeply, and the contents list as follows.
     The first: accurate analysis of conformal microstrip antennas based on the volume,surface, wire integral equations (VSWIE).
     This section uses the VSWIE equation which takes four basis functions includingvolume, surface, wire and wire-surface junction, to analyze the radiation and impedanceof probe feed conformal microstrip antennas on arbitrarily-shaped, finite-sized groundplanes and substrates. The dielectric slab, conducting patch, ground plane, and the probefeed are replaced by equivalent volume current, surface current, wire current, andwire-surface junction singularity current respectively, with the four different basisfunctions. The method of moments (MOM) is used to establish the linear equationfunctions and the currents can be calculated by solving these functions. Then, theantenna radiation patterns and impedance characteristics can be computed easily.However, meshing the dielectric slab with volume makes unknows too huge to solveantenna arrays by MOM directly.
     The second: accurate analysis of conformal microstrip antenna arrays based on the VSWIE.
     As mentioned above, without accelerated algorithms, it's difficult to directlyanalyze the conformal microstrip antennas with MOM, which produces too muchunknown quantities by using volume meshing in substrate part. Hence, the multi-layerfast multi-pole algorithm (MLFMA) is used to accelerate computing and reduceconsuming of computer resources in this paper. Simultaneously, we combinephysics-optical (PO) in which the microstrip antennas is solved using VSWIE and metalplatform is solved using PO
     The third: design of conformal microstrip antennas.
     Because the conformal microstrip antennas can't be too thick, in this section, theresearches of conformal antennas are based on single layer substrate. For broaden theoperating band, a tool is introduced by combining the MOM and genetic algorithm (GA)for broadband microstrip antenna design, and two kinds of antennas are designed by thismethod. For overcoming the limitation of fixed space on the aircraft platform,reconfigurable technique has been researched in this paper: (1) novel frequencyreconfigurable microstrip antenna; (2) novel pattern reconfigurable microstrip antenna;(3) novel broadband pattern reconfigurable microstrip antenna; (4) novel circularpolarization reconfigurable microstrip antenna.
     The forth: application of space mapping(SM) technique in the optimization ofconformal antenna.
     Conformal antennas based on complex carrier are designed with SM. The examplesdemonstrate that SM can reduce the overall design process by an order of magnitude (10times). A plane structure antenna is treated as a coarse model, then, the same coarsemodel is used to optimize the conformal microstrip antennas in different carriers.Simultaneously, we find that the convergence of this scheme is sensitive to the responsefunctions in the same problem. So, different response functions are studied foraccelerating convergence in this paper too.
     The fifth: Synthesis of conformal antenna arrays
     Synthesis of antenna arrays is a multi-objective problem. In the simplesingle-objective algorithm, the different objectives with different weights are combinedinto a single cost function, and the optimization process must be repeated when an objective goal changes. Moreover, the desired objective goals can't be achieved unlessall the weights are exactly chosen. In this section, the improved NSGA-Ⅱapproach withthree modifications, is put forward to improve the diversity and convergence in theoptimization of antenna array.
引文
[1] Hopkins M A, Tuss J M, Lockyer A J, Alt K, Kinslow R, and Kudva J N. Smart Skin Conformal Load-bearing Antenna and Other Smart Structures Developments. in Proceedings of american institute of aeronautics and astronautics (AIAA), 1997, 1: 521-530.
    [2] 许峰,赵玉洁.新一代预警飞机“费尔康”.电子对抗技术.1994,1:43-45.
    [3] Kim Y, Walton E K. Automobile conformal antenna design using non-dominated sorting genetic algorithm (NSGA). IEE Proceedings Antennas and Propagation, 2006, 53(6):579-582.
    [4] Tanaka M, Jae-Hyeuk Jang. Wearable microstrip antenna. IEEE Antennas and Propagation Society International Symposium, 2003, 2, 22-27: 704-707.
    [5] 李忻.新一代无线通信系统中的MIMO信道建模与多天线设计研究.博士毕业论文2004.
    [6] Josefsson L, Persson P. conformal array antenna theory and design, the IEEE press series on Electromagnetic Wave Theory 2006.
    [7] Steyskal H. Pattern Synthesis for a Conformal Wing Array. in IEEE Aerospace Conference Proceedings, 2002, 2:819-824.
    [8] Persson P, Josefsson L. Calculating the Mutual Coupling between Antennas on a Convex Surface. Tech. Rep. TRITA-TET 99-4, Royal Institute of Technology, February.
    [9] Knott P. Antennenmodellierung mit Diagrammsynthese zur Systemanalyse von Konformen Gruppenantennen. Ph.D. Thesis, Rheinisch-Westfischen Technischen Hochschule, Bonn, Germany. In German, 2002.
    [10] Erturk V B. Efficient Hybrid MoM/Green's Function Technique to Analyze Conformal Microstrip Antennas and Arrays. Ohio state university PH.D dissertation 2000.
