用户名: 密码: 验证码:
薄层等离子体与表面等离子体激元的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对等离子体研究的不断深入,等离子体科学和技术不仅在工业、农业、生命科学和空间技术中得到了广泛的发展和应用,而且近年来这一学科在国外军事技术中也有了重要的发展和应用。等离子体隐身作为飞行器隐形的发展趋势,受到了各国的重视,许多国家都不遗余力的进行该项目研究,天线罩等离子体的研究便是其中的一个研究方向。天线是雷达系统中必不可少的重要组成部分,其隐身是一个长期困扰着工程技术人员的问题,飞行器再入大气层时需要靠雷达天线来搜寻目标,雷达天线则需要天线罩来保护。雷达天线的RCS又是飞行器的强反射区,如何缩减飞行器飞行状态的RCS,提高飞行器的生存能力有效打击来袭目标,是我们国家安全领域的瓶颈技术难题之一。基于此因,本文开展了薄层等离子体天线罩的研究工作。
     除等离子体隐身外,表面等离子体激元的激发亦能够实现对特定频段入射电磁波能量的完全吸收。表面等离子体激元(Surface plasmons,SPs)是一种高度局域的电磁表面模,它沿着两种介质的分界面传播,而在垂直于界面方向则以指数形式向两侧的介质内衰减。表面等离子体激元的一个重要特性就是,它能与满足一定耦合条件的电磁波发生耦合,使电磁波能量转化为表面等离子体激元的能量;也能通过适当的条件,使表面等离子体子激元转化为普通电磁波。因此表面等离子体激元可以融入一系列电磁波现象的研究中,例如通过激发表面等离子体激元来控制电磁波的传输,通过激发表面等离子体激元实现对入射电磁波能量的完全吸收。除此之外,表面等离子体激元在亚波长光学(Plamonics)、SPs纳米刻蚀技术、SPs新型光源等领域均有重要的应用。
     在微波领域,电磁波在金属铝中与在等离子体中具有类似的色散模型,金属可以看作是电子密度远大于入射微波截止密度的过密等离子体。因此金属边界的表面等离子体激元应和过密等离子体边界的表面等离子体激元具有相同的性质。基于此,本论文除研究天线罩等离子体外,还对表面等离子体激元的激发和应用技术作了研究。从等离子体的广义定义来讲,这两部分工作都属于电磁波与等离子体的相互作用,后者所引起的对入射电磁波能量的显著衰减为雷达天线的隐身研究提供了一种新的物理机制。
     本论文主要内容和创新之处如下:
     1.根据低气压电容耦合放电的原理,设计了一个用于规避电磁波的等离子体夹层天线罩,建立了一套天线罩等离子体发生系统,并进行了一系列旨在提高天线罩等离子体电子密度的实验,详细研究了Ar、Xe和Ar+Hg在不同配比条件下的放电对提高天线罩等离子体电子密度的影响。
     2.通过控制等离子体的电子密度,研究了该天线罩薄层等离子体在我们所能控制的电子密度范围内对5.09-6.8GHz微波反射的影响。实验发现,该等离子体天线罩在可控的电子密度范围内,可实现对特定频率范围内入射电磁波能量的显著衰减,该实验结果对雷达天线的隐身设计具有一定的参考价值。
     3.利用表面衍射光栅耦合技术和表面等离子体激元的基本理论,成功地在金属铝的表面上耦合激发了表面等离子体激元,首次在微波的X波段发现了电磁波通过亚波长金属狭缝的超强透射和聚束效应。我们的实验证实,该超强透射和聚束效应都与表面等离子体激元的耦合激发有着密切的联系,出射面具有周期结构是决定聚束效应产生的条件。我们在该频段耦合激发的表面等离子体激元,是目前国际上报道的在金属表面上实验耦合出的波长最长的表面等离子体激元,为表面等离子体激元在微波X波段的技术应用奠定了基础。
     4.在研究微波通过亚波长金属狭缝的超强透射实验中,我们还详细研究了表面周期结构数目和表面衍射光栅结构的几何参数对超强透射强度之影响。该研究成果为设计微波领域的金属透镜和表面等离子体激元耦合器的最佳参数奠定了实验基础,同时对光波领域和其它电磁波频域表面等离子体激元的研究也具有一定的参考价值和借鉴意义。
     5.实验研究了金属表面等离子体激元和过密等离子体边界上的表面等离子体激元对微波反射的影响。通过在金属或过密等离子体边界上耦合激发表面等离子体激元,能够使入射电磁波的能量转化为表面等离子体激元的能量。金属表面等离子体激元对10.6GHz微波的最大衰减约为30dB(0.1%),衰减15dB对应带宽约为0.4GHz,衰减10dB的带宽约为0.8GHz;过密等离子体边界的表面等离子体激元对5GHz微波的最大衰减约为23dB(0.5%),反射率R=0.5对应带宽约为0.1GHz。表面等离子体激元所引起的对入射微波能量的全吸收机制,为实现对电磁波能量的吸收提高了一种新的有效途径。
With the study of plasma physics going deeper and deeper,plasma science and technology has been developed and applied more and more widely.Not only in the area of industry,agriculture,biology and space technology,but also in the region of military applications of several foreign countries in recent years.Plasma stealth,the developing trend of the stealth of flight vehicles,has attracted great attention from the world.And the investigation into plasma radome is one of the directions among them. The antenna is a necessarily important component in Radar system,whose stealth is a problem that puzzled the technology researchers all the while.The flight vehicle needs antenna to find its aim when reentering the aerosphere,and it also needs the protection by radome at the same time.The RCS of Radar Antennas is the region of strong reflelection,and how to reduce RCS is a difficult problem of the country's security.Based on this subject,the dissertation carried out the work on plasma layer radome.
