用户名: 密码: 验证码:
南极假丝酵母脂肪酶B在毕赤酵母细胞表面高效展示体系的构建与定向进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基因工程的发展,微生物细胞表面展示系统已发展出噬菌体展示系统、细菌表面展示系统、酵母表面展示系统等,广泛应用在生物学研究的许多领域,例如研究蛋白质-蛋白质之间的相互识别与相互作用、由多肽构象或蛋白质突变库中获取特定功能蛋白、生产抗体、生产口服疫苗、开发全细胞催化剂、开发生物传感器和开发细胞吸附剂等等,由此成为最近几年生物技术领域的研究的热点之一
     毕赤酵母(Pichia pastoris)表达系统是近年来发展迅速、应用广泛的一种真核表达系统,被认为是微生物表面展示系统极有应用前景的宿主菌之一。目前已有的毕赤酵母表面展示系统主要是利用来自酿酒酵母Flol蛋白的絮凝结构域为锚定蛋白将外源蛋白展示于菌体表面,融合蛋白非共价连接于毕赤酵母细胞壁上。为进一步的丰富毕赤酵母展示系统,并应用于南极假丝酵母脂肪酶B,本论文一方面通过构建不同锚定蛋白的毕赤酵母展示体系来筛选高活力的脂肪酶全细胞催化剂,另一方面利用定向进化技术来提高脂肪酶的热稳定性和活性,并应用于非水相中短链脂肪酸酯的合成,拟降低脂肪酶酯化合成的成本,为其大规模的工业应用奠定基础,具体的研究内容如下:
     1、α凝集素和絮凝素展示体系的构建
     本研究首先构建了α-凝集素与絮凝素C端GPI锚定的两个新型的酵母表面展示载体,结合本实验室已构建的絮凝素N端展示载体;并以南极假丝酵母脂肪酶B作为研究对象对构建的展示体系进行验证分析,采用脂肪酶的水解活力和FLAG标签蛋白标记等手段来分析目的蛋白在酵母细胞壁的锚定情况。将经平板与荧光验证的阳性重组子进行摇瓶发酵得到3种脂肪酶全细胞催化剂,分别为KNS-CALB、KFS-CALB和KFL-CALB,进一步的对其进行了酶学性质的分析。结果表明:KFS-CALB在水解活力达到270U/g dry cell和耐热性方面保温2h后的残留酶活力是最大酶活的50%以上,KNS-CALB的水解活力为200U/g dry cell,60℃保温的半衰期为1h; KFL-CALB的的水解活力为170U/g dry cell,60℃保温的半衰期为0.5h耐热性相对较差。
     2、新的Pir型和GPI型毕赤酵母展示CALB体系的构建
     本研究克隆了来自酿酒酵母的Pir蛋白的成熟肽基因Pirl和Pir4,以及GPI型的Sedl蛋白的全基因序列,连接入毕赤酵母分泌表达载体pPIC9K中,构建3种不同的毕赤酵母细胞表面展示通用载体pKPir1、pKPir4和pKSedl,利用α-factor信号肽将蛋白引导分泌至细胞外。再以带有FLAG标签的南极假丝酵母脂肪酶B蛋白的C末端同3种锚定蛋白N端融合,并利用免疫荧光显微镜检测,证明新构建的毕赤酵母展示通用载体是成功的。蛋白电泳和Western blot初步证明了融合蛋白Sedl-CALB可被温和碱从细胞壁中抽提,进一步的证明成功的构建了毕赤酵母展示载体。
     3、脂肪酶CALB的定向进化
     本研究利用易错PCR的方法对CALB进行随机突变,利用三丁酸甘油酯乳化平板和96孔平板高通量酶活筛选的方法对约2000个酵母重组子进行筛选并得到了一株活力提高的菌株;经测序研究发现有4个氨基酸发生突变(Thr57Ala、Ala87Thr、Arg168Lys和Gly226Arg),其水解活力提高了1倍。利用生物信息学分析发现其突变位点的空间结构位于活性中心附近,可能有利于其同相关底物的结合,进而提高了其水解活性。
     同时,利用定靶位点区域饱和突变的方法,并基于毕赤酵母展示技术对脂肪酶CALB进行了定向进化与改造研究。在60℃下三丁酸甘油酯乳化平板对大约5000个酵母重组突变子进行了筛选并得到2株产脂肪酶热稳定性较高的菌株,测序发现其中一个突变菌株mCALB7有7个氨基酸(Pro218Asn, Leu219Lys, Phe220Thr, Val221Ser, Leu278Gly, Ala279Met和Ala281Ile)发生突变,其在60℃保温的半衰期提高了1倍。mCALB168中也有3个氨基酸(Thr57Ala、Ala87Thr和Arg168Lys)突变产生,其在60℃保温的半衰期提高了约2倍。进一步的利用其模拟的空间结构分析发现2个突变子的分别有3和4个氢键的增加,酶性质分析其原因可能是突变子热稳定性提高的一个重要原因。
     4、构建的毕赤酵母全细胞催化剂在非水相中合成活力的比较
     研究分析不同类型的锚定蛋白展示的CALB全细胞催化剂在非水相中催化合成短链脂肪酸酯,确定α凝集素展示的KNS-CALB菌株在合成活力方面的优势,并初步获得其在乙酸乙酯和丙酸乙酯合成方面优于商品化的同类型的脂肪酶。
     此外,还研究分析在水相中耐热性优良的突变子在有机相中的耐热稳定性,结果发现突变子的耐热性并没有显著的提高,说明定向改造的脂肪酶耐热性在水相中与有机相中并不体现一定的相关性。因此,有必要建立一种在有机相中高通量筛选耐热性突变子的方法体系,为脂肪酶在有机合成中的应用奠定基础。
