用户名: 密码: 验证码:
低温烧结BaO-Al_2O_3-SiO_2系微晶玻璃的析晶特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以低温烧结法制备化学计量比和高Ba含量的两组BaO-Al_2O_3-SiO_2(BAS)系微晶玻璃。设计了一种利用X射线衍射(X-ray diffraction)法测定微晶玻璃各相含量的方法。根据玻璃工艺学的基本原理,设计了化学计量比和高热膨胀系数的BAS系基础玻璃。系统研究了ZrO_2、单斜晶种对两组BAS系微晶玻璃中六方钡长石析晶和六方钡长石向单斜钡长石的晶型转变的影响。在此基础上,分别研究了晶化时间和ZrO_2含量对BAS系微晶玻璃热膨胀系数的影响,通过控制其析出晶相的种类和含量,实现了BAS系微晶玻璃热膨胀系数在较大范围内的系列化。最后,以丝网印刷、生带包覆/压制和多层共烧为基本的制备技术,研制了基于0Cr18Ni9不锈钢基板的BAS系微晶玻璃介质层和C_f/SiC复合材料的BAS系微晶玻璃抗氧化涂层,并对其性能进行了考核。
     采用设计的XRD方法,同时利用标准卡片上的“参比强度”值,可测定微晶玻璃中的各相含量。与Rietveld法相比,这种方法测得的结晶度的偏差小于3.2%,测得的各晶相含量的偏差小于2.6%。利用自建的定标直线测定了BAS系微晶玻璃中单斜钡长石相对于刚玉(α-Al_2O_3)的参比强度,为1.74。
     综合考虑成分对熔化温度、澄清温度和热膨胀系数的影响,确定了高Ba含量的BAS系基础玻璃的成分。通过添加适量B_2O_3以降低玻璃的熔炼温度。为尽量保持BAS系微晶玻璃优良高温性能,确定B_2O_3的合适添加量为6 wt%。对比研究发现,ZrO_2作为成核剂,在化学计量比BAS系微晶玻璃中促进六方钡长石向单斜钡长石的晶型转变效果最明显,同时在高热膨胀系数的BAS系微晶玻璃中能有效抑制六方钡长石向单斜钡长石的晶型转变。
     利用研究相变动力学的新方法(包括Ozawa等转化率法和最概然相变机理函数)分析差示扫描量热(Differential scanning calorimetry)数据,研究了六方钡长石在整个析晶过程中的非等温转变动力学。利用设计的方法分析XRD数据,研究了六方钡长石向单斜钡长石的晶型转变的等温转变动力学。进而系统研究了ZrO_2、单斜晶种对化学计量比和高Ba含量两组BAS系微晶玻璃中,六方钡长石析晶和六方钡长石向单斜钡长石的晶型转变的影响。研究发现:各设计成分的BAS系微晶玻璃中,六方钡长石的析出为整体析晶。不加成核剂,六方钡长石向单斜钡长石的晶型转变为整体析晶;添加晶种后主要转变为表面析晶。添加1-2%ZrO_2时,在晶型转变初期主要表现为表面析晶;随着晶型转变过程的进行或ZrO_2含量的增加,主要表现为整体析晶。各设计成分BAS系玻璃的最概然析晶机理函数为SB(m,n)函数,析晶过程中存在自催化的相变机制。
     在化学计量比BAS系微晶玻璃中,添加1-2%的ZrO_2,析晶峰值温度、析晶活化能和Avrami指数较低,六方钡长石的含量较高、晶粒较细,能显著促进六方钡长石向单斜钡长的石晶型转变。在化学计量比BAS系微晶玻璃中添加1%的ZrO_2,在850℃时保温12 h,实现了六方钡长石向单斜钡长石的完全转变。在高Ba含量的BAS系玻璃中添加2%ZrO_2能抑制晶型转变,在850℃时保温100 h不发生转变。
     在两组BAS系玻璃中添加晶种均有助于降低析晶活化能,促进六方钡长石和单斜钡长石的析出。单斜晶种的添加量为1%时,活化能最小,高Ba含量BAS系玻璃中的析晶峰值温度也最低。添加1%晶种的化学计量比BAS系微晶玻璃,在850℃保温2h,全部转变为单斜钡长石。
     在化学计量比BAS系玻璃中,通过改变ZrO_2含量,或控制晶化时间,能调节微晶玻璃中单斜钡长石和六方钡长石的相对含量,从而实现了热膨胀系数在3.1-6.67×10~(-6)℃~(-1)(40-200℃)范围内的系列化。而在高Ba含量BAS系微晶玻璃中,通过控制晶化时间,也能调节单斜钡长石和六方钡长石的相对含量,从而实现了热膨胀系数在5.21-9.70×10~(-6)℃~(-1)(40-200℃)范围内的系列化。
     在0Cr18Ni9不锈钢基板上,采用添加了ZrO_2的高Ba含量BAS系微晶玻璃,制备了大功率厚膜电路介质层。通过加入适量MgO和CaO部分取代BaO,抑制了晶体相的析出,BAS系微晶玻璃的烧结性能得到明显改善。成分优化后的BAS系玻璃的工程热膨胀系数为(8.08-13.97)×10~(-6)℃~(-1)(40-700℃),较好地满足了与0Cr18Ni9不锈钢基板热膨胀系数匹配的要求。最佳配方的介质浆料制得的介质层满足国家标准的要求。部分成果已经用于合作单位的工业化生产。
     利用两层不同软化温度和不同热膨胀系数的BAS系微晶玻璃制备了两种双层同组分和一种双层不同组分的C_f/SiC复合材料抗氧化涂层。对比热冲击后的质量损失率和强度保留率发现,这些涂层对提高C_f/SiC复合材料的抗氧化性能均具有一定作用。
Two groups of BaO-Al_2O_3-SiO_2 (BAS) glass-ceramics with stoichiometric and nonstoichiometric celsian composition were fabricated by sintering at low temperature. According to the principle of quantitative analysis by X-ray Diffraction (XRD), a new method to determinate the crystallinity of glass-ceramics was proposed. Based on the principle of glass technology, main compositions of the two groups of BAS glass with stoichiometric and nonstoichiometric celsian were designed. The effects of ZrO_2 and celsian seeds on crystallization and phase transformation characteristics of the two groups of BAS glass-ceramics were investigated. By controlling the kinds and quantity of crystal phases in these glass-ceramics, Thermal Expansion Coefficient (TEC) of them can easily be designed over a wide range. By taking advantage of this result,a dielectric coating from the BAS glass-ceramics was prepared on 0Crl8Ni9 stainless steel surface, as well, an anti-oxidation coating also from them was prepared on carbon fiber reinforced silicon carbide (C_f/SiC) composite.