     Besides the plasma stealth,the excitation of surface plasmons(SPs) can also realize the total absorption of the incident electromagnetic waves(EMW) in special frequency band.Surface plasmon is a kind of surface waves that propagate along the interface but decay exponentially from the interface into both mediums.One characteristic of surface plasmons is that it can be excited by the EMW in free space under special coupling conditions,which renders the energy of incident EMW converting into that of SPs.Reversely,SPs could also couple out into free-space EMW under suitable coupling conditions.Therefore,SPs can be applied in a great deal of research on EMW phenomenon,such as via exciting SPs to control the propagation of EMW,via the excitation of SPs to achieve total absorption of incident EMW.Moreover,SPs also has important applications in the area of Plasmonics,SP etching on nanometer scale,SP novel light source and so on.
     In the microwave region,the dispersion models of EMW in metal aluminium and plasma have the same format,and metal can be regarded as an overdense plasma whose electron density is much greater than the critical density of the incident microwaves.Therefore,SPs at A1 surface and the boundary of overdense plasma have properties in common.So in this dissertation,besides the research on radome plasma, we also studied the excitation and applied technology of SPs.In the broad sense of plasma definition,the work on radome plasma and the coupling between EMW and SPs are both the interaction between plasma and EMW.And the surface-plasmon-induced total absorption of EMW energy provides a new physical mechanism for the stealth of Radar antennas.
     The main contents and highlights in this dissertation are as following.
     1.Based on the principle of low pressure capacitively coupled discharge,we designed a plasma layer radome,built a radome plasma generation system,and carried out a series of experiments to highten the electron density of the radome plasma layer.We studied the discharge of Argon,Xenon,and the discharge of Ar+Hg at different mixed ratio in detail.
     2.By controlling the density of the radome plasma,we studied the influence of the plasma radome on the microwave reflection in the frequency region 5.09-6.8GHz. The experiment results show that the radome plasma can greatly attenuate energy of the incident EMW in special frequencie band when the plasma density is proper. These results will be of use to the plasma stealth of Radar antennas.
     3.By employing the diffraction grating coupling technology and the basic theory of surface plasmons,we successfully excited the SPs along Al/air interface,and first observed the extraordinary enhancement and beaming effect of EMW transmission through a single subwavelength metallic slit in X-band microwaves. Our experiments demonstrated that the extraordinary enhancement and beaming effect results from the excitation of surface plasmons,and the period corrugations in the output surface results in the beaming effect.The SPs we excited in the X-band microwaves have the longest wavelength that has been experimentally achieved so far.It is of fundamental importance to the applications of SPs in the X-band microwaves.
     4.In studying the extraordinary enhancement of microwave transmission through single subwavelength slit,we also examined the influences of the groove number and the periodical parameters on the enhancement factor in detail.These works provide an experimental premise to the design of metallic lens and SP coupler in the microwave region.At the same time,our results are also of reference value to the SP study in the optical regime and other EMW frequency regions.
     5.We experimentally investigated the influences of SPs at boundary of overdense plasma and that at Al surface on microwave reflection.By coupling the incident microwaves into SPs at metal surface or the boundary of overdense plasma,we can convert the incident EMW energy into that of SPs.SPs at Al surface can attenuate the microwave of 10.6GHz to about 30dB(0.1%) at the most,and the band-width at the attenuated value of 15dB is about 0.4GHz,with that of 10dB being about 0.8GHz.At boundary of overdense plasma,SPs can attenuate the microwave of 5GHz to about 23dB(0.5%) at the most,and the band-width at R=0.5 is about 0.1GHz(R:reflection coefficient).The mechanism of surface-plasmon-assisted total absorption of incident EMW energy provides a new effective mean to the absorption of EMW energy.