    [11] Tokgoz C. Asymptotic High Frequency Analysis of the Surface Fields of a Source Excited Circular Cylinder with an Impedance Boundary Condition. Ohio state university, PH.D dissertation 2002.
    [12] Vouvakis M. A Non-Conformal Domain Decomposition Method for Solving Large Electromagnetic Wave Problems. Ohio state university PH.D dissertation 2005.
    [13] Usher B. Generalized Hybrid Methods for Modeling Complex Electromagnetic Structures Ohio state university PH.D dissertation 2006.
    [14] Rockway J. Electromagnetic Field Determination of Antenna Systems in Complex Structural Environments by the Spherical Harmonic Interface Procedure. Ohio state university PH.D dissertation 2005.
    [15] Persson P. Analysis and Design Donformal Array Antennas (UTD/MOM). Ohio state university PH.D dissertation.
    [16] Josefsson L, Persson P. Conformal array synthesis including mutual coupling. Electronics Letters, 1999, 35(8):625-627.
    [17] Thors B, Josefsson L. Radiation and scattering trade-off design for conformal antennas array. IEEE Transactions On Antennas And Propagation, 2003, 51 (5): 1069-1076.
    [18] Sipus Z, Kildal P S. R.Leijon and M.Johansson. An algorithm for calculating Green's function for planar, circular, and spherical multilayer. Applied Computational Electromagnetics Society Journal, 1998, 13(3):243-254.
    [19] Sun J, Wang C F, Li L W, Leong M S. Characterizing helical microstrip antenna mounted on a dielectric-coated circular cylinder using MoM and closed-form Green's function. IEEE Transactions On Antennas And Wireless Propagation Letters, 2004, 3(1): 15-18.
    [20] Sun J, Wang C F, Li L W, Leong M S. Mixed potential spatial domain Green's functions in fast computational form for cylindrically stratified media. Progress in electromagnetics research, 2004, 45: 181-199.
    [21] Yuan N, Yeo T S, Nie X C, Gan Y B, Li L W. Analysis of Probe-Fed Conformal Microstrip Antennas on Finite Grounded Substrate. IEEE Transactions on Antennas and Propagation, 2006, 54(2):554-563.
    [22] Werner D H, Rodney R J, Martin Aet al. A reciprocity approach for calculating radiation patterns of arbitrarily shaped mierostrip antennas mountex on circularly cylindrical platforms. IEEE Transactions on Antennas and Propagation, 2003, 51 (4):730-738,
    [23] Thiel M, Giang T V B, Dreher A. A general procedure to set up the dyadic Green's function of multilayer conformal structures and its application to microstrip antennas. IEEE/ACES international conference on wireless communications and applied computational electromagnetics, 2005, 3-7: 869-872.
    [24] Alu A, Bilotti F, Vegni L. Method of lines numerical analysis of conformal antennas. IEEE Transactions on Antennas and Propagation, 2004, 52(6): 1530-1540.
    [25] 张玉,梁昌洪.并行UTD算法及在机载天线分析中的应用.电子学报,2003,31(3):332-334.
    [26] 何芒,徐晓文.圆柱分层媒质中并矢格林函数的快速计算.北京理工大学学报,2002,22(4): 506-509.
    [27] 阙肖峰.复杂目标电磁辐射与散射分析的精确建模和快速算法研究.电子科技大学博士学位论文,2008.
    [28] Thiel M, Dreher A. Dyadic Green's function of multilayer cylindrical closed and sector-structures for waveguide, microstrip-antenna and network analysis. IEEE Transactions on Microwave Theory and Techniques, 2002,50(11): 2576-2579.
    [29] Lu C C, Yu C. Analysis of microstrip structures of finite ground plane using the hybrid volume-surface integral equation approach. IEEE antennas and propagation society international symposium, 2002, 4 (16): 162-165.
    [30] Tzoulis A, Eibert T F. A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects. IEEE Transactions on Antennas and Propagation, 2005, 53(10):3358-3366.
    [31] 宗显政,平台与天线的一体化电磁建模及工程实践研究.电子科技大学博士学位论文,2008。
    [32] Richard M A, Bhasin K B, Claspy P C. Superconducting Microstrip Antennas: An Experimental Comparison of Two Feeding Methods. IEEE Transactions on Antennas and Propagation, 1993, 41:967-974.
    [33] Guo Y X, Mak C L, Luk K M, Lee K F. Analysis and design of L-probe proximity fed patch antenna. IEEE Transactions on Antennas and Propagation, 2001,49(2): 145-149.
    [34] Huynh T, Lee K F. Single-layer single-patch wideband microstrip antenna. Electronic Letter, 1995, 31(16):1310-1312.