     The new method to determinate the crystallinity of glass-ceramics was proposed only with the intensity data for glass phase diffraction. Mass fractions of crystal-phases was calculated using "Reference Intensity Values" on Joint Committee on Powder Diffraction Standards (JCPDS) . Comparing the results calculated by the method with those by the Rietveld method, the maximum deviation of the crystallinities from experiments is 3.2 %, the maximum experimental deviation of each crystal-phase mass fractions is 2.6 %. Relative toα-Al_2O_3, Reference Intensity Values of monoclinic celsian in the BAS glass-ceramics is 1.74, which is calculated by the so-called calibrated curve method.
     The basic compositions of nonstoichiometric BAS glasses were designed, through considering effects of oxides in the glasses on their melting temperature, clarified temperature and TECs. B_2O_3 was selected to ruduce the melting temperature of stoichiometric BAS glasses. To preserve the glass performances at high temperature, an appropriate additive fraction of B_2O_3 may be 6 %.ZrO_2 was chosen as nucleation agent. The agent can boost phase transformation from hexacelsian to monoclinic celsian in the stoichiometric BAS glass-ceramics. Reversely, it will restrain the transformation in the nonstoichiometric BAS ones.
     The effects of ZrO_2 and celsian seeds on crystallization and phase transformation characteristics of the two groups of BAS glass-ceramics were investigated by Differential Scanning Calorimetry (DSC),XRD and dilatometry, according to the isoconversional method of Ozawa and the Johnson-Mehl-Avrami equation. Crystallization characteristic of hexacelsian in each sample is bulk nucleation. Crystallization of monocelsian in the sample doped with celsian seeds characterizes surface nucleation, while it is bulk nucleation in the sample without nucleation agent. The earlier stage crystallization characteristic of monocelsian in the sample doped with 1 %-2 % ZrO_2 is surface nucleation. The crystallization characteristic of monocelsian became bulk nucleation in the later period with 1 %-2 % ZrO_2 or with higher ZrO_2 content. It is the autocatalytic kinetic model, i.e., Sestak-Berggren function, not the JMA function or the Kissinger function, that can most properly describe the processes studied for the all glasses investigated.
     It is revealed that a content of 1 %-2 % ZrO_2 is the most effective for crystallization and phase transformation in the BAS glass-ceramics investgated. Crystallized at 850℃for 12 h, stoichiometric BAS glass-ceramics doped with 1 % ZrO_2 is completely transformed into monocelsian. No monocelsian in nonstoichiometric BAS glass-ceramics doped with 2 % ZrO_2 can be detected when the glass-ceramics were crystallized at 850℃for 100 h. Crystallization and phase transformation in each formula for the two groups of BAS glass-ceramics doped with the seeds were able to be accelerated greatly. Crystallized at 850℃for 2 h, stoichiometric BAS glass-ceramics doped with 1 % seeds is completely transformed into monocelsian.
     For the stoichiometric BAS glass-ceramics, by optimizing the content of ZrO_2 or controlling the crystallization time, proportions between monoclinic celsian and hexacelsian quantity can be adjusted. Consequently, TECs from 3.1×10~(-6)℃~(-1) to 6.67×10~(-6)℃~(-1) (40-200℃) can easily be tailored. For the nonstoichiometric BAS glass-ceramics, by controlling the crystallization time, proportions between monoclinic celsian and hexacelsian quantity can similarly be adjusted. Also, TECs from 5.21×10~(-6)℃~(-1)to 9.70×10~(-6)℃~(-1)(40-200℃) can easily be tailored.
     The nonstoichiometric BAS glass-ceramics doped with ZrO_2 were employed to prepare thick film dielectric coatings on 0Crl8Ni9 stainless steel substrate. BaO is partially substituted by MgO and CaO in the BAS glass-ceramics, which can decrease the sintering temperature and increase the crystallization temperature, and thus restrain the crystallization. As a result, the sintering processability are obviously modified. TEC of the thick film for the BAS glass-ceramics can match that of 0Crl8Ni9 stainless steel substrate. The coating can meet the requirement of thick film circuit for multilayer co-firing technology. Some results from the present work have been applied into production of the cooperating company.
     Two different compositions of BAS glass-ceramics, with different soften points and TECs, were employed to prepare three structures of coatings. The all coatings have protection functions for C_f/SiC composite.
引文
[1] Wolfram H, George B. Glass-ceramic technology [M]. Ohio: The American Ceramic Society, 2002: 1-4.
    [2] 程金树,李宏,汤李缨,等.微晶玻璃[M].北京:化学工业出版社,2006:23-25.
    [3] 赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006:24-31.
    [4] Kivlighn H D, Russak M A. Formation of nepheline glass-ceramics using Nb_2O_5 as a nucleation catalyst [J]. J. Am.Ceram. Soc, 1974, 57(9): 382-385.
    [5] Herczog A. Phase distribution and transparency in glass-ceramics based on a study of the sodium niobate-silica system [J]. J. Am. Ceram. Soc, 1990, 73(9):2743-2746.
    [6] Karapetyan G O,Loboda V V, Tagantsev D K. Glass crystallization by ion exchange: formation of NaNbO_3 in thick films at the glass surface [J]. J.Non-Cryst. Solids, 2001,283(1-3):114-118.
    [7] Saegusa K. PbTiO_3-PbO-SiO_2 glass-ceramic thin film by a sol-gel process [J]. J.Am. Ceram. Soc, 1997, 80(10): 2510-2516.
    [8] 周歧发,张清琦,张进修,等.溶胶-凝胶工艺合成PbTiO_3-SiO_2微晶玻璃及其特性研究[J].硅酸盐学报,1996,24(1):68-73.
    [9] Torres F J, De Sola E R, Alarcon J. Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO-MgO-Al_2O_3-SiO_2 system [J]. J. Eur. Ceram. Soc, 2006, 26(12):2285-2293.
    [10] Chakraborty a K. Reinvestigation of Al-Si spinel phase in diphasic Al_2O_3-SiO_2 gel [J]. J. Am. Ceram. Soc, 2005, 88(1):134-140.
    [11] Takei T,Kameshima Y, Yasumori A, et al.Crystallization kinetics of mullite in alumina-silica glass fibers [J]. J. Am. Ceram. Soc, 1999, 82(10): 2876-2880.
    [12] 侯朝霞,苏春辉,张永明,等.Li_2O-Al_2O_3-SiO_2玻璃的晶化对钕离子发光性能的影响[J].中国稀土学报,2006,24(4):514-514.
    [13] 胡安民,李明,毛大立,等.锂铝硅微晶玻璃中纤维状β-锂辉石晶相的形成和表征[J].无机材料学报,2006,21(1):35-40.
    [14] Guo X Z, Yang H, Cao M. Nucleation and crystallization behavior of Li_2O-Al_2O_3-SiO_2 system glass-ceramic containing little fluorine and no-fluorine [J]. J. Non-Cryst. Solids, 2005, 351(24-26): 2133-2137.
    [15] 罗发,周万城,焦桓,等.用于阻抗变换层的Li_2O-Al_2O_3-SiO_2玻璃陶瓷制备及其微波介电特性[J].航空学报,2003,24(3):273-277.