With the application of recombinant DNA technology, microbial cell-surface display systems have been used in various microorganisms, such as in bacteria, in phage and especially in yeast. Microbial cell-surface display system has been widely used in biotechnologieal research and industrial applications, including:identifying Protein-Protein inieraetions, displaying polypeptide libraries as selection devices, mapping functional protein epitopes, immobilizing proteins and enzymes as whole-cell biocataysts, producing antibodies and live vaccines, making bioadsorbents for the removal of harmful chemicals and heavy metals, therefore, which has becoming a research hotspot in the field of biotechnology in recent years.
     The lipase B from Candida antarctica is one of a very important lipase, which have some good propertirs of biocatalysis and postion selection. In this paper, we cloned the gene calb and expressed the functional protein in Pichia pastoris systems including the P. pastoris cell-surface display system. The methylotrophic yeast is a sigal-cell eukaryote microorganism and has been widely used to express various recombinant proteins for both basic laboratory research and industrial manufacture. It became a host for cell-surface display system. For the rich yeast display system, using P. pastoris cell-surface to display Candida antarctica lipase B. While this papper by constructing different yeast cell-surface diplay system by various anchor proteins, then, using these systems to screen of some higher activity whole-cell catalysts. On the other hand, using directed evolution technology to improve the thermal stability and activity, furthermore, using the whole-cell biocatalysts to synthsize the short chain fatty acid esters in non-aqueous phase. And then to lower the production cost of enzyme preparation for its large-scale lay the foundation for industrial applications. Specific study as follows:
     PartⅠConstructing and comparing the yeast display systems by usingα-agglutinin and flocculation functional domain(flolp)
     This part constructed two new type yeast display systems, including theα-agglutinin system and flolp system in Phichia pastoris cell surface. Combined with Our laboratory had constructed the FS system. Then using the lipase B from Candida antarctica as a model protein to check the 3 dispalying vectors in yeast. Lipase hydrolysis activity and FLAG tags and other means to detect the protein in the yeast cell wall anchoring conditions. FLAG tag sequence and the N-terminal protein CALB fusion, when the recombinant yeast cells can be detected when the green fluorescent CALB has been successfully verified the anchoring on the surface. Will be verified by the positive plate and the fluorescent recombinant shake flask fermentation by three kinds of whole-cell catalyst, was carried out further analysis of enzymatic properties.