    [35] Yang F, Zhang X X, Ye X N, Yahya R-S. Wide-band E-shaped patch antennas for wireless communications. IEEE Transactions on Antennas and Propagation, 2001, 49(7): 1094-1100.
    [36] Pues H F, Van A R, Capelle D. An impendance- matching technique for increasing the bandwidth of microstrip antennas. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1345-1354.
    [37] Targonski S D, Waterhouse R B, Pozar D M. Deign of wideband aperture-stacked patch antennas. IEEE Transactions on Antennas and Propagation, 1998, 46(9): 1245-1251.
    [38] Mittra R, Yang R, Itoh M, Arakawa M. Mierostrip patch antennas for GPS applications. Antennas and Propagation Society International Symposium, 1993, 3: 1478-1481.
    [39] Zhang Y F, Lu S W, Luo X L. A Dual-Frequency Mierostrip Antenna with Wider Beam and Higher Gain at Low-Angle. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007, 16-17: 512-515.
    [40] He H D, A novel wide beam circular polarization antenna- microstrip-dielectric antenna. Microwave and Millimeter Wave Technology, 2002, 17-19: 381-384.
    [41] Rizk M S, A S, Morris G, Clifton M P. Projected Aperture synthesis Method for the Design of Conformal Array Antennas. in Proceedings of 4th International Conference on Antennas and Propagation ICAP, 1985, 48-52.
    [42] Chiba I, Hariu K, Sato S, Mano S. A projection method providing low sidelobe pattern in conformal array antennas Antennas and Propagation Society International Symposium. Digest 26-30, 1989: 130-133.
    [43] Poulton G T. Antenna power pattern synthesis using method of successive projections. Electronics letters, 1986, 22(20): 1042-1043.
    [44] Shi X, Yoo K S, Park J H, Lee H J. Pencil-Beam Pattern Synthesis for Arbitrary Arrays. Electronics Letters, 1997, 33 (12):1007-1008.
    [45] Schmid O. Pattern Properties of Singly and Doubly Curved Arrays. in Proceedings of 2~(nd) European Workshop on Conformal Antennas, 2001:24-25.
    [46] Lo Y T, Soloman D, Richards W F. Theory and Experiments on Microstrip Antennas. IEEE AP-S Symposium(Japan), 1978:53-55.
    [47] Bhattacharyya A K, Garg R. Generalised transmission line model for microstrip patches. IEE Proc, Vol. 132, 1985:93-98.
    [48] Wong K L. Design of Nonplanar Microstrip Antennas and Transmission Lines. John Weily & Sons Inc,1999.
    [49] Harrington R F. Time-harmonic electromagnetic fields. McGraw-Hill Book Company New York, 1961.
    [50] Harrington R F. Field computation by moment methods. McMillan New York, 1968.
    [51] 金建铭,电磁场有限元方法.西安电子科技大学出版社,1998.
    [52] Chen L, Uno T, Adachi S, Luebbers R J, Kunz K S. FDTD method analysis of a monopole antenna mounted on a conducting rectangular box Antennas and Propagation Society International Symposium. Held in Conjuction with: URSI Radio Science Meeting and Nuclear EMP Meeting, 1992, 3:1670-1673.
    [53] Yee K S, Chen J S, Chang A H. Conformal finite difference time domain (CFDTD) with overlapping grids. Held in Conjunction with: URSI Radio Science Meeting and Nuclear EMP Meeting IEEE, 1992, 18-25 4:1949-1952.
    [54] Zhai H Q, Yuan Q W, Chen Q, Sawaya K. A Numerical Study on Large-scale Periodic Array Antenna by FMM and FFT. IEEE Antennas and Propagation Society International Symposium, 2006: 4035-4038.
    [55] Sendur I K, Gurel L. solution of radiation problems using the fast multipole method. Antennas and Propagation Society International Symposium, 1997, 1: 88-91.
    [56] Guo J L, Li J Y, Liu Q Z. Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation. IEEE Transactions On Antennas And Propagation, 2006, 54(7):1910-1916.
    [57] Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microwave and Optical Technology Letters, 1995, 10(25):14-19.
    [58] Lee C S. Direct far-field GO synthesis of single-reflector antennas using the extrapolation technique Antennas and Propagation Society International Symposium. Digest 26-30 Vol.3, 1989:1162-1165.
    [59] Ramanujam P, Hoffmeister R, Kresco D, Park B M. Different methods of PO analysis in a dual reflector antenna with a shaped main reflector. Antennas and Propagation Society International Symposium, 1996, 1:230-233.
    [60] Mentzer C, Peters L J. A GTD analysis of the far-out sidelobes of cassegrain antennas. IEEE Transactions On Antennas and Propagation, 1975,23(5):702-709.
    [61] Lim K, Ryu H, Lee S, Choi J. UTD analysis of a shaped subreflector in a dual offset-reflector antenna system. IEEE Transactions on Antennas and Propagation, 1998, 46(10): 1555-1559.