    [16] 董继鹏,何飞,罗澜,等.CeO_2对镁铝硅钛系统微晶玻璃的相变和介电性能影响[J].无机材料学报,2007,22(1):35-39.
    [17] Pavese M, Valle M, Badini C. Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites [J].J. Eur. Ceram. Soc, 2007, 27(1): 131-141.
    [18] 吴建锋,张亚涛,徐晓虹,等.TiO_2对堇青石微晶玻璃结构及性能的影响[J].武汉理工大学学报,2006,28(6):10-13.
    [19] Yalamac E, Akkurt S. Additive and intensive grinding effects on the synthesis of cordierite [J]. Ceram. Int., 2006, 32(7): 825-832.
    [20] Chen G H, Liu X Y. Sintering, crystallization and properties of MgO-Al_2O_3-SiO_2 system glass-ceramics containing ZnO [J]. J. Alloys Compd.,2007,431(1-2): 282-286.
    [21] Cheng J S,Xie J,He F,et al.Stress analysis of CaO-Al_2O_3-SiO_2 system glass-ceramic with different thickness[J].武汉理工大学学报:材料科学英文版,2005,20(4):126-127.
    [22] 史培阳,姜茂发,刘承军,等.CaO对CaO-Al_2O_3-SiO_2系微晶玻璃析晶和性能的影响[J].硅酸盐学报,2004,32(11):1389-1393.
    [23] 陈和,梁开明,李力军,等.CaO-Al_2O_3-SiO_2系烧结微晶玻璃的结晶过程[J].清华大学学报(自然科学版),1999,39(10):15-17.
    [24] Yang C F, Cheng C M. The influence of B_2O_3 on the sintering of MgO-CaO-Al_2O_3-SiO_2 composite glass powder [J].Ceram. Int., 1999, 25(4):383-387.
    [25] Clayden N J, Esposito S, Ferone C, et al.Substitution clustering in a non-stoichiometric celsian synthesized by the thermal transformation of barium exchanged zeolite X [J]. J. Solid State Chem., 2006, 179(7): 1957-1964.
    [26] Khater G A, Idris M H. Expansion characteristics of some Li_2O-BaO-Al_2O_3-SiO_2 glasses and glass-ceramics [J]. Ceram. Int., 2006, 32(7):833-838.
    [27] Lin H L, Chiang R K, Li W T. Low-temperature synthesis of pure BaAl_2Si_2O_8 glass-ceramic powder by citrate process [J]. J. Non-Cryst. Solids, 2005,351(37-39): 3044-3049.
    [28] Ferone C, Esposito S, Dell'agli G, et al. Role of Li in the low temperature synthesis of monoclinic celsian from (Ba, Li)-exchanged zeolite-A precursor [J].Solid State Sci, 2005,7(11):1406-1414.
    [29] Bansal N P, Gamble E A. Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis [J]. J. Power Sources, 2005, 147(1-2):107-115.
    [30] Bansal N P. Celsian formation in fiber-reinforced barium aluminosilicate glass-ceramic matrix composites [J]. Mater. Sci. Eng., A, 2003, 342(1-2): 23-27.
    [31] Mirkazemi M, Marghussian V K,Beitollahi A, et al. Effect of ZrO_2 nucleant on crystallisation behaviour,microstructure and magnetic properties of BaO-Fe_2O_3-B_2O_3-SiO_2 glass ceramics [J].Ceram.Int.,2007, 33(3): 463-469.
    [32] Marghussian V K, Beitollahi A, Haghi M. The effect of SiO_2 and Cr_2O_3 additions on the crystallisation behaviour and magnetic properties of a B_2O_3-BaO-Fe_2O_3 glass [J]. Ceram.Int.,2003,29(4): 455-462.
    [33] 王少洪,周和平,陈克新.低温合成ZnO-Li_2O-B_2O_3-SiO_2系陶瓷材料[J].无机材料学报,2004,19(2):433-438.
    [34] Tohge N, Minami T.Preparation of B_2O_3-SiO_2 and MO-B_2O_3-SiO_2 (M = Zn,Mg) glass films by the sol-gel method [J]. J. Non-Cryst. Solids, 1989, 112(1-3):432-436.
    [35] Levitskii I A,Gailevich S A, Shimchik I S.The effect of bivalent cations on the physicochemical properties and structure of borosilicate glasses [J]. Glass Ceram., 2004, 61(3-4): 73-76.
    [36] Bijumon P V, Sebastian M T. Tailoring the microwave dielectric properties of Ca_5Ta_2TiO_(12) ceramics through glass addition [J]. J. Am. Ceram. Soc, 2005,88(12): 3433-3439.
    [37] 王志强,陈一鹏,张芸.CeO_2对PbO-ZnO-B_2O_3-SiO_2-TiO_2系统玻璃析晶性能的影响[J].大连轻工业学院学报,1996,15(2):20-23.
    [38] Hoeche T, Deckwerth M, Ruessel C. Partial stabilization of tetragonal zirconia in oxynitride glass-ceramics [J]. J. Am. Ceram. Soc, 1998, 81(8): 2029-2036.
    [39] 李红,冉均国,苟立.CaO-MgO-Al_2O_3-SiO_2-F系可切削微晶玻璃的晶化 机理研究[J].材料科学与工程,2002,20(1):28-30,10.
    [40] Kanchanarat N, Miller C A, Hatton P V, et al. Early stages of crystallization in canasite-based glass ceramics [J]. J. Am. Ceram.Soc, 2005, 88(11):3198-3204.
    [41] 陈晓峰,王迎军,赵娜如,等.齿科微晶玻璃的腐蚀机理及溶胶-凝胶防腐蚀涂层研究[J].无机材料学报,2003,18(3):553-560.
    [42] Mirsaneh M, Reaney I M, James P F, et al. Effect of CaF_2 and CaO substituted for MgO on the phase evolution and mechanical properties of K-fluorrichterite glass ceramics [J]. J. Am. Ceram. Soc, 2006, 89(2): 587-595.
    [43] Mirsaneh M, Reaney I M, Hatton P V, et al. Characterization of high-fracture toughness K-fluorrichterite-fluorapatite glass ceramics [J]. J. Am. Ceram. Soc,2004, 87(2): 240-246.
    [44] Denry I L, Holloway J A. Effect of sodium content on the crystallization behavior of fluoramphibole glass-ceramics [J]. J. Biomed. Mater. Res., 2002,63(1): 48-52.
    [45] Guencheva V, Stoyanov E, Gutzow I, et al. Induced crystallization of glass-forming melts. Part 1.Heterogeneous nucleation. Effect of noble metal microcrystals on the crystallization of calcium metaphosphate glasses [J]. Glass Sci. Technol., 2004, 77(5): 217-228.
    [46] Abe Y, Arahori T, Naruse A. Crystallization of Ca(PO_3)_2 glass below the glass transition temperature [J]. J. Am. Ceram. Soc, 1976, 59(11-12): 487-490.