     Part II Constructing and analysizing the Pir-type and GPI-type displaying CALB on Pichia cell surface
     This part has cloned the gene Pir1, Pir4 and Sedl from Saccharomyces cerevisiae and ligated into Pichia pastoris expression vectors pPIC9K to construct 3 different yeast cell surface display systems, namely, pKPirl, pKPir4 and pKSed1 which all using-factor secretion signal peptide. Then tagged with a FLAG Candida antarctica lipase B protein with three kinds of C-terminal N-anchored fusion protein and used immunofluorescence microscopy, that the newly constructed yeast display common carrier is successful. Protein electrophoresis and Western blot demonstrated an initial Sedl-CALB fusion protein can be mild-alkali extraction from the cell wall, further evidence of the successful construction of a yeast display system.
     Part III Improving the thermostability and activity of lipase CALB by use of directed evolution technology
     Using the method of error-prone PCR to random mutation CALB,then, using 96 plate high-throughput screening method of activity of about 2,000 recombinant yeasts. The outcome of screening is obtained a strain which has higher hydrolytic activity than the wild type lipase.The sequence of the mutant was found 4 amino acids mutant (Thr57Ala、Ala87Thr Arg168Lys and Gly226Arg), using bioinformatics analysis shows that the spatial structure of point mutations around the active site, which may be beneficial to its combination with the relevant substrate, thereby improving its hydrolytic activity.
     Then, using target sites of regional saturation mutagenesis in the yeast cell-surface system, the lipase CALB was redesigned by using directed evolution technology. At 60℃,using tributyrin emulsion plate reorganization of about 5,000 yeast mutants were screened and received two higher thermal stability of lipase producing strains. Sequencing indicated that KFS-mCALB7 mutation of 7 amino acids (Pro218Asn,Leu219Lys,Phe220Thr, Val221Ser,Leu278Gly,Ala279Met and Ala281Ile),KFS-mCALB168 also has three amino acid (Thr57Ala, Ala87Thr and Arg168Lys) mutations arise. Further use of its simulation of the spatial structure analysis revealed that two strains were 3 and 4 hydrogen bonds increases, which may be mutants of thermal stability is an important reason.
     Part IV Comparing the yeast whole-cell catalysts in non-aqueous synthetic activity
     This section, we analyzed the different types of anchoring proteins CALB-displayed whole-cell catalysts in non-aqueous phase, which can catalyze the synthesis of short chain fatty acid ester. The data shows the KNS-CALB strain that has advantage in the synthesis and initial access to ethyl acetate. Some synthetic activty of KNS-CALB is superior to the commercialization of the same type of lipase. In addtion, in the aqueous phase of the excellent heat-resistant mutants in the organic phase of thermal stability of the mutants were found that the thermostability has no significant increase. The outcome indicated that directional transformation of thermal lipase in the aqueous phase does not reflect the organic phase with a certain correlation. Therefore, it is necessary to establish a high-throughput screening in the organic phase, thermal mutants of the methodology for lipase in organic synthesis basis.
引文
[1]Smith GP Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface.[J] Science 1985,228:1315-1317
    [2]Sang Yup lee, Jong Hyun Choi and Zhaohui Xu Microbial cell-surface display [J] Ternds in biotechnology,2003,21:45-52
    [3]Cabilly S The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries. [J] Molecular Biotechnol,1999,12:143-148
    [4]Charbit A, Boulain JC, Ryter A, et al. Probing the topology of a baeterial membrane protein by genetic insertion of a foreign epitope:expression at the cell surface. [J] Embo, 2007,5:3029-3037
    [5]He M, Taussig M J. Ribosome display of antibodies:expression, specificity and recovery in a eukaryotic system. [J] Immunol Methods,2005,297:73-82
    [6]Watari,J.;Takata,Y.;Ogawa,M.;Sahara,H.;Koshino,S.;Onnela,ML,Airaksinen,U Jaatinen, R; Penttila, M;Keranen, S. Molecular cloning and analysis of the yeast flocculation gene FLO1. [J] Yeast,1994,10:211-225.