    [62] Hay S G. Application of the PTD to cross-polarization prediction in a shaped-reflector antenna. Antennas and Propagation Society International Symposium, 1995,2: 1174-1177.
    [63] Lee B J; Lin S W, Jeng L, Scarborough S M, Yu C L. High frequency scattering from trihedral comer reflectors and other benchmark targets: SBR versus experiment. IEEE Transactions on Antennas and Propagation, 1991,39(9): 1345-1351.
    [64] Ni Y Y, Wang Q J, Bao X H, Zhu W G. Optimal design of a hybrid excitation claw-pole alternator based on a 3-D MEC method. Electrical Machines and Systems, 2005. Proceedings of the Eighth International Conference, 2005, 1:644-647.
    [65] Djordjevic M. Notaros B M. Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces. IEEE Transactions on Antennas and Propagation, 2005, 53(2):800-813.
    [66] Bouche D P, Molinet F A, Mittra R. Asymptotic and hybrid techniques for electromagnetic scattering. Proceedings of the IEEE, 1993, 81(12):1658-1684.
    [67] Theron I P, Davidson D B, Jakobus U. Extensions to the hybrid method of moments/uniform GTD formulation for sources located close to a smooth convex surface. IEEE Transactions on Antennas and Propagation, 2000,48(6):940-945.
    [68] Coffey E. Efficient in-place antenna modeling with MOM and GTD. Antennas and Propagation Society International Symposium, 1985:783- 786.
    [69] Dagdeviren A, Cerezci O, Ustuner F, Turetken B, Kahriman M. Coupling on Complex Platforms: A Comparison Between MOM and MOM/UTD Hybrid Method Mathematical Methods in Electromagnetic Theory. 2006 International Conference, 2006:276-278.
    [70] Ling F, Sheng X Q, Jin J M. Hybrid MoM/SBR and FEM/SBR methods for scattering by large bodies with inhomogeneous protrusions. IEEE Antennas and Propagation Society International Symposium, 1997,2:644-647,.
    [71] Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape.IEEE Transactions on Antennas and Propagation, 1982, 30:409 - 418.
    [72] Schaubert D H, Wilton D R, Glisson A W. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. IEEE Transactions on Antennas and Propagation, 1984, 32(1):77-85.
    [73] Jeuland H, Uguen B, Chassay G, Grorud E. Numerical and experimental processes for the analysis of a wire antenna mounted on a metallic body. Microwave and Optical Technology Letters, 1997,15(5):267-272.
    [74] Hwu S U, Wilton D R, Rao S M. Electromagnetic scattering and radiation by arbitrary conducting wire-surface configuration. in IEEE APS Int. Symp. Digest, 1988:890-893.
    [75] Drissi M, Herve P, Citerne J. A rigorous analysis of planar antennas having a finite size substrate. IEEE Int. Symp Dig Antennas Propagat, 2000,3:1462-1465.
    [76] Sergey N M. Antenna and EM Modeling with MATLAB. A John Wiley &Sons Inc,2002.
    [77] Wilton D R, Rao S M. Glisson A W. Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Transactions on Antennas and Propagation, 1984,32(3): 276-281.
    [78] Graglia R D. On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle. IEEE Transactions on Antennas and Propagation,1993,41(10) :1448-1455.
    [79] 盛新庆.计算电磁学要论.科学出版社,2004.
    [80] Duffy M G. Quadrature over a pyramid or cube of integrands with a singularity, vertex J Numer Anal, 1982, 19(6): 1260-1262.
    [81] 王浩刚,聂在平.三维矢量散射积分方程中奇异性分析.电子学报,27(12):68-71.
    [82] 姚海英,聂在平.三维矢量散射分析中奇异积分的准确积分方法.电子与信息学报,2000,22(3):471-477.
    [83] 颜庆津.数值分析.北京航空航天大学出版社,2000.
    [84] 王世瑞,王金金,冯有前等.计算方法.电子科技大学出版社,1997.
    [85] 马东升.数值计算方法.机械工业出版社,2002,1:92-102.
    [86] Peter S, S CG. A Fast Lanczos-type Solver for Nonsymmetdc Linear Systems. Siam J SCI Comput, 1989, 10(1):36-52.
    [87] Esmith C. Epeterson A, Mittra R. The biconjugate gradient method for electromagnetic scattering. IEEE Transactions on Antennas and Propagation, 1990, 38(6):938-940.
    [88] Sarkar T K. On the application of the generalized biconjugate gradient method. Journal of Electromagnetic Waves And Applications, 1987, 1(3): 223-242.
    [89] Saad Y. Iterative methods for sparse linear systems. PWS Publishing Company Boston, 1996.