    [47] Ota Y, Iwashita T, Kasuga T, et al. Novel preparation method of hydroxyapatite fibers [J]. J. Am. Ceram. Soc, 1998, 81(6): 1665-1668.
    [48] 李延报,翁文剑,杜丕一,等.热处理对磷酸钙微晶玻璃中β-Ca_2P_2O_7晶相含量的影响[J].硅酸盐学报,2003,31(7):669-672,677.
    [49] Vogel J, Wange P, Hartmann P. Phosphate glasses and glass-ceramics for medical applications [J]. Glass Sci. Technol., 1997, 70(7): 220-223.
    [50] Pernot F, Rogier R. Mechanical properties of phosphate glass-ceramic-316 L stainless steel composites [J]. J. Mater. Sci., 1993, 28(24): 6676-6682.
    [51] Rogier R, Pernot F. Phosphate glass-ceramic-titanium composite materials [J]. J.Mater. Sci., 1991, 26(20): 5664-5670.
    [52] Walter G, Goerigk G, Russel C. The structure of phosphate glass evidenced by small angle X-ray scattering [J]. J. Non-Cryst. Solids, 2006, 352(38-39):4051-4061.
    [53] Moawad H M M, Jain H. Creation of nano-macro-interconnected porosity in a bioactive glass-ceramic by the melt-quench-heat-etch method [J]. J. Am. Ceram.Soc,2007,90(6): 1934-1936.
    [54] Fujimura K, Bessho K, Okubo Y, et al. A bioactive bone cement containing Bis-GMA resin and A-W glass-ceramic as an augmentation graft material on mandibular bone [J]. Clin. Oral Implants Res., 2003,14(5): 659-667.
    [55] Marghussian V K, Sheikh-Mehdi Mesgar A. Effects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO_2-P_2O_5 system [J]. Ceram. Int., 2000, 26(4): 415-420.
    [56] Maria B. The influence of alkali and alkaline earths on the working range for bioactive glasses [J]. J. BioMed. Mater. Res., 1997, 36(1): 109-117.
    [57] Banchet V, Jallot E, Michel J, et al. X-ray microanalysis in STEM of short-term physicochemical reactions at bioactive glass particle/biological fluid interface.Determination of O/Si atomic ratios [J]. Surf. Interface Anal., 2004, 36(7):658-665.
    [58] 孙强,郝玉全,艾红军,等.CaO,P_2O_5添加量对可切削生物微晶玻璃机械性能的影响[J].中国医科大学学报,2003,32(5):423-425.
    [59] Tulyaganov D U, Agathopoulos S, Fernandes H R,et al. Processing of glass-ceramics in the SiO_2-Al_2O_3-B_2O_3-MgO-CaO-Na_2O-(P_2O_5)-F system via sintering and crystallization of glass powder compacts [J]. Ceram. Int., 2006,32(2): 195-200.
    [60] 秦小梅,修稚萌,左良,等.低熔可切削生物活性微晶玻璃的研究[J].无机材料学报,2003,18(6):1158-1162.
    [61] Mandal S,Chakrabarti S,Ghatak S,et al.Ultra low and negative expansion glass-ceramic materials produced from pyrophyllite and blast fumace slag[J].Bull.Mater.Sci.,2005,28(5):437-443.
    [62] 韩建军,阮健,徐峰,等.空穴孔阵玻璃基片的酸加工工艺研究[J].武汉理工大学学报,2007,29(3):26-29.
    [63] 韩陈,郭兴忠,杨辉,等.含氟和磷Li_2O-Al_2O_3一SiO_2系玻璃的析晶机理[J].硅酸盐学报,2006,34(6):717-722.
    [64] 刘树江,卢安贤.热处理制度对Li_2O-Al_2O_3-SiO_2系统玻璃析晶及热膨胀系数的影响[J].中南工业大学学报,2002,33(5):513-516.
    [63] 时海霞,肖汉宁.Li_2O-Al_2O_3-SiO_2系低膨胀微晶玻璃的研究[J].中国陶瓷. 2004,40(2):47-49,52.
    [66] Riello P, Canton P, Comelato N, et al. Nucleation and crystallization behavior of glass-ceramic materials in the Li_2O-Al_2O_3-SiO_2 system of interest for their transparency properties [J]. J. Non-Cryst. Solids, 2001, 288(1-3): 127-139.
    [67] Karstetter B R, Voss R 0. Chemical strengthening of glass-ceramics in the system Li_2O-Al_2O_3-SiO_2 [J]. J. Am. Ceram. Soc, 1967, 50(3): 133-137.
    [68] Chen G H, Liu X Y. Influence of A1N addition on thermal and mechanical properties of cordierite-based glass/ceramic composites [J]. J. Mater. Process.Technol.,2007, 190(1-3): 77-80.
    [69] 董继鹏,陈玮,罗澜.Cr_2O_3的添加对MgO-Al_2O_3-SiO_2-TiO_2系统微晶玻璃析晶行为的影响[J].无机材料学报,2006,21(5):1060-1066.
    [70] Yoshihiko I. Multilayered low temperature cofired ceramics(LTCC) technology[M]. Boston: Springer, 2005: 13-15.
    [71] Ye F, Liu L M, Wang Y J, et al. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass-ceramic composites [J].Scripta Mater., 2006, 55(10): 911-914.
    [72] Yang J,Gao J Q,Yang J F,et al.Microstructure properties of Si_3N_4 ceramics obtained addition of β-phase seeds and celsian [J].北京科技大学学报:英文版,2006,13(5):465-468.
    [73] Cannillo V, Carlier E, Manfredini T, et al. Design and optimisation of glass-celsian composites [J]. Composites Part A, 2006, 37(1): 23-30.
    [74] Ye F, Liu L M, Zhang J X, et al. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering [J]. Compos. Sci. Technol., 2005, 65(14): 2233-2239.
    [75] Ye F, Zhou Y, Lei T C, et al. Microstructure and mechanical properties of barium aluminosilicate glass-ceramic matrix composites reinforced with SiC whiskers [J]. J. Mater. Sci., 2001, 36(10): 2575-2580.
    [76] Ye F, Yang J M, Zhang L T,et al.Fracture behavior of SiC-whisker-reinforced barium aluminosilicate glass-ceramic matrix composites [J]. J. Am. Ceram.Soc,2001, 84(4): 881-883.
    [77] Lee K T, Aswath P B. Enhanced production of celsian barium aluminosilicates by a three-step firing technique [J]. Mater. Chem. Phys., 2001, 71(1): 47-52.
    [78] Bansal N P,Setlock J A.Fabrication of fiber-reinforced celsian matrix composites [J]. Composites Part A, 2001, 32(8): 1021-1029.
    [79] 孟雷,陈奇,许俊,等.齿科用CaO-Al_2O_3-SiO_2系微晶玻璃的微晶化和性能[J].华东理工大学学报:自然科学版,2005,31(1):92-95.