    [7]Lipovsek D, Antipov E, Armstrong KA, et al. Selection of horseradish peroxidase varints with enhanced enantioselectivity by yeast surface display[J].Chem Biol,2007,14:1176-11
    [8]Fukuda N, Ishii J, Shibasaki S, et al. High-efficiency recovery of target cells using improved yeast display system for detection of protein-protein interactions. Appl Microbiol Biotechnol,2007,176:151-158
    [9]Lin Y, Tsumuraya T, Wakabayashi T, et al. Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol,2003,2:226-232
    [10 Lee JS, Shin KS, Pan JG, et al.Surface-displayed viral antigens on Salmonella carrier vaccine. [J] Nat Biotechnol,2000,18:645-648
    [11]Kato M, Fuehimoto Tanino T, et al. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipaseB (mCALB) by a yeast molecular display system and its practical properties. [J]Appl Microbiol Biotechnol,2007,75:549-555
    [12]Shibasaki S, Ueda M, Ye K.et al Creation of cell surfaee-engineered yeast that display different fluorescent proteins in response to the glucose concentration. [J] Appl Microbiol Biotechnol,2000,57:528-53
    [13]Bae W, Mulehandani A and Chen W. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaceumulation. [J]Inorg Bioehem,2002,88:223-227
    [14]Li, M. Applications of display technology in protein analysis. [J]Nat.Biotechnol,2000, 18:1251-1256
    [15]薛双,董加才,吴青,陈圆圆,杨霞,刘红英,陈陆,王川庆.微生物表面展示技术的发展及应用.[J]上海畜牧兽医通讯,2008,3:50-51
    [16]Westerlund-Wikstrom, B. et al. Functional expression of adhesive peptides as fusions to Escherichia coli flagellin.[J] Protein Eng,1997,17:1319-1326
    [17]Mitsuyoshi Ueda. Novel high-throughput system for production of new medicines-integ-ration and combination with molecular display and combinatorial bioengineering[J] The Pharmaceutical Society of Japan,2009,129(11):1277-1284
    [18]Van der Vaart J.M, Biesebeke R., Chapman J.W., et al. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins[J]. Appl Environ Microbiol,1997,63:615-620
    [19]Tang Y.Q., Han S.Y., Zheng H., et al. Construction of cell surface-engineered yeasts displaying antigen to detect antibodies by immuno-fluorescence and yeast-ELISA. [J]. Appl Microbiol Biotechnol,2008,79:1019-1026
    [20]Mergler M., Wolf K., Zimmermann M. Development of a bisphenol A-adsorbing yeast by surface display of the Kluyveromyces yellow enzyme on Pichia pastoris. [J]. Appl Microbiol Biotechnol,2004,63:418-421
    [21]Tanino T., Fukuda H., Kondo A. Construction of a Pichia pastoris cell-surface display system using Flolp anchor system. [J]. Biotechnol Prog,2006,22:989-993
    [22]Han ZL., Han SY., Zheng SP. et al. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. [J]. Appl Microbiol Biotechnol,2009,85:117-126
    [23]Kondo A and Ueda M. Yeast cell-surface display-applications of molecular display. [J]. Appl Microbiol Biotechnol,2004,64:28-40
    [24]Moniijn RC, van Rinsum J, van Sehagen FA, et al. Glucomarmoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side chain. [J].Biol Chem,269:19338-19342
    [25]Sumita T, Yoko-o T., Shimma Y, et al. Comparison of cell wall localization among Pir family Proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pirlp. [J] Eukaryot Cell,2005,4:1872-1881
    [26]Takanori Tanino., Takumi Ohno., Tohru Aoki., et al. Development of yeast cells displaying Candida antarctica lipaseB and their application to ester synthesis reaction. [J]. Appl Microbiol Biotechnol,2007,75:1319-1325
    [27]Takayama K,Suye S-I,Kuroda K,Ueda M,Kitaguchi T,Tsuchiyama K,Fukuda T,Chen W, Mulchandani A:Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. [J]Biotechnol Prog 2006,22:939-943
    [28]Breinig F,Diehl B,Rau S,Zimmer C,Schwab H,Schmitt MJ:Cell surface expression of bacterial esterase a by Saccharomyces cerevisiae and its enhancement by constitutive activation of the cellular unfolded protein response. [J]. Appl Environ Microbiol 2006, 72:7140-7147
    [29]Shim J-H, Seo N-S, Roh S-A, Kim J-W, Cha H,Park K-H:Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase. [J].Agric Food Chem,2007,55:4735-4740.