引文
[1]I.Langmuir,Proc.Nat.Acad.Sci.14:627,1926.
    [2]庄钊文,袁乃昌,刘少斌,莫锦军,等离子体隐身技术.(科学出版社,北京,2005).
    [3]王龙,张海峰,邵福球,“等离子体低目标特征技术原理_1”,物理 33(1):18,2004.
    [4]王龙,张海峰,邵福球,“等离子体低目标特征技术原理_2”,物理 33(2):118,2004.
    [5]唐亮,王贵军,孙宝华,“Ku~Ka波段地面雷达天线罩应用展望及设计要点”,纤维复合材料(3):11,2008.
    [6]张传宝,等离子体射流环境下天线罩材料透波性能的研究,硕士学位论文,中国科学技术大学,2002.
    [7]孟刚,莫锦军,任爱民,“薄层等离子体天线罩散射分析”,导弹与航天运载技术(3):33,2008.
    [8]A.D.Boardman,Electromagnetic Surface Modes.(Wiley,New York,1982).
    [9]H.Raether,Surface Plasmons on Smooth and Rouh Surfaces and on Gratings.(Springer,Berlin,1988).
    [10]J.R.Sambles,G.W.Bradbery,and F.Z.Yang,"Optical excitation of surface plasmons:an introduction",Contemporary Physics 32(3):173,1991.
    [11]F.Z.Yang,J.R.Sambles,and G.W.Bardberry,"Long-range surface modes supported by thin films",Phys.Rev.B 44(11):5855,1991.
    [12]W.L.Barnes,A.Dereux,and T.W.Ebbesen,"Surface plasmon subwavelength optics",Nature 424:824,2003.
    [13]E.Burstein,Polaritons.(Pergamon,New York,1974).
    [14]R.W.Wood,"On a remarkable case of uneven distribution of light in a diffraction grating spectrum",Philos.Mag.4:396,1902.
    [15]U.Fano,"The Theory of Anomalous Diffraction Gratings and of Qusi-Stationary Waves on Metallic Surfaces(Sommerfele's Waves)",J.Opt.Soc.Am.31:213,1941.
    [16]R.H.Ritchie,"Plasma losses by fast electrons in thin films",Phys.Rev.106:874,1957.
    [17]C.J.Powell and J.B.Swan,"Origin of the Characteristic Electron Energy Losses in Aluminum",Phys.Rev.115(4):869,1959.
    [18]E.A.Stern and R.A.Ferrell,"Surface Plasma Oscillations of a Degenerate Electron Gas",Phys.Rev.120(1):130,1960.
    [19]A.Hessel and A.A.Oliner,Appl.Optics 4:1275,1965.
    [20]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Yhio,and P.A.Wolff,"Extraordinary optical transmission through sub-wavelength hole arrays",Nature 391:667,1998.
    [21]J.G.Fleming,S.Y.Lin,I.EI-Kady,R.Biswas,and K.M.Ho,"All-metallic three-dimensional photonic crystals with a large infrared bandgap",Nature 417:52,2002.
    [22]J.-C.Weeber,Y Lacroute,and A.Dereux,“Optical nearfield distributions of suface plasmon waveguide modes”,Phys.Rev.B 68:115401,2003.
    [23]H.F.Ghaemi,T.Thio,D.E.Grupp,T.W.Ebbesen,and H.J.Lezec,“Surface plasmons enhance optical transmission through subwavelength holes”,Phys.Rev.B 58 (11):6779,1998.
    [24]H.J.Lezec,A.Degiron,E.Devaux,R.A.Linke,L.Martin-Moreno,F.J.Garcia-Vidal,and T.W.Ebbesen,“Beaming Light from a Subwavelength Aperture”,Science 297:820,2002.
    [25]F.J.Garcia-Vidal,H.J.Lezec,T.W.Ebbesen,and L.Martin-Moreno,“Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit”,Phys.Rev.Lett.90 (21):213901,2003.
    [26]W.L.Barnes,W.A.Murray,J.Dintinger,E.Devaux,and T.W Ebbesen,“Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film”,Phys.Rev.Lett.92 (10):107401,2004.
    [27]H.Caglayan,I.Bulu,and E.Ozbay,“Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture”,Opt.Express 13 (5):1666,2005.
    [28]H.Caglayan,I.Bulu,and E.Ozbay,“Beaming of electromagnetic waves emitted through a subwavelength annular aperture”,J.Opt.Soc.Am.B 23 (3):419,2006.
    [29]Zu-Bin Li,Jian-Guo Tian,Zhi-Bo Liu,Wen-Yuan Zhou,and Chun-Ping Zhang,“Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric”,Opt.Express 13 (22):9071,2005.