    [80] 何峰,钮峰,娄广辉.Influence of ZrO_2 on sintering and crystallization of CaO-Al_2O_3-SiO_2 glass-ceramics[J].中南工业大学学报:英文版,2005,12(5):511-514.
    [81] 何峰,娄广辉,郝先成.CaO-Al_2O_3-SiO_2系黑色装饰微晶玻璃的研究[J].材料科学与工艺,2005,13(2):150-152,157.
    [82] 张为军.基于1Cr17不锈钢基片的厚膜电子浆料及其应用技术研究[D].长沙:国防科学技术大学,2003.
    [83] Yu F, Nagarajan N, Fang Y, et al. Microstructural control of a 70% silicon nitride-30% barium aluminum silicate self-reinforced composite [J]. J. Am.Ceram.Soc,2001, 84(1):13-22.
    [84] 殷小纬,成来飞,张立同,等.C纤维增强钡长石基复合材料的研究[J].材料科学与工程,2000,18(1):74-76.
    [85] 朱时珍,刘以成,于晓东.SiC长纤维增强玻璃陶瓷基复合材料的研究[J].北京理工大学学报,2000,20(2):257-260.
    [86] Ye F, Gu J C, Zhou Y, et al. Synthesis of BaAl_2Si_2O_8 glass-ceramic by a sol-gel method and the fabrication of SiC_(pl)/BaAl_2Si_2O_8 composites [J]. J. Eur.Ceram.Soc, 2003, 23(13): 2203-2209.
    [87] 张波,张立同,周万城.溶胶-凝胶法合成钡长石及其结晶特性[J].西北工业大学学报,1996,14(3):325-328.
    [88] Ota T,Watanabe A,Ohtoh K.Glass-ceramic and reflecting mirror substrate [P].US Patent, 6652793. 2003-11-25
    [89] Dietz E D. Composition for use as a filler in tooth filling and facing composition and method of making the same [P]. US Patent, 3975203.1976-8-17
    [90] Eppinger R, Eppinger B, Heindl D,et al. Polymerizable dental material [P]. US Patent, 5228907. 1993-7-20
    [91] Madhavan N, Freeman F H. Barium aluminum silicate filler for U.V. curable composites [P]. US Patent, 4252526. 1981-2-24
    [92] Nagel J, Erdrich A. Artificial tooth [P]. US Patent, 5548000. 1996-8-20
    [93] Moffatt D M, Neubauer D V. Glasses for flat panel display [P]. US Patent,5489558. 1996-2-5
    [94] Sohn S B, Choi S Y, Kim G H,et al. Suitable glass-ceramic sealant for planar solid-oxide fuel cells [J]. J. Am. Ceram.Soc, 2004, 87(2): 254-260.
    [95] Eichler K, Solow G,Otschik P, et al. BAS (BaO·Al_2O_3·SiO_2)-glasses for high temperature applications [J]. J. Eur. Ceram. Soc, 1999, 19(6-7):1101-1104.
    [96] Wu Y Q,Zhang Y F, Pezzotti G, et al. Effect of glass additives on the strength and toughness of polycrystalline alumina [J]. J. Eur. Ceram. Soc, 2002, 22(2):159-164.
    [97] Koetje E L, Simpson F H. Broadband high temperature radome apparatus [P].US Patent, 4677443. 1987-6-30
    [98] Debsikdar J C, Sowemimo O S. Effect of zirconia addition on crystallinity,hardness, and microstructure of gel-derived barium aluminosilicate, BaAl_2Si_2O_8 [J]. J. Mater. Sci, 1992, 27(19):5320-5324.
    [99] Zhang B, Zhang L T, Zhou W C. Aqueous sol-gel route to barium aluminosilicate glass-ceramics [J]. J. Am. Ceram. Soc, 1999, 82(1): 253-256.
    [100] 杨觉明,张立同,张津生.BaO-Al_2O_3-SiO_2系玻璃的溶胶.凝胶工艺研究[J].航空学报,1995,16(5):558-563.
    [101] Lee K T, Aswath P B. Role of mineralizers on the hexacelsian to celsian transformation in the barium aluminosilicate (BAS) system [J]. Mater. Sci. Eng.,A, 2003, 352(1-2): 1-7.
    [102] Allameh S M, Sandhage K H. Synthesis of celsian (BaAl_2Si_2O_8) from solid Ba-Al-Al_2O_3-SiO_2 precursors: I, XRD and SEM/EDX analyses of phase evolution [J]. J. Am. Ceram. Soc, 1997, 80(12):3109-3126.
    [103] Hoghooghi B, Mckittrick J, Helsel E, et al. Microstructural development,densification, and hot pressing of celsian ceramics from ion-exchanged zeolite precursors [J]. J. Am. Ceram. Soc, 1998, 81(4): 845-852.
    [104] Corral J S M, Verduch a G. The solid solution of silica in celsian and its polymorphic transition kinetics [J]. Trans. J. Br. Ceram. Soc, 1978, 77(2):40-44.
    [105] Bahat D. Kinetic study on the hexacelsian-celsian phase transformation [J]. J.Mater. Sci.,1970, 5(9): 805-810.
    [106] Lee W E, Chen M, James P F. Crystallization of celsian (BaAl_2Si_2O_8) glass [J]. J. Am.Ceram.Soc,1995, 78(8): 2180-2186.
    [107] Liu C, Komarneni S, Roy R. Crystallization and seeding effect in BaAl_2Si_2O_8 gels [J]. J. Am. Ceram. Soc, 1995, 78(9): 2521-2526.
    [108] Drummond Iii C H.Crystallization behavior and properties of BaO-Al_2O_3-2SiO_2 glass matrices [J]. Ceram. Eng. Sci. Proc, 1990,11(7-8):1072-1086.
    [109] 杨觉明,张立同,周万城.添加Li_2O对BAS玻璃陶瓷相变和性能的影响[J].西北工业大学学报,1996,14(2):194-198.
    [110] 杨觉明,张立同,周万城.BAS玻璃陶瓷的晶化行为与性能[J].材料研究学报,1998,12(6):580-586.
    [111] Lee K N, Fox D S, Eldridge J I, et al. Upper temperature limit of environmental barrier coatings based on mullite and BSAS [J]. J. Am. Ceram. Soc, 2003, 86(8):1299-1306.
    [112] Spitsberg I, Hazel B T, Govern C. Environmental barrier coating for silicon-containing substrates and process therefore [P]. US Patent,2005/0238888.2005-10-27
    [113] 刘利盟.Si_3N_4/BAS陶瓷基复合材料的合成与纤维组织优化[D].哈尔滨:哈尔滨工业大学,2003.
    [114] Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si_3N_4 ceramics [J]. J. Eur. Ceram. Soc,2005,25(10): 1705-1715.
    [115] 干福熹.硅酸盐玻璃物理性质变化规律及其计算方法[M].北京:科学出版社,1966:124-134.