    [90] Chew W C, Jandyala V, Lu C C, etc. Fast multilevel techniques for solving integral equations in electromagnetics. Asia Pacific Microwave Conference, 1997:457-460.
    [91] Lu C C. A Fast Algorithra Based on Volume Integral Equation for analysis of Arbitrarily Shaped Dielectric Radomes. IEEE Transactions on Antennas and Propagation, 2003, 51 (3):606-611.
    [92] 胡俊.复杂目标矢量电磁散射的高效方法--快速多极子方法及其应用.电子科技大学博士论文,2000.
    [93] 胡俊,聂在平,雷霖,王军.三维局部多层快速多极子算法.系统工程与电子技术,2006,28(3):329-335.
    [94] 聂在平,胡俊,姚海英,王浩刚.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报,1999,27(6):104-109.
    [95] 马文敏.宽带电磁散射频域高效算法.电子科技大学硕士学位论文,2007.
    [96] Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal Of Computational Physics, 1987:325-348.
    [97] Song J M, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Transaction on Antennas Propagation, 1997, 45(10):1488-1493.
    [98] 钟尔杰,黄廷祝.《数值分析》.高等教育出版社,2004.
    [99] Gerard L G, Sleijpeny, Diederik R, Fokkemay. Bicgstab(1) for Linear Equations Involving Unsymmetric Matrices with Complex Spectrum. Electronic Transactions on Numerical Analysis, 1993, 1:11-32.
    [100] Meyer C D. Matrix Analysis And Applied Linear Algebra, 2000.
    [101] Kalyan C, Donepudi, Jin J M, Chew W C. A Higher Order Multilevel Fast Multipole Algorithm for Scattering From Mixed Conducting/Dielectric Bodies. IEEE Transaction on Antennas Propagation, 2003, 51(10):2814-2821.
    [102] Prakash V V S, Mittra R. Characteristic Basis Function Method: a New Technique for Efficient Solution of Method of Moments Matrix Equations, 2003, 36 (2):95-100.
    [103] Carr M, Carr M X, Volakis J L. A Near-field Preconditioner and its Performance in Conjunction with the BiCGstab(ell) Solver. IEEE Antennas and Propagation Magazine, 2004, 46(2):23-30.
    [104] Xiao Y H, Nie Z P, Hu J, Wang X F. A Novel Preconditioner for Electromagnetic Solvers. Journal of Electronic Science and Technology of China, 2006, 4(1):51-54,.
    [105] Xie Y J, He J Q, Anders S, Carin L. A Sinple Preconditioner for Electric-Field Integral Equations. Microwave and Optical Technology Letters, 2001, 30(1):51-54.
    [106] 王晓峰.三维目标电磁散射的自适应积分方法.电子科技大学硕士学位论文,2006.
    [107] Carpentieri B. Sparse preconditioners for dense linear systems from electromagnetic applications, 1'Institut National Polytechnique de Toulouse Ph.D thesis, 2002.
    [108] P.L. Rui and R. S. Chen. An efficient sparse approximate inverse preconditioning for FMM implementation. Microwave and Optical Technology Letters, 2006, 49(7): 1746-1750.
    [109] Kim C S, Rahmat S Y. Low profile antenna study using the physical optics hybrid method (POHM). Proc. IEEE Antennas Propagat. Int. Symp London ON Canada, 1991, 3: 1350-1353.
    [110] Obelleiro F, Taboada J M, Rodriguez J L, et al. Hybrid moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board antennas. Microwave and Optical Technology Letters, 2000, 27(2):88-93.
    [111] Jakobus U, Landstorfer F, Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape. IEEE Transactions on Antennas and Propagation, 1995, 43(2): 162-169.
    [112] Miroslav D, Branislav M N. Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces. IEEE Transactions on Antennas and Propagation, 2005, 53(2):800-813.
    [113] 张浩斌,杜建春,聂在平.MOM-NPO混合算法分析天线-载体系统.电子与信息学报,2006,28(9):1731-1734.
    [114] Chen M, Zhang Y, Zhao X W,et al. Analysis of antenna around NURBS surface with hybrid MOM-PO technique. IEEE Transactions on Antennas and Propagation, 2007, 55(2):407-413.
    [115] Huynh T, Lee K F. Single-layer single-patch wideband microstrip antenna. Electronic Letter, 1995, 31(16):1310-1312.
    [116] Guo Y X, Mak C L, Luk K M, Lee K F. Analysis and design of L-probe proximity fed patch antenna. IEEE Transactions on Antennas and Propagation, 2001, 49(2): 145-149.
    [117] Targonski S D, Waterhouse R B, Pozar D M. Deign of wideband aperture-stacked patch antennas. IEEE Transactions on antennas and Propagation, 1998, 46(9): 1245-1251.
    [118] Fang S T, Wong K L, Chiou T W. Bandwidth enhancement of inset-microstrip-line-fed equilateral-triangular microstrip antenna. Electronics Letters, 1998, 34(23):2184-2186.