    [30]Z.C.Ruan and M.Qiu,“Enhanced transmission through periodic arrays of subwavelength holes:The role of localized waveguide resonances”,Phys.Rev.Lett.96:233901,2006.
    [31]D.Pacifici,H.J.Lezec,Harry A.Atwater,and J.Weiner,“Quantitative determination of optical transmission through subwavelength slit arrays in Ag films:Role of surface wave interference and local coupling between adjacent slits”,Phys.Rev.B 77 (11):115411,2008.
    [32]Y P.Bliokh,Joshua Felsteiner,and Yakov Z.Slutsker,“Total Absorption of an Electromagnetic Wave by an Overdense Plasma”,Phys.Rev.Lett.95 (16):165003,2005.
    [33]L.Wang,J.X.Cao,L.Liu,Y Lv,and S.J.Zheng,“Surface plasmon enhanced transmission and directivity through subwavelength slit in X-band microwaves”,Appl.Phys.Lett.92 (24):241113,2008.
    [34]L.Wang,J.X.Cao,Y Lv,L.Liu,T.Y Niu,and Y C.Du,“Experimental study of surface-plasmon-assisted microwave transmission through a single subwavelength slit”,J.Appl.Phys.105 (9):0931xx,2009.(To be published in May,2009)
    [35]Y Wang,J.X.Cao,G Wang,L.Wang,T.Y Niu,and Y Zhu,“Excitation of surface plasmons achieve total absorption of electromagnetic wave in overdense plasma”,7th International Symposium on Antennas,Propagation and EM Theory,Vols 1 and 2,Proceedings:1008,2006.
    [36]Yan Wang,Jin-Xiang Cao,Ge Wang,Liang Wang,Ying Zhu,and Tian-Ye Niu,"Total absorption of electromagnetic radiation in overdense plasma",Phys.Plasmas 13(7):073301,2006.
    [37]L.Wang,J.X.Cao,Y.Wang,T.Y.Niu,L.Liu,and Y.Lu,"Excitation of surface plasmons at the boundary of overdense plasma",Chinese Physics B 17(6):2257,2008.
    [38]Changjun Min,Xiaojin Jiao,Pei Wang,and Hai Ming,"Investigation of enhanced and suppressed optical transmission through a cupped surface metallic grating structure",Opt.Express 14(12):5657,2006.
    [39]Changjun Min,Pei Wang,Chunchong Chen,Yan Deng,Yonghua Lu,Hai Ming,Tingyin Ning,Yueliang Zhou,and Guozhen Yang,"All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials",Opt.Letters 33(8):869,2008.
    [40]Changjun Min,Pei Wang,Xiaojin Jiao,Yan Deng,and Hai Ming,"Beam manipulating by metallic nano-optic lens containing nonlinear media",Opt.Express 15(15):9541,2007.
    [41]Changjun Min,Pei Wang,Xiaojin Jiao,Yan Deng,and Hai Ming,"Optical bistability in subwavelength metallic grating coated by nonlinear material",Opt.Express 15(19):12368,2007.
    [42]C.J.Min,P.Wang,X.J.Jiao,and H.Ming,"Numerical investigation of surface plasmons associated subwavelength optical single-pass effect",Chin.Phys.Lett.24(10):2922,2007.
    [43]Dezhuan Han,Xin Li,Fengqin Wu,Xiaohan Liu,and Jian Zi,"Enhanced transmission of optically thick metallic films at infrared wavelengths",Appl.Phys.Lett.88(16):161110,2006.
    [44]Dezhuan Han,Fengqin Wu,Xin Li,Chun Xu,Xiaohan Liu,and Jian Zi,"Transmission and absorption of metallic films coated with corrugated dielectric layers",Appl.Phys.Lett.89(9):091104,2006.
    [45]Xu Fang,Zhiyuan Li,Yongbing Long,Hongxiang Wei,Rongjuan Liu,Jiyun Ma,M.Kamran,Huaying Zhao,Xiufeng Han,Bairu Zhao et al.,"Surface-Plasmon-Polariton Assisted Diffraction in Periodic Subwavelength Holes of Metal Films with Reduced Interplane Coupling",Phys.Rev.Lett.99(6):066805,2007.
    [46]曹金祥,“等离子体技术在军事中的应用”,自然杂志 22(1):41,2000.
    [47]王艳,隐身等离子体中电磁波传输实验与诊断技术,博士学位论文,中国科学技术大学,2007.
    [48]Danoel M.Sherman,in 23rd IEEE international Conference on Plasma(Boston,Massachusetts,1996).
    [49]J.S.Gregoire and R.W.Schumacher,"Electromagnetic wave Propagation in Unmagnified Plasmas",AD-A250710,1992.
    [50]凌永顺,“等离子体隐身及其用于飞机的可能性”,空军工程大学学报(自然科学版) 1(2):1,2000.