    [116] 干福熹.无机玻璃物理性质计算和成分设计[M].上海:上海科学技术出版社,1981:104-121.
    [117] 干福熹.硅酸盐玻璃物理性质新的计算体系[J].硅酸盐学报,1962,1(2):55-76.
    [118] 胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:65-111.
    [119] Guinesi L S, Roz Da a L, Corradini E, et al. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures [J]. Thermochim.Acta, 2006,447(2): 190-196.
    [120] Anusavice K J, Zhang N Z. Effect of crystallinity on strength and fracture toughness of Li_2O-Al_2O_3-CaO-SiO_2 glass-ceramics [J]. J. Am. Ceram. Soc, 1997,80(6):1353-1358.
    [121] 莫志深,张宏放.晶态聚合物结构和X射线衍射[M].北京:科学出版社,2003:183-186.
    [122] Yoon S, Baik S,Kim M G, et al. Formation mechanisms of tetragonal barium titanate nanoparticles in alkoxide-hydroxide sol-precipitation synthesis [J]. J.Am. Ceram.Soc, 2006, 89(6): 1816-1821.
    [123] Subasri R, Roy S, Matusch D, et al. Synthesis and structural characterization of a metastable mullite-like alumina phase [J]. J. Am. Ceram. Soc, 2005, 88(7):1740-1746.
    [124] Walter S, Soraru G D, Brequel H, et al. Microstructural and mechanical characterization of sol gel-derived Si-O-C glasses [J]. J. Eur. Ceram. Soc, 2002,22(13): 2389-2400.
    [125] Johnson B R, Kriven W M, Schneider J. Crystal structure development during devitrification of quenched mullite [J]. J. Eur. Ceram. Soc, 2001, 21(14):2541-2562.
    [126] Dias a G, Lopes M A, Gibson I R,et al. In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization [J]. J. Non-Cryst.Solids, 2003, 330(1-3): 81-89.
    [127] Yasukawa K, Terashi Y, Nakayama A. Crystallinity analysis of glass-ceramics by the rietveld method [J]. J. Am. Ceram. Soc, 1998, 81(11):2978-2982.
    [128] 杨觉明,郭振琪.钡长石中六方相与单斜相相对含量的X-射线定量分析[J].西安工业学院学报,1998,18(4):300-305.
    [129] 罗澜,李家治.微晶玻璃晶体含量的K值法定量分析[J].西北轻工业学院学报,1989,7(2):10-15.
    [130] 何峰,袁坚,许超,等.烧结法装饰微晶玻璃的X射线研究[J].武汉工业大学学报,1997,19(4):50-53.
    [131] 杨觉明,张立同,周万城.X射线衍射法分析BAS(BaO-Al_2O_3-SiO_2)凝胶玻璃的等温结晶过程[J].西安工业学院学报,1995,15(2):88-93.
    [132] 曹伟红,徐本杰,徐浚.X射线衍射法测定结晶度的方法研究[J].浙江大学学报,1984,18(3):50-59.
    [133] Bansal N P. SiC fiber-reinforced celsian composites [R]. NASA TM-2003-212555, Cleveland: NASA, 2003.
    [134] Chen S,Ye F, Zhou Y.Low temperature hot-pressed BAS matrix composites reinforced with in situ grown Si_3N_4 whiskers [J]. Ceram.Int.,2002, 28(1):51-58.
    [135] 杨觉明,周万城,张立同.单斜钡长石作为晶种对BAS玻璃陶瓷相变的影响[J].西安工业学院学报,1998,18(1):40-45.
    [136] Chen M, Lee W E, James P F. Synthesis of monoclinic celsian glass-ceramic from alkoxides [J]. J. Non-Cryst. Solids, 1992, 147-148(1): 532-536.
    [137] Bahat D. Compositional study and properties characterization of alkaline earth feldspar glasses and glass-ceramics [J]. J. Mater. Sci., 1969, 4(10): 855-860.
    [138] Klingsberg C. Bubble-Induced nucleation and crystal growth in glass [J]. J. Am.Ceram. Soc, 1964,47(2): 97-100.
    [139] Drummond Iii C H. Glass formation and crystallization in high-temperature glass-ceramics and Si_3N_4 [J].J.Non-Cryst. Solids, 1990, 123(1-3):114-128.
    [140] Griggs J A, Anusavice K J, Mecholsky J J, Jr. Devitrification and microstructural coarsening of a fluoride-containing barium aluminosilicate glass [J]. J. Mater. Sci., 2002, 37(10): 2017-2022.
    [141] Griggs J A. Dominant toughening mechanisms in barium aluminosilicate(BAS) glass-ceramics [D]. Gainesville: The University of Florida, 1998.
    [142] Lee K T. Studies of hexacelsian and celsian barium aluminosilicates [D].Arlington: The University of Taxas, 1998.
    [143] 杨觉明,周万城,包小平,等.成分对BAS(BaAl_2Si_2O_8)凝胶玻璃形成的影响[J].无机材料学报,2003,18(6):1187-1191.
    [144] 王承遇,陶瑛.玻璃成分设计与调整[M].北京:化学工业出版社,2006:127-136.
    [145] Verne E, Defilippi R, Carl G, et al.Viscous flow sintering of bioactive glass-ceramic composites toughened by zirconia particles [J]. J. Eur. Ceram.Soc, 2003,23(5): 675-683.
    [146] 史可顺.氧化锆增韧陶瓷及其进展[J].硅酸盐通报,1988,7(1):47-57.
    [147] 程慷果,万菊林,梁开明.氧化锆增韧微晶玻璃的制备[J].硅酸盐学报,1998,26(3):365-368.
    [148] 胡安民,梁开明,周锋,等.形核剂对Li_2O-Al_2O_3-SiO_2系微晶玻璃晶化过程的影响[J].无机材料学报,2005,20(2):279-284.
    [149] 迟云山,沈菊云,陈学贤.MgO-Al_2O_3-SiO_2微晶玻璃的IR、DTA和XRD研究[J].无机材料学报,2002,17(1):45-50.
    [150] Lin C C, Shen P,Chang H M, et al. Composition dependent structure and elasticity of lithium silicate glasses: Effect of ZrO_2 additive and the combination of alkali silicate glasses [J]. J. Eur.Ceram.Soc, 2006, 26(16): 3613-3620.
    [151] 田清波,王玥,尹衍升.氧化锆含量对SiO_2-MgO-Al_2O_3-K_2O-ZrO_2-F玻璃析晶性能的影响[J].硅酸盐学报,2005,33(2):245-248.
    [152] Cheng Z, Ozawa K, Osada M, et al. Low-temperature synthesis of NaNbO_3 nanopowders and their thin films from a novel carbon-free precursor [J]. J. Am.Ceram. Soc, 2006, 89(4):1188-1192.