    [119] Fayya N, Naeini S S. Bandwidth enhancement of a rectangular patch antenna by integrated reactive loading. IEEE antennas and propagation symp Digest, 1998:1100-1103.
    [120] Pues H F, A. R. Van de Capelle; An impendance- matching technique for increasing the bandwidth of microstrip antennas. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1345-1354.
    [121] Allard K J, Werner D H, Werner P L. Radiation Pattern Synthesis for Arrays of Conformal Antennas Mounted on Arbitrarily-Shaped Three-Dimensional Platforms Using Genetic Algorithms. IEEE transactions on antennas and propagation, 2003, 51(5): 1054-1062.
    [122] 任盛海,吴志忠.遗传算法在阵列天线方向图综合设计中的应用.电波科学学报,1996,11(4):62-67.
    [123] 胡星航,林德云.矩形平面阵列天线旁瓣电平优化的遗传算法.电子学报,1999,27(12):119-120.
    [124] 欧阳骏,杨峰,聂在平,赵志钦.基于遗传算法的宽频带微带天线优化设计,电波科学学报己录用.
    [125] Ouyang J, Yang F, Yang S W, Nie Z P. A Novel Single Layer Boardband Interdigital Microstrip Antenna. Journal of Electromagnetic Waves and Applications, 2007, 21(14): 2121-2127.
    [126] Huff G H, Feng J, Zhang S, Bernhard J T. A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna. IEEE Transactions On Microwave And Wireless Components Letters, 2003, 13(2):57-59.
    [127] Hsun S, Chang K. A novel reconfigurable microstrip antenna with switchable circular polarization. IEEE Transactions On Antennas And Wireless Propagation Letters, 2007, 6:160-162.
    [128] Yang F, Yahya R S. A reconfigurable patch antenna using switchable slots for circular polarization diversity. IEEE Transactions On Microwave And Wireless Components Letters, 2002, 12(3): 96-98.
    [129] Zhang S, HuffG H, Feng J, Bernhard J T. A pattern reconfigurable microstrip parasitic array. IEEE Transactions On Antennas And Propagation, 2004, 52(10):2773-2776.
    [130] SorJ, Chang C C, Qian Y X, Itoh T. A reconfigurable leaky-wave patch microstrip aperture for phased-array applications. IEEE Transactions On Microwave Theory And Techniques, 2002, 50(8): 1877-1884.
    [131] 陈燕仙.MEMS开关可重构天线的研究与设计.华东师范大学硕士毕业论文,2005.
    [132] 肖绍球.平面型可重构天线研究.电子科技大学博士毕业论文,2003.
    [133] Aanaandan C K, Mohanan P, Nair K G. Broad-Band Gap Coupling Microstrip Antenna. IEEE Transactions on Antennas and Propagation, 1990, 38(10): 1581-1585.
    [134] Fang S T, Wong K L, Chiou T W. Bandwidth enhancement of inset-microstrip-line-fed equilateral-triangular, microstrip antenna Electronics letters, 1998, 34(23):2184-2185.
    [135] Bernhard J T, Wang R, Clark R, Mayes P. Stacked reconfigurable antenna elements for space based radar applications, in Proc. IEEE/URSI Antennas Propagat. Soc. Int. Symp, 2001, 1:158-161.
    [136] Weedon W H, Payne W J, Rebeiz G M. MEMS-switched reconfigurable antennas, in proc. IEEE int. symp. antennas propagat, 2001, 3: 654-657.
    [137] Simons R N, Donghoon C, Katehi L P B. Reconfigurable array antenna using microelectromechanical systems (MEMS) actuators, in proc. IEEE int. symp antennas propagat, 2001, 3:674-677.
    [138] Ouyang J, Yang F, Yang S W,Nie Z P. A novel frequency reconfigurable microstrip antenna for wideband application. Journal of Electromagnetic Waves and Applications, 2008, 22(15): 1403-1410.
    [139] Maloney J C, Kesler M P, Lust L M, Pringle L N, Fountain T L, Harms P H. Switched fragmented aperture antennas. In Proc IEEE Antennas Propagat. Soc. Int. Symp, 2000, 1: 310-313
    [140] Vinoy K J, Jose K A, Varadan V K, Varadan V V. Hilbert curve fractal antennas with reconfigurable characteristics. In Proc. Eee Mtt-S Int. Microw. Symp. Digest, 2001, 1: 381-384.
    [141] Ouyang J, Yang F, Yang S W. ANovel Radiation Pattern Reconfigurable Microstrip Antenna for Wide-Angle Scanning Application in Phased Antenna Array. Microwave and Optical Technology Letters, 2008, 50(6): 1539-1540.