    [30]Shibasaki S,Ninomiya Y,Ueda M,Iwahashi M,Katsuragi T,Tani Y,Harashima S,Tanaka A. Intelligent yeast strains with the ability to self-monitor the concentrations of intra-and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. [J]Appl Microbiol Biotechnol.,2001,57(5):702-707
    [31]Chao G., Cochran J.R., Dane Wittrup K. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. [J]. Mol Biol,2004,342:539-550
    [32]Shusta EV,Kieke MC,Parke E,Kranz DM,Wittrup KD:Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. [J]. Mol Biol 1999,292:949-956
    [33]Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA,Marks JD:Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. [J] Mol Biol 2007,365:196-210
    [34]Schreuder M.P., Deen C., Boersma W.J.A., Pouwels P.H., Klis F.M., Yeast expressing hepatitis B virus surface antigen determinants on its surface:implications for a possible oral vaccine. [J], Vaccine,1996,14:383-388
    [35]Zhu K.L., Chi Z.M., Li J.The surface display of haemolysin from Vibrio harveyi on yeast cells and their potential applications as live vaccine in marine fish. [J].Vaccine,2006,24: 6046-6052
    [36]Kuroda K, Ueda M. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. [J] Appl Microbiol Biotechnol 2006,70:458-463
    [37]Fujita Takahashi s, Ueda M, et al. Direct and effieient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. [J].Appl Environ Microbiol,2002,68:5136-5141
    [38]Maeauley-Patriek S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system. [J]Yeast 2005,22:249-270
    [39]S.Annie Gai, K.Dane Wittrup.Yeast surface display for protein engineering and Characterization. [J]Current Opinion in Structural Biology,2007,17:467-473
    [40]Ho M, Nagata S, Pastan I:Isolation of anti-CD22 Fv with high affinity by Fv display on human cells [J].Proc Natl Acad Sci USA 2006,103:9637-9642
    [41]张树政.酶制剂工业[M].北京:科学出版社.1984:655-668
    [42]Gupta R., Gupta N., Rathi P. Bacterial lipases:an overview production, purification and biochemical properties [J]. Appl Microbiol Biothchnol,2004,64:763-781
    [43]Semli B., Gontier E., Ergan F., Thomas D. Effects of fatty acid chain length and unsaturation number on triglyceride synthesis catalyzed by immobilized lipase in solvent-free medium [J]. Enzyme Micro Technol,1998,23:182-186
    [44]Xu XB., Production of specific-structured triacylglycerols by lipase-catalysed reactions: a review [J]. Eur J Lipid Sci Technol,2000,102:287-303
    [45]Jaeger KE, Eggert T. Lipase for biotechnology [J]. Curr Opin Biotechnol,2002,13: 390-397
    [46]Lo SK., Baharin BS., Tan CP., et al. Enzyme-catalyzed production and chemical composition of diacylglycerols from corn oil deodoriser distillates [J]. Food Biotechnol, 2004, Letters,2004,18:265-278
    [47]Kohno M.,Kugimiya W., Hashimoto Y., Morita Y. Purification, charaeterization, and crystallization of two types of lipase from Rhizopus niveus [J]. Biosci Biotechnol Biochem,1994,58(6):1007-1012
    [48]Kugimiya W., Otani Y, Kohno M., Hashimoto Y Cloning and sequence analysis of cDNA encoding Rhizopus niveus lipase [J].Biosci Biotechnol Biochem,1992,56:716-719
    [49]Hiol, A., Jonzo, M.D., Comea U. L. Production, purification and charaeterization of an extracellular lipase from Rhizomucor miehei [J]. Enzyme Micro Technol,1999,25:80-87
    [50]Hiol,A., Jonzo, M.D., Rugani, N., Druet, D., Sarda, L., Comea L.U., Purification and charaeterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit [J]. Enzyme Micro Technol,2000,26:421-430
    [51]Lopze,C.,Guerra,N.P., Rua, M.L., Purification and characterization of 2 isoforms from Candida rugosa lipase-B[J].Biotechnol.Lett,2000,22:1291-1294