    [153] Xavier Ramis,Josep M S. Time-temperature transformation (TTT) cure diagram of an unsaturated polyester resin [J]. J. Polym.Sci, Part B:Polym.Phys, 1997,35(2): 371-388.
    [154] Yuan Z Z, Chen X D, Xu H, et al Crystallization kinetics of ultrafine Co_(74.4)B_(25.6) amorphous powder prepared by chemical reduction [J]. J. Alloys Compd, 2006,422(1-2): 109-115.
    [155] Prasad N S, Varma K B R. Crystallization kinetics of the LiBO_2-Nb_2O_5 glass using differential thermal analysis [J]. J. Am. Ceram. Soc, 2005, 88(2):357-361.
    [156] Yinnon H, Uhlmann D R. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part Ⅰ:Theory [J]. J.Non-Cryst. Solids, 1983, 54(3): 253-275.
    [157] Francis a A, Rawlings R D, Sweeney R,et al.Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass [J]. J.Non-Cryst. Solids, 2004, 333(2):187-193.
    [158] Henderson D W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J]. J. Non-Cryst. Solids, 1979, 30(3): 301-315.
    [159] Gotor F J, Criado J M, Malek J. Limitations of the Augis and Bennett method for kinetic analysis of the crystallization of glasses and conditions for correct use[J].J.Am.Ceram. Soc, 2001, 84(8): 1797-1802.
    [160] Huang H, Gu L X, Ozaki Y. Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol) [J]. Poly,2006,47(11):3935-3945.
    [161] Hong J H, Yi T Y, Min J, et al. Preparation, thermal decomposition and lifetime of Eu(#####)-phenanthroline complex doped xerogel [J]. Thermochim. Acta, 2006,440(1): 31-35.
    [162] Silva D V,Ribeiro C A, Crespi M S.Crystallization kinetic of fluorozirconate glasses by non-isothermal analysis [J]. J. Therm. Anal. Calorim., 2003, 72(1):151-157.
    [163] Malek J,Cernoskova E, Svejka R,et al. Crystallization kinetics of Ge_(0.3)Sb_(1.4)S_(2.7) glass [J]. Thermochim. Acta, 1996, 280-281(1): 353-361.
    [164] Gu J C, Ye F, Zhou Y, et al.Microstructure and mechanical properties of SiC platelet reinforced BaO-Al_2O_3-2SiO_2 (BAS) composites [J].Ceram.Int.,2000,26(8): 855-863.
    [165] 孙义传.氮气中烧结的厚膜介质浆料[J].电子元件与材料,1990,9(4):38-41.
    [166] 魏启甫,孟庆鼐,郑建彬.LTCC及其在三维微波集成电路中的应用[J].微波学报,2005,21(5):58-62,70.
    [167] 陶先志.增加厚膜导体附着力[J].混合微电子技术,2004,15(1):41-42,36.
    [168] 姚晓明.用流延法生产优质Al_2O_3陶瓷基板[J].电子元件与材料,1994,13(4):59-62.
    [169] 王吉刚.氧化铝陶瓷基板工艺研究[J].山东陶瓷,2005,28(5):9-12.
    [170] 许丽清,朱宏.应用于氧化铝共烧基板的厚膜钨导体浆料[J].电力标准化与计量,2003,12(2):37-41.
    [171] 堵永国,张为军,胡君遂,等.基于不锈钢基板的厚膜电子浆料及大功率电热电阻元件[J].混合微电子技术,2003,14(3):109-116,152.
    [172] Egawa I,Tanaka T, Inokuma T.Study of thick film on stainless steel board [A].Proceedings of the 1984 International Symposium on Microelectronics [C],Dallas, TX, USA, 1984. 202-204.
    [173] Gandurska J, Sniezynska I, Marek A, et al Insulating layers on stainless steel substrates for high power circuits [J]. Elek, 2005,46(4):18-20.
    [174] Ohhashi N, Kasahara A, Yashiro T, et al. Reaction between dielectric and metal sunstrate for hybrid module [A].Int Soc for Hybrid Microelectronics,Reston, VA, USA [C], Anaheim, CA, USA, 1985. 360-365.
    [175] Thorp J S, Akhtaruzzaman M, Logan E A, et al.The dielectric properties of glass-ceramic-on-metal substrates for microelectronics packaging [J]. J. Mater.Sci., 1991, 26(19): 5367-5373.
    [176] Jacq C, Maeder T,Vionnet S,et al.Low-temperature thick-film dielectrics and resistors for metal substrates [J]. J. Eur. Ceram.Soc, 2005, 25(12): 2121-2124.
    [177] 张为军,堵永国,胡君遂.不锈钢基厚膜介质浆料烧结致密化研究[J].电子元件与材料,2006,25(4):33-35.
    [178] Nagakane T, Sakamoto A, Kitamura N, et al. Effect of high-pressure on crystallization of Li_2O-Al_2O_3-SiO_2 glass [A]. Proceedings of SPIE-The International Society for Optical Engineering [C], Shanghai, China, 2002.181-185.
    [179] 王艳丽,沈菊云,缪之训.添加铅硅玻璃对烧结堇青石基微晶玻璃性能的影响[J].无机材料学报,2001,16(3):405-409.
    [180] 孙方明,隋梅.密度测量在Li_2O-Al_2O_3-SiO_2系低膨胀微晶玻璃研究与生产控制中应用的若干讨论[J].玻璃与搪瓷,1995,23(2):11-15,48.
    [181] Kemethmuller S, Roosen A, Goetz-Neunhoeffer F, et al. Quantitative analysis of crystalline and amorphous phases in glass-ceramic composites like LTCC by the rietveld method [J]. J. Am. Ceram. Soc, 2006, 89(8): 2632-2637.
    [182] Tkalcec E, Kurajica S, Ivankovic H. Crystallization behavior and microstructure of powdered and bulk ZnO-Al_2O_3-SiO_2 glass-ceramics [J]. J. Non-Cryst. Solids,2005, 351(2): 149-157.
    [183] Gyekenyesi a L, Morscher G N, Cosgriff L M. In situ monitoring of damage in SiC/SiC composites using acousto-ultrasonics [J]. Composites Part B, 2006,37(1): 47-53.
    [184] Morscher G N, Yun H M, Dicarlo J A. Matrix cracking in 3D orthogonal melt-infiltrated SiC/SiC composites with various Z-Fiber types [J]. J. Am.Ceram. Soc, 2005, 88(1): 146-153.
    [185] Ogbuji L. Pest-resistance in SiC/BN/SiC composites [J]. J. Eur. Ceram. Soc,2003, 23(4): 613-617.
    [186] Morscher G N, Gyekenyesi a L. The velocity and attenuation of acoustic emission waves in SiC/SiC composites loaded in tension [J]. Compos. Sci.Technol., 2002, 62(9): 1171-1180.
    [187] Morscher G N, Cawley J D. Intermediate temperature strength degradation in SiC/SiC composites [J]. J. Eur. Ceram. Soc, 2002, 22(14-15): 2777-2787.