    [51]孙宗祥,“等离子体隐身技术的发展现状及关键技术”,流体力学实验与测量14(2):115,2000.
    [52]王春兰,“世纪之交看等离子体隐身技术”,电子展望与决策(6):26,1999.
    [53]赵选科,徐军,何俊发,“等离子体隐身技术”,大学物理 21(5):38,2002.
    [54]赵敬,杨雪,“等离子体隐身技术浅议”,航空科学与技术(4):34,2001.
    [55]陆红,“飞行器利用等离子体隐身的原理及应用”,飞航导弹(6):22,1999.
    [56]D.L.Dang,A.P.Sun,S.M.Qiu,and Paul K.Chu,"Interaction of electromagnetic waves with a magnetized nouniform plasma slab",IEEE Trans.Plasma Sci.31(3):405,2003.
    [57]Fa-Lun Song,Jin-Xiang Cao,Ge Wang,Yan Wang,YIng Zhu,Jian Zhu,Liang Wang,and Tian-Ye Niu,"Theoretical and experimental study of scattering of a plane wave by an inhomogeneous plasma sphere",Chin.Phys.Lett.23(8):2147,2006.
    [58]Fa-lun Song,Ge Wang,and Jin-Xiang Cao,"Transmission and absorption of Microwaves by the inhomogeneous spherical plasma",空间科学学报 24:241,2004.
    [59]Fa-Lun Song,Jin-Xiang Cao,and Ge Wang,"Full-wave analyses of scattering of electromagnetic wave from the weakly ionized plasma in plane geometry",Plasma Sci.Tech 7(2):2713,2005.
    [60]宋法伦,曹金祥,王舸,“电磁波在径向非均匀球形等离子体中的衰减”,物理学报 53(4):1110,2004.
    [61]宋法伦,曹金祥,王舸,“弱电离强碰撞等离子体对电磁波吸收的物理模型与数值求解”,物理学报 54(2):807,2005.
    [62]王舸,陈银华,陆玮,“电磁波在非均匀等离子体中的吸收”,核聚变与等离子体物理 21(3):160,2001.
    [63]Ge Wang,Jin-Xiang Cao,and Fa-lun Song,"Optimal density profile of the plasma layer shielded by a conducting surface for the absorption of electromagnetic waves",Chin.Phys.Lett.20(10):1785,2003.
    [64]Ming-Hai Liu,Xi-Wei Hu,Zhong-He Jiang,Xin-Pei Lu,Cheng-Lin Gu,and Pan Yuan,"Electromagnetic wave attention in atmospheric pressure plasmas",Chin.Phys.Lett.18:1225,2001.
    [65]莫锦军,刘少斌,袁乃昌,“非均匀等离子体覆盖目标隐身研究”,电波科学学报 17(1):69,2002.
    [66]刘少斌,莫锦军,袁乃昌,“不均匀等离子体球的电磁波轨迹及其应用”,电波科学学报 17(2):134,2002.
    [67]I.Alexeff and W.L.Kang,in IEEE International Conference on Plasma Science (1998),pp.277.
    [68]高艳东,白立春,安永丽,“等离子体隐身技术及其应用现状”,中国科技信息(8):30,2008.
    [69]I.Alexeff,T.Anderson,S.Parameswaran,E.P.Pradeep,J.Hulloli,and P.Hulloli,"Experimental and theoretical results with plasma antennas",IEEE Trans.Plasma Sci.34(2):166,2006.
    [70]刘春生,“军事等离子体技术”,航天电子对抗(3):55,2000.
    [71]邵余红,“等离子体隐身与雷达”,国防科技(8):22,2007.
    [72]M.J.Lockyear,A.r P.Hibbins,J.Roy Sambles,and C.R.Lawrence,"Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture",Appl.Phys.Lett.84(12):2040,2004.
    [73]A.P.Hibbins,J.R.Sambles,and C.R.Lawrence,"Grating-coupled surface plasmons at microwave frequencies",J.Appl.Phys.86(4):1791,1999.
    [74]A.P.Hibbins,J.R.Sambles,and C.R.Lawrence,"The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings",J.Appl.Phys.87(6):2677,2000.
    [75]S.Sena Akarca-Biyikli,Irfan Bulu,and Ekmel Ozbay,"Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture",Appl.Phys.Lett.85(7):1098,2004.
    [76]S.S.Akarca-Biyikli,I.Bulu,and E.Ozbay,"Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies",J.Opt.A:Pure Appl.Opt.7 S159,2005.
    [77]吴斌,王庆康,“基于金属表面等离子体的光学器件”,半导体光电 27(5):513,2006.
    [78]J.B.Pendry,"Negative Refraction Makes a Perfect Lens",Phys.Rev.Lett.85(18):3966,2000.