    [52]Uppenberg J, Hansen MT, Patkar S, Jones TA. The sequence, crystal structure determination and refinement of two crystal forms of lipaseB from Candida antarctica. [J].Structure,1994,2:293-308
    [53]Brozozowski, A. M., U. Derwenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. uge-Jensen, S. A. Patkar and L,Thim. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. [J].Nature,1991,351:491-494
    [54]Jaeger, K-E and M.T. Reetz. Microbial lipases form versatile tools for biotechnology. [J].Trends Biotechnol,1998,16:396-403
    [55]Schmid, R.D. and R. Verger. Lipases:interfacial enzymes with attractive applications. [J].Angew Chem Int Ed,1998,37:1608-1633
    [56]Petersen, S. B. and F. Drabls. A sequence analysis of lipases, esterases and related protein [J].Lipases,1994,23-48
    [57]Benjamin, S. and A. Pandey. Candida rugosa lipases:molecular biology and versatility in biotechnology [J]. Yeast,1998,14:1069-1087
    [58]Pandey, A., S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger and V.T. Soccol. The realm of microbial lipases in biotechnology [J].Biotechnol Appl Biochem,1999,29:119-131
    [59]Inaba, C., K.Maekawa, et al. Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B(CALB)-displaying yeasts[J]. Appl Microbiol Biotechnol,2009, 83:859-864
    [60]Linko, Y.-Y., M.Lamsa, et al.Biodegradable products by lipase biocatalysis[J]. Biotechnol,1998,66(1):41-50.
    [61]Yasohara Y., Kizaki N., Miyamoto K., Enzymatically enantioselective hydrolysis of prochiral 1,3-diacyloxyglycerol derivatives [J].Biosci Biotechnol Biochem,2001,65 (9):2044-2049
    [62]Pabai F, Kermasha S, Morin A. Interesterfication of butter fatt by partially purified extracelluar lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae [J]. Word J. Microb,1995,11:669-677
    [63]Undurrage D, Markovits A, Erazo S. Cocoa butter equivalent through enzymic interesterfication of palm oil midfraction [J]. Process Biochem,2001,36:933-939
    [64]Kakugawa koji, Shoabysashi M, Suzuki O, Miyakawa T. Purification and characterization of a lipase from the Glycolipid-producing yeast Kurtzmanomyces sp. Ⅰ-11 [J]. Biosci Biotechnol Biochem,2002,6:978-985
    [65]谭天伟,王芳,邓立,徐家立,王丽娟.生物柴油的生产和应用[J].现代化工,2002,22(2):4-6
    [66]Rubin B, Dennis EA, editors. Lipases:Part B Enztme characterization and utilization methods in enzymology [J]. Academic Press in New York,1997,-563
    [67]Kazlauskas RJ, Bornscheuer UT. Biotransformatons with lipases. In:Rehm HJ, Pihler G, Stadler A, Kelly PJW, editors. [J]. Biotechnol,1998,37-192
    [68]Berglund P, Hutt K. Biocatalytic synthesis of enantiopure compounds using lipases. In. Patel RN, editor. Stereoselective biocatalysis. New York:Marcel Dekker 2000
    [69]Klibanov AM. Why are enzymes less active in organic solvents than in water[J]. Trends Biotech,1997,5:97-101
    [70]Vaysse L, Dubreucq E, Pirat JL, Galzy P. Fatty hydroxamic acid biosynthesis in aqueous medium in the presence of the lipase-acyl transferase from Candida parasilosis [J]. Biotech,1997,53:41-46
    [71]Gao Y, Tan TW, Nie KL & Wang F Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media[J] Sheng Wu Gong Cheng Xue Bao,2006,22:114-118
    [72]Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A & Fukuda H Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production[J]. Biosci Bioeng,2006,101:328-333
    [73]Mondal K, Mehta P, Mehta BR, Varandani D & Gupta MN. A bioconjugate of Pseudomonas cepacia lipase with alginate with enhanced catalytic efficiency[J] Biochim Biophys Acta,2006,17(64):1080-1086
    [74]Ban K, Kaieda M, Matsumoto T, Kondo A & Fukuda H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles[J]. Biochem Eng,2001,8:39-43
    [75]Fukuda H, Kondo A & Noda H. Biodiesel fuel production by transesterification of oils[J]. Biosci Bioeng,2001,92:405-416.