    [188] Raether F, Meinhardt J, Kienzle A. Oxidation behaviour of carbon short fibre reinforced C/SiC composites [J]. J. Eur.Ceram.Soc, 2007, 27(2-3): 1217-1221.
    [189] Argirusis C, Damjanovic T, Borchardt G. Yttrium silicate coating system for oxidation protection of C/C-Si-SiC composites: Electrophoretic deposition and oxygen self-diffusion measurements [J]. J. Eur. Ceram. Soc, 2007, 27(2-3):1303-1306.
    [190] Kurihara R, Ueda S, Nishio S, et al. Fracture mechanics evaluation of a crack generated in SiC/SiC composite first wall [J]. Fusion Eng. Des., 2001, 54(3-4):465-471.
    [191] 姚亚东,温海明,董绍明,等.碳/碳化硅复合材料上莫来石涂层的制备及氧化行为[J].硅酸盐学报,2007,35(3):322-326.
    [192] 梅辉,成来飞,张立同,等.2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征[J].硅酸盐学报,2007,35(2):137-143.
    [193] Liedtke V, Olivares I H, Langer M, et al. Manufacturing and performance testing of sol/gel based oxidation protection systems for re-usable space vehicles [J]. J. Eur. Ceram. Soc, 2007, 27(2-3): 1493-1502.
    [194] 魏玺,成来飞,张立同,等.Comparative modeling of gas transport in isothermal chemical vapor infiltration process of C/SiC composites[J].中国有色金属学会会刊:英文版,2006,16(B02):608-612.
    [195] 韩秀峰,张立同,成来飞,等.基体改性对碳纤维增韧碳化硅复合材料结构与性能的影响[J].硅酸盐学报,2006,34(7):871-874.
    [196] Xiong J T, Li J L, Zhang F S, et al. Joining of 3D C/SiC composites to niobium alloy [J]. Scripta Mater, 2006, 55(2): 151-154.
    [197] Wu S J, Cheng L F, Zhang L T, et al Comparison of oxidation behaviors of 3D C/PyC/SiC and SiC/PyC/SiC composites in an O_2-Ar atmosphere [J]. Mater. Sci.Eng.,B,2006, 130(1-3): 215-219.
    [198] Odeshi a G, Mucha H, Wielage B. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite [J]. Carbon, 2006,44(10): 1994-2001.
    [199] Mei H, Cheng L F, Zhang L T,et al. Behavior of two-dimensional C/SiC composites subjected to thermal cycling in controlled environments [J]. Carbon,2006,44(1): 121-127.
    [200] Luan X G, Cheng L F, Zhang L T. Life prediction of 3D woven C-SiC composites at high temperatures with low-frequency cyclic stresses [J]. J.Compos. Mater., 2005, 39(13):1195-1202.
    [201] Schmidt S, Beyer S, Knabe H,et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications [J]. Acta Astronaut., 2004, 55(3-9): 409-420.
    [202] Liu C G, Chen J, Han H Y, et al. A long duration and high reliability liquid apogee engine for satellites [J]. Acta Astronaut., 2004, 55(3-9): 401-408.
    [203] Cheng L F, Xu Y D, Zhang L T, et al. Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites [J]. Carbon, 2002, 40(12):2229-2234.
    [204] Cheng L F, Xu Y D, Zhang L T, et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air [J]. Carbon, 2001, 39(8):1127-1133.
    [205] Rak Z S. A process for C_f/SiC composites using liquid polymer infiltration [J]. J.Am. Ceram.Soc, 2001, 84(10): 2235-2239.
    [206] Oh B J, Lee Y J, Choi D J, et al. Fabrication of carbon/silicon carbide composites by isothermal chemical vapor infiltration, using the in situ whisker-growing and matrix-filling process [J]. J. Am. Ceram. Soc, 2001, 84(1):245-247.
    [207] Huang Z M. Mechanical properties of composites reinforced with woven and braided fabrics [J]. Compos. Sci. Technol.,2000,60(4): 479-498.
    [208] Paris J Y, Vincent L, Denape J. High-speed tribological behaviour of a carbon/silicon-carbide composite [J]. Compos. Sci. TechnoL, 2001, 61(3):417-423.
    [209] Krenkel I W, Carbon fibre reinforced silicon carbide composites (C/SiC,C/C-SiC) [A]. In: Bansal N P ed. Handbook of ceramic composites [M]. Boston:kluwer academic publishers, 2005. 117-148.
    [210] Chand S. Carbon fibers for composites [J]. J. Mater. Sci., 2000, 35(6):1303-1313.
    [211] 邹世钦,张长瑞,周新贵,等.碳纤维增强陶瓷基复合材料抗氧化涂层研究进展[J].宇航材料工艺,2003,33(6):16-20.
    [212] 郭全贵,宋进仁.碳材料高温氧化防护陶瓷涂层体系研究进展[J].宇航材料工艺,1998,28(2):11-16.
    [213] 邹世钦,张长瑞,周新贵,等.C_f/SiC复合材料抗氧化涂层的制备及性能[J].国防科技大学学报,2004,26(4):57-61.
    [214] 刘荣军,周新贵,张长瑞,等.包渗法制备C_f/SiC陶瓷基复合材料MoSi_2-SiC-Si防氧化涂层[J].宇航材料工艺,2000,30(3):45-48.
    [215] Tai N H, Chen C F. Nanofiber formation in the fabrication of carbon/silicon carbide ceramic matrix nanocomposites by slurry impregnation and pulse chemical vapor infiltration [J].J.Am.Ceram.Soc, 2001, 84(8): 1683-1688.
    [216] 邹世钦,张长瑞,周新贵,等.C_f/SiC复合材料抗氧化涂层的制备、性能与保护机理[J].硅酸盐学报,2005,33(7):811-816.
    [217] 曾燮榕,李贺军,侯晏红,等.MoSi_2-SiC抗氧化涂层对碳/碳复合材料弯曲性能的影响[J].复合材料学报,2000,17(2):46-49.
    [218] 吴守军,成来飞,张立同,等.化学气相沉积碳化硅涂层缺陷形成的机制及控制[J].硅酸盐学报,2005,33(4):443-446.
    [219] 索相波,陈朝辉,王松,等.聚硅氧烷封孔处理对C_f/SiC复合材料抗氧化性能的影响[J].航空材料学报,2004,24(6):34-37,46.
    [220] 索相波.C_f/SiC复合材料高温抗氧化涂层研究[D].长沙:国防科学技术大学,2004.
    [221] Spitsberg I, Steibel J. Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications [J]. International Journal of Applied Ceramic Technology, 2004,1(4): 291-301.
    [222] 魏玺.3D C/SiC复合材料氧化机理分析及氧化动力学模型[D].西安:西北工业大学,2004.
    [223] 杨光.MgO-Al_2O_3-SiO_2系低温共烧陶瓷生带的制备及其性能研究[D].长沙:国防科学技术大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700