    [79]顾本源,“表面等离子体亚波长光学原理和新颖效应”,物理 36(4):280,2007.
    [80]N.Fang,H.Lee,C.Sun,and X.Zhang,"Sub-Diffraction-Limited Optical Imaging with a Silver Superlens",Science 308:534,2005.
    [81]K Okamoto,I Niki,A Scherer,Y Narukawa,T Mukai,and Y Kawakami,"Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy",Appl.Phys.Lett.87(7):071102,2005.
    [82]S.Wedge,J.A.E.Wasey,W.L.Barnes,and I.Sage,"Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure",Appl.Phys.Lett.85(2):182,2004.
    [83]J.Hashizume and F.Koyama,"Plasmon Enhanced Optical Near-field Probing of Metal Nanoaperture Surface Emitting Laser",Opt.Express 12(25):6391,2004.
    [84]J.Homola,"Present and future of surface plasmon resonance biosensors",Analytical and bioanalytical chemistry 377:528,2003.
    [85]M.Piliarik,H.Vaisocherov,and J.Homola,"A new surface plasmon resonance sensor for high-throughput screening applications",Biosensors and Bioelectronics 20(10):2104,2005.
    [86]E.E.Kunhardt,"Generation of large-volume,atmospheric-pressure,non-equilibrium plasmas",IEEE Trans.Plasma Sci.28(1):189,2000.
    [87]欧阳亮,碰撞等离子体的产生及其性质研究,博士学位论文,中国科学技术大学,2006.
    [88]Y.P.Raizer,M.N.Shneider,and N.A.Yatsenko,Radio-Frequency Capacitive Discharges.(CRC Press,London,1995).
    [89]M.A.Lieberman and A.J.Lichertenberg,Principle of Plasma Discharges and materials Processing(Wiley,New York,2005).
    [90]C.K.N.Patel,"Selective Excitation Through Vibrational Energy Transfer and Optical Maser Action in N2-CO2",Phys.Rev.Lett.13(21):617,1964.
    [91]D.B.Graves,"Plasma processing",IEEE Trans.Plasma Sci.22(1):31,1994.
    [92]S.M.Levitskii,Zh.Tekh.Fiz 27:1001,1957.
    [93]M.M.Turner,"Pressure Heating of electrons in capacitively coupled rf discharges",Phys.Rev.Lett.75:1312,1995.
    [94]V.A.Godyak and R.B.Piejak,"Abomally low electron energy and Heating-mode transition in a low-pressure argon rf discharge at 13.56MHz",Phys.Rev.Lett.65:996,1990.
    [95]M.Suredra and D.B.Graves,"Electron Acoustic Waves in Capacitively Coupled,Low-Pressure rf Glow Discharges",Phys.Rev.Lett.66:1496,1991.
    [96]V.A.Godyak,Soviet Radio Frequency Discharge Research.(Delphic Associates,Inc.Church,VA,1986).
    [97]M.A.Lieberman,"Analytical solution for capacitibely RF sheath",IEEE Trans.Plasma Sci.16:638,1988.
    [98]I.D.Kaganovich and L.D.Tsendin,"Low-pressure rf discharge in the free-light regime",IEEE Trans.Plasma Sci.20:86,1992.
    [99]曾建荣,射频电容放电等离子体的参数诊断,本科毕业论文,中国科学技术大学,2007.
    [100]G.Y.Park,S.J.You,F.Iza,and J.K.Lee,"Abnormal Heating of Low-Energy Electrons in Low-Pressure Capacitively Coupled Discharges",Phys.Rev.Lett.98:085003,2007.
    [101]R.W.Hockney and J.W.Eastwood,Computer Simulation Using Particles.(Adam Hilger,Vristol,1988).
    [102]C.K.Birdsall,"Particle-in-cell charged-particle simulations,plus Monte Carlocollisions with neutral atoms,PIC-MCC",IEEE Trans.Plasma Sci.19:65,1991.
    [103]C.K.Birdsall and A.B.Langdon,Plasma Physics via Computer Simulation.(Adam Hilger,Vristol,1991).
    [104]M.M.Turner and M.B.Hopkins,"Anomalous sheath heating in a low pressure rf discharge in nitrogen",Phys.Rev.Lett.69(24):3511,1992.
    [105]V.Vahedi,C.K.Birdsall,M.A.Lieberman,G.DiPeso,and T.D.Ronhlien,"Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation.Ⅱ.Comparisons with laboratory measurements of electron energy distribution functions",Plasma Sources Sci.Technol.2(4):273,1993.
    [106]S.J.You,C.W.Chung,and H.Y.Chang,"Feature of electron energy distribution in a low-pressure capacitive discharge",Appl.Phys.Lett.87(4):041501,2005.