    [76]Matsumoto T, Takahashi S, Kaieda M, Ueda M, Tanaka A, Fukuda H & Kondo A. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production[J]. Appl Microbiol Biotechnol,2001,57: 515-520
    [77]Torres C, Otero C. Part Ⅲ, direct enzymatic esterification of lactic acid with fatty acids[J] Enzyme Microb Technol,2001,29(1):3-12
    [78]Senanayake S, Shahidi F. Incorporation of docosahexaenoic acid(DHA) into evening primrose(Oenothera biennis L.) oil via lipase-catalyzed transesterification[J]. Food Chem,2004,85(4):489-496
    [79]Gotor-Fernandez V, Busto E, Gotor V. Candida antarctica lipase B:an ideal biocatalyst for the preparation of nitrogenated organic compounds[J]. Advan synthe cataly,2006, 348:797-812
    [80]Lutz S. Engineering lipase B from Candida antarctica[J]. Tetrahedron Asymmetry,2004, 15:2743-2748
    [81]Arnold FH.Directed evolution:creating biocatalysts for the future.Chemical Engineering [J]. Science,1996,51:5091-5102
    [82]Turner NJ.Directed evolution of enzymes for applied biocatalysis. [J].Trends Biotechnol. 2003,21:474-478
    [83]Chica RA, Doucet N, Pelletier JN.Semi-rational approaches to engineering enzyme activity:combining the benefits of directed evolution and rational design. [J].Curr Opin Biotechnol.2005,16:378-384
    [84]Chaparro-Riggers JF, Polizzi KM, Bommarius AS. Better library design:data-driven protein engineering. [J] Biotechnol J.2007,2:180-191
    [85]You L, Arnold FH.Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide.[J].Protein Eng,1996,9:77-83
    [86]Caldwell RC, Joyee GF.Randomization of genes by PCR mutagenesis. [J].PCR Methods Appl.1992,2:28-33
    [87]Stemmer WPC.DNA shuffling by random fragmentation and reassembly in vitro recombination for molecular evolution [J]. Proc Natl Acad Sci,1994,91:747-751
    [88]Kikuchi M, Ohnishi K, Harayama S. Novel family shuffling methods for in vitro evolution of enzymes [J]. Gene,1999,236(1):159-167
    [89]Shao Z, Zhao H, Giver L, et al. Random priming in vitro recombination:an effective tool for directed evolution[J]. Nucleic Acids Res,1988,26:681-683
    [90]Matsuura T, Miyai K, Trakulnaleamsai S, et al. Evolutionary molecular engineering by random elongation mutagenesis [J]. Nat Biotechnol,1999,17(1):58-59
    [91]唐良华,夏黎明,苏敏.微生物分子改造脂肪酶研究进展[J].生物技术,2003,13:42-44
    [92]张浩.定点突变技术研究进展[J].免疫学杂志,2000,16:109-111
    [93]Manfred T Reetz, Jose Daniel Carballeila. Iterative saturation mutagenesis for rapid directed evolution of founctional enzymes[J]. Nat Biotechnol,2007,4:891-903
    [94]Zhang J, Campbell RE, Ting AY, et al. Creating new fluorescent probes for cell bology [J]. Nat RevMol CellBiol,2002,3(12):906-918
    [95]Soumillion P, Fastrez J. Novel concepts for selection of catalytic activity[J]. Currop in Biotechnol,2001,12(4):387-394
    [96]Schaffitzel C., Hanes J., Jermutus L.Ribosome display:an in vitro method for selection and evolution of antibodies from libraries[J]. Journal of Immunological Methods,1999, 231:119-135
    [97]Warren MS.,Marolewski AE.,Beukovic SJ.A rapid screen of active site mutants in glycinamide ribonucleotide.Biochem[J].1996,35:8855-8886