    [142] Ouyang J, Yang F, Yang S W, Nie Z P. ANovel E-Shape Radiation Pattern Reconfigurable Microstrip Antenna for Broadband. Wide-beam High-gain Applications, Microwave and Optical Technology Letters, 2008, 50(8):2052-2054.
    [143] Fries M K, Grani M, Vahldieck R A. Reconfigurable slot antenna with switchable polarization. IEEE Transactions on Antennas and Wireless Propagation Letters, 2003, 13(11): 490-492.
    [144] Sung Y J, Jang T U, Y.-S Kim. A reconfigurable microstrip antenna for switchable polarization. IEEE Transactions on Antennas and Wireless Propagation Letters, 2004, 14(11):534-536.
    [145] Ho M H, Wu M T, Hsu C I G, et al. An RHCP/LHCP switchable slotline-fed slot-ring antenna. Microwave and Optical Technology Letters, 2005, 46(1): 30-33.
    [146] Fukusako T, Kitamura N, Mita, Nagahisa Design of patch antenna with switchable circular polarization using a branched feed circuit. Microwave and optical technology letters, 2006, 48(1):1-4.
    [147] Row J S, Wu J F. Aperture-Coupled Microstrip Antennas With Switchable Polarization. IEEE Transactions on Antennas and Propagation, 2006, 54(9): 2686-2691.
    [148] Bandler J W, Biernacki R M, Chen S H, Grobelny P A, Hemmers R H. Space mapping technique for electromagnetic optimization. IEEE Transactions on Microwave Theory Technique, 1994, 42(11):2536-2544.
    [149] Bander J W, Biernacki R M, Chen S H, Chen R H X, Madsen K. Electromagnetic optimization exploiting aggressive space mapping. IEEE Transactions on Microwave Theory Technique, 1995, 43(12):2874-2882.
    [150] Sφndergaard J. Optimization Using Surrogate Models----by the Space Mapping Technique. Ph.D. Thesis, IMM, DTU, Lyngby, 2003.
    [151] Mohamed H B. Advances in space mapping optimization of microwave circuits. McMaster University PH.D thesis, 2000.
    [152] Bila S, Baillargeat D, Verdeyme S, Guillon P, Automated design of microwave devices using full em optimization method. IEEE MTT-S Int. Microwave Symp. Dig.(Baltimore, MD), 1998: 1771-1774.
    [153] Pavio A. M. The electromagnetic optimization of microwave circuits using companion models. Proc. Workshop on Novel Methodologies for Device Modeling and Circuit CAD, IEEE MTT-S Int. Microwave Symp. (Anaheim, CA), 1999.
    [154] Bandler J W, Cheng Q S, Nikolova N K, Ismail M A. Implicit space mapping optimization exploiting preassigned parameters. IEEE Transactions on Microwave Theory Technique, 2004, 52(1):378-385.
    [155] Bakr M H, Bandler J W, Ismail M A, Rayas-S(?)nchez J E, Zhang Q J. Neural space-mapping optimization for EM-based design. IEEE Transactions on Microwave Theory Technique, 2000, 48(12): 2307-2315.
    [156] Ismail M A, Smith D, Panariello A, Wang Y, Yu M. Embased design of large-scale dielectric-resonator filters and multiplexers by space mapping. IEEE Transactions on Microwave Theory Technique, 2004, 52(1):386-392.
    [157] Pantoja M F, Meincke P, Bretones A R. A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas. IEEE Transactions on Antennas and Propagation, 2007, 55(3):777-781.
    [158] Zhu J, Bandler J W, Nikolova N K, Koziel S. Antenna Optimization Through Space Mapping. IEEE Transactions on Antennas and Propagation, 2007, 55(3):651-658.
    [159] Ouyang J, Yang F, Nie Z P, Zhao Z Q. Conformal antenna optimization though space mapping. Submitted to IEEE Transactions on Antennas and Propagation.
    [160] Toko America Inc. A miniature patch antenna for GPS application. Microwave Journal, 1997, 8:116-118.
    [161] Pozar D.M, Duffy S M. A dual-band circularly polarized aperture coupled stacked microstrip antenna for globalpositional satellite. IEEE Transactions on Antennas and Propagation, 1997, 45 (11):1 618-1 625.
    [162] Bin G, Chen M H, Wong K L. Single2feed dual-band circularly polarized microstrip antenna. Electronic Letter, 1998, 34 (12):117-171.
    [163] Yang K P, Wong K L. Dual-band circularly polarized square microstrip antenna. IEEE Transactions on Antennas and Propagation, 2001, 49 (3):377-338.
    [164] 彭祥飞,钟顺时,许赛卿,武强.小型化双频段GPS微带天线.上海大学学报,2005, 11(1): 8-10.
    [165] Targonisk S, Pozar D. Design of wideband circularly polarized aperture coup led microstrip antennas. IEEE Transactions on Antennas and Propagation, 1993, 41 (2):214-220.