    [107]I.D.Kaganovich,V.I.Kolobov,and L.D.Tsendin,"Stochastic electron heating in bounded radio-frequency plasmas",Appl.Phys.Lett.69(25):3818,1996.
    [108]Yu M.Aliev,I.D.Kaganovich,and H.Schluter,"Quasilinear theory of collisionless electron heating in radio frequency gas discharges",Phys.Plasmas 4(7):2413,1997.
    [109]V.A.Godyak,R.B.Piejak,and B.M.Alexandrovich,"Electrical characteristics of parallel-plate RF discharges in argon",IEEE Trans.Plasma Sci.19:660,1991.
    [110]郭硕鸿,电动力学(高等教育出版社,北京,1998).
    [111]金兹堡,电磁波在等离子体中的传播.(科学出版社,北京,1978).
    [112]I.H.Hutchinson,Principles of Plasma Diagnostics.(Cambridge University Press,Cambridge,2002).
    [113]M.A.Heald and C.B.Wharton,Plasma diagnostics with microwaves.(Wiley,New York,1965).
    [114]F.F Chen,Plasma Diagnostic Techniques.(Academic Press,New York,1965).
    [115]王龙,“电磁波和等离子体的相互作用”,全国等离子体物理暑期学校讲义,2002.
    [116]宋法伦,电磁波与弱电离等离子体相互作用的理论与实验研究,博士学位论文,中国科学技术大学,2005.
    [117]K.G.Budden,The Propagation of Radio Waves.(Cambridge University Press,Cambridge,1985).
    [118]项志遴,俞昌旋,高温等离子体诊断技术.(上海科学技术出版社,上海,1982).
    [119]J.E.Allen,"Probe theories and applications:modern aspects",Plasma Sources Sci.Technol.4(2):234,1995.
    [120]G.F.Matthews,"Tokamak plasma diagnosis by electrical probes",Plasma Phys.Controlled Fusion 36(10):1595,1994.
    [121]朱颖,不同条件下静电探针的理论与实验技术研究,硕士学位论文,中国科学技术大学,2006.
    [122]牛田野,特殊等离子体环境物理信息与处理的研究,博士学位论文,中国科学技术大学,2008.
    [123]L.J.Overzet and M.B.Hopkins,"Comparison of electron-density measurements made using a Langmuir probe and microwave interferometer in the Gaseous Electronics Conference reference reactor",J.Appl.Phys.74(7):4323,1993.
    [124]王甲寅,时家明,袁忠才,许波,“等离子体的三频点微波透射衰减诊断方法”,强激光与粒子束 19(4):621,2007.
    [125]M.K.Howlader,Yang Yunqiang,and J.R.Roth,"Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics",IEEE Trans.Plasma Sci.33(3):1093,2005.
    [126]K.H.Becker,U.Kogelschatz,K.H.Schoenbach,and R.J.Barker,Non-equilibrium air plasma at atmospheric pressure.(Institute of Physics Publishing,Bristol,2005).
    [127]Kamran Akhtar,John E.Scharer,Shane M.Tysk,and Enny Kho,"Plasma interferometry at high pressures",Review of Scientific Instruments 74(2):996,2003.
    [128]Mounir Laroussi,"Relationship Between the Number Density and the Phase Shift in Microwave Interferometry for Atmospheric Pressure Plasmas",International Journal of Infrared and Millimeter Waves 20(8):1501,1999.
    [129]Mounir Laroussi and William T.Anderson,"Attenuation of Electromagnetic Waves by a Plasma Layer at Atmospheric Pressure",International Journal of Infrared and Millimeter Waves 19(3):453,1998.
    [130]袁忠才,时家明,“等离子体双频点微波透射衰减诊断法”,核聚变与等离子体物理 25(1):78,2005.
    [131]Agilent,"PNA Series Network Analyzer Help(Rev.7.22)",Agilent Technologies,2007.
    [132]L.Brillouin,Wave Propagation and Group Velocity.(Academic Press,New York,1960).
    [133]Eric L.Bolda,Raymond Y.Chiao,and John C.Garrison,"Two theorems for the group velocity in dispersive media",Phys.Rev.A 48(5):3890,1993.
    [134]徐学基,诸定昌,气体放电物理(复旦大学出版社,上海,1996).
    [135]王艳,曹金祥,宋法伦,朱颖,王亮,牛田野,“金属真空罐环境下微波测量的校准与实验”,微波学报 23(1):29,2007.
    [136]邱国斌,蔡定平,“金属表面电浆简介”,物理双月刊 48(2):472,2006.
    [137]J.D.Jackson,Classical Electrodynamics.(Wiley,New York,1999).
    [138]M.F.Bishop,"Localized-mode surface polaritons",Phys.Rev.B 11(2):901,1975.
    [139]J.Zenneck,"Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie",Annalen der Physik 328(10):846,1907.
    [140]F.Miyamaru,M.Tanaka,and M.Hangyo,"Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves",Phys.Rev.B 74(11):115117,2006.
    [141]M.Sarrazin and J.-P.Vigneron,"Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array",Phys.Rev.B 71(7):075404,2005.
    [142]W.P.Chen,G.Ritchie,and E.Burstein,"Excitation of Surface Electromagnetic Waves in Attenuated Total-Reflection Prism Configurations",Phys.Rev.Lett.37(15):993,1976.
    [143]A.Ottto,"Excitation of non radiative surface plasma waves in silver by the method of frustrated total reflection",Z.Phys.216:398,1968.
    [144]E.Kretschmann,Z.Phys 241:133,1971.
    [145]A.V.Zayats and I.I.Smolyaninov,"Near-field photonics:surface plasmon polaritons and localized surface plasmons",J.Opt.A:Pure Appl.Opt.5:S16,2003.
    [146]S.A.Maier,Plasmonics:Fundamentals and Applications.(Springer,New York,2007).
    [147]M.A.Noginov,G.Zhu,M.Mayy,B.A.Ritzo,N.Noginova,and V.A.Podolskiy,"Stimulated Emission of Surface Plasmon Polaritons",Phys.Rev.Lett.101(22):226806,2008.
    [148]E.Hendry,F.J.Garcia-Vidal,L.Martin-Moreno,J.Gomez Rivas,M.Bonn,A.P.Hibbins,and M.J.Lockyear,"Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture",Phys.Rev.Lett.100(12):123901,2008.
    [149]Carsten Rockstuhl,Stephan Fahr,and Falk Lederer,"Absorption enhancement in solar cells by localized plasmon polaritons",J.Appl.Phys.104(12):123102,2008.
    [150]Yi-Han Ye,Yu-Wei Jiang,Ming-Wei Tsai,Yi-Tsung Chang,Chia-Yi Chen,Dah-Ching Tzuang,Yi-Ting Wu,and Si-Chen Lee,"Localized surface plasmon polaritons in Ag/SiO[sub 2]/Ag plasmonic thermal emitter",Appl.Phys.Lett.93(3):033113,2008.
    [151]S.-C.Kong,A.V.Sahakian,A.Heifetz,A.Taflove,and V.Backman,"Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets",Appl.Phys.Lett.92(21):211102,2008.
    [152]R.A.Watts,A.P.HIbbins,and J.R.Sambles,"The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders”,J.mod.Optics 46 (15):2157,1999.
    [153]H.J.Lezec and T.Thio,“Diffracted evanescent wave model for enhanced and suppressed optical transmission through sub wavelength hole arrays”,Opt.Express 12 (16):3629,2004.
    [154]A.Bouhelier and G P.Wiederrecht,“Surface plasmon rainbow jets”,Opt.Letters 30 (8):884,2005.
    [155]B.Hecht,H.Bielefeldt,L.Novotny,Y.Inouye,and D.W.Pohl,“Local Excitation,Scattering,and Interference of Surface Plasmons”,Phys.Rev.Lett.77(9):1889,1996.
    [156]M.M.Sigalas,C.T.Chan,K.M.Ho,and C.M.Soukoulis,“Metallic photonic band-gap materials”,Phys.Rev.B 52 (16):11744,1995.
    [157]H.E.Went and J.R.Sambles,“Resonantly coupled surface plasmon polaritons in the grooves of very deep highly blazed zero-order metallic gratings at microwave frequencies”,Appl.Phys.Lett.79 (5):575,2001.
    [158]H.A.Bethe,“Theory of Diffraction by Small Holes”,Phys.Rev.66 (7-8):163,1944.
    [159]C.J.Bouwkamp,“Diffraction theory”,Rep.Prog.Phys 17:35,1954.
    [160]A.Degiron and T.Ebbesen,“Analysis of the transmission process through single apertures surrounded by periodic corrugations”,Opt.Express 12 (16):3694,2004.
    [161]L.Martin-Moreno,F.J.Garcia-Vidal,H.J.Lezec,A.Degiron,and T.W.Ebbesen,“Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations”,Phys.Rev.Lett.90(16):167401,2003.
    [162]T.Thio,K.M.Pellerin,R.A.Linke,H.J.Lezec,and T.W.Ebbesen,“Enhanced light transmission through a single subwavelength aperture”,Opt.Letters 26 (24):1972,2001.
    [163]Yu A.Akimov and K.Ostrikov,“Nonresonant power transfer in plasma-surface interactions via two-surface wave decay”,Phys.Plasmas 15 (1):012113,2008.
    [164]黄泽铣,功能材料及其应用手册.(机械工业出版社,北京,1991).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700