    [166] Dai Y H, Yuan Y X. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal of Optimization, 1999, 10 (1):177-182.
    [167] Fletcher R, Freeman T L. A modified newton method for minimization. J. Optim. Theory Appl, 1999, 23:357-372.
    [168] MP K, chuaL O. Neuralnet works for nonlinear programming. IEEE Transactions on Circuits Systems, 1998, 35: 554-562.
    [169] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in C [M]. Cambridge: Cambridge University Press, 1992.
    [170] 康立山,谢云.非数值并行算法.模拟退火算法[M].北京:科学出版社,1994.
    [171] Johnson J M, Yahya R S, Genetic Algorithm Optimization and its Application to Antenna Design. Antennas and Propagation Society International Symposium, 1994. AP-S. Digest 1994: 326-329.
    [172] 韩荣苍.基于遗传算法的阵列综合方法[D].电子科技大学硕士学位论文,2006.
    [173] Randy L H. Thinned Arrays Using Genetic Algorithms. IEEE Transactions on Antennas and Propagation, 1994, 42(7): 993-999.
    [174] Kene J A, Werner D H, Werner P L. Radiation Pattern Synthesis for Arrays of Conformal Antennas Mounted on Arbitrarily-Shaped Three-Dimensional Platforms Using Genetic Algorithms. IEEE Transactions on Antennas and Propagation, 2003, 51(5): 1054-1062.
    [175] Kerkhoff A J, Rogers R L, Hao L. Design and analysis of planar monopole antennas using a genetic algorithm approach. IEEE Transactions on Antennas and Propagation, 2004, 52 (10):2709-2718.
    [176] Amaud C D, Loison R, Gillard R. Fast Multistructure Method of Moments Combined With a Genetic Algorithm (MSMoM/GA) for Efficient Optimization of Printed Antennas. IEEE Transactions on Antennas and Wireless Propagation Letters, 2007, 6:172-174.
    [177] Hoang Y L, Fang W H. Joint Transmit/Receive Antenna Selection in MIMO Systems Based on the Priority-Based Genetic Algorithm. IEEE Transactions on Antennas and Wireless Propagation Letters, 2007, 6: 588-591.
    [178] Calabrese C, Marrocco G. Meandered-Slot Antennas for Sensor-RFID Tags. IEEE Transactions on Antennas and Wireless Propagation Letters, 2008, 7:5-8.
    [179] 任盛海,吴志忠.遗传算法在阵列天线方向图综合设计中的应用.电波科学学报,1996,11(4):62-67.
    [180] 韩明华,袁乃昌.基于整体退火遗传算法的不等间距天线阵的综合.现代雷达,1998,25(6):72-77.
    [181] 胡星航,林德云.矩形平面阵列天线旁瓣电平优化的遗传算法.电子学报,1999,27(12):119-120.
    [182]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Genetic Algorithms and their Applications: Proceeding of the First International Conference on Genetic Algorithms [C]. Lawrence Erlbaum, 1985: 93-100.
    [183]Horn J, Nafpliotis N. Multiobjective Optimization using the Niched Genetic Algorithm. Technical Report ⅢiGAI Report 93005, University of Illinoisat Urbana-Champaign, Urbana, Illinois,. USA, 1993.
    [184]Srinivas N, Deb K. Multiobjective Optimization using Nondominated Sorting. Genetic Algorithm Evolution Computation, 1995, 2(3):221-248.
    [185]Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 184-197.
    [186] Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-A comparative ease study [A]. Eiben A E., et. al. Parallel Problem Solving from Nature-PPSN V[M1], Berlin Sprinter, 1998.
    [187]Diosan, L, Oltean M. Who's better? PESA or NSGA Ⅱ? Intelligent Systems Design and Applications. 2007. ISDA 2007. Seventh International Conference, 2007:869-874.
    [188]高媛.非支配排序遗传算法(NSGA)的研究与应用.浙江大学硕士学位论文,2006.
    [189]陈小庆,侯中喜,郭良民,罗文彩.基于NSGA-Ⅱ的改进多目标遗传算法.计算机应用,2006,26(10):2453-2456.
    [190]关志华.非支配排序遗传算法(NSGA)算子分析.管理学报,2004,18(01):56-60.
    [191]阎志伟,田菁,李汉铃.基于改进的NSGA-Ⅱ算法的区域覆盖卫星星座优化.空间科学学报,2004,24(01):43-49.
    [192]Ouyang J, Yang F, Yang S W, Nie Z P. The Improved NSGA-Ⅱ Approach. Journal of Electromagnetic Waves and Applications, 2008, 22(11): 163-172.
    [193]Amitay N等著.陆雷译.相控阵天线理论与分析.国防工业出版社,1978.
    [194]袁卿瑞,基于FDTD的微带天线分析与共形阵列设计.电子科技大学硕士论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700