    [98]Becker S.Schmoldt HU,Adams TM,Wilhelm S,Kolmar H.Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts[J].Curr Opin Biotechnol.2004,15:323-329
    [99]Farinas ET.Fluorescence activated cell sorting for enzymatic activity.Comb Chem High Throughput Screen.2006,9:321-328
    [100]Eklund BI,Edalat M,Stenberg QMannervik B.Screening for recombinanAt glutathione transferases active with monochlorobimane[J].Anal Biochem.2002,309:102-108
    [101]Consuelo Garcia-Rodriguez, Raphael Levy, Joseph W.Arndt et al.Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin.[J].Nat Biotech,2007,25:107-116
    [102]Feldhaus M., Siegel R.Flow cytometric screening of yeast surface display libraries[J]. Methods Mol Biol,2004,263:311-332
    [103]Ueda M. Future direction of molecular display by yeast-cell surface engineering [J] Journal of Molecular Catalysis B-Enzymatic,2004,28 (4-6):139-143
    [104]Lydia Blaise, Anita Wehnert,Mieke P.G.Steukers et al.Construction and diversification of yeast cell surface displayed libraries by yeast mating:application to the affinity maturation of Fab antibody fragments[J].Gene,2004,342:211-218
    [105]Chao G., Cochran J.R., Dane Wittrup K. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display [J]. Mol Biol,2004,342:539-550
    [106]Pack SP, Park K, Yoo YJ. Enhancement of beta-glucosidase stability and cellobiose-usa-ge using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production [J]. Biotech Lett,2002,24 (22):1919-1925
    [107]Horswill AR, Naumann TA, Benkovic SJ.Using incremental truncation to create libraries of hybrid enzymes[J]. Methods Enzymol.2004; 388:50-60
    [108]FernanAdez Gacio A.,Uguen M.,Fastrez J.Phage display as a tool for the directed evolution of enzymes [J].Trends Biotechnol,2003,21:408-414
    [109]Raberts BL.,Markland W.,Ley AC.Directed evolution of a protein:selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage[J].Proc Natl Acad Sci USA.1992,2:429-433
    [110]Griswold KE,Aiyappan NS,Iverson BL,Georgiou GThe evolution of catalytic efficiency and substrate promiscuity in human theta class 1-1 glutathione transferase[J] Mol Biol,2006,364:400-410.
    [111]Olsen MJ,Stephens D,Griffiths D,Daugherty P,Georgiou G,Iverson BL.Function-based isolation of novel enzymes from a large library[J].Nat Biotechnol,2000,18:1071-1074.
    [112]Varadarajan N,Gam J,Olsen MJ,Georgiou G,Iverson BL.Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity[J].Proc Natl Acad Sci USA,2005,102:6855-6860
    [113]Varadarajan N,Rodriguez S,Hwang BY,Georgiou G,Iverson BL.Highly active and selective ndopeptidases with programmed substrate specificities[J].Nat Chem Biol.2008,4:290-294
    [114]Dalby PA.Optimising enzyme function by directed evolution[J].Curr Opin Struct Biol,2003,13:500-505
    [115]Strausberg SL,Ruan B,Fisher KE,Alexander PA,Bryan PN.Directed coevolution of stability and catalytic activity in calcium-free subtilisin[J].Biochem,2005,44:3272-3279
    [116]Morley KL,Kazlauskas RJ.Improving enzyme properties:when are closer mutations better Trends[J].Biotechnol,2005,23:231-237
    [117]Chaparro-Riggers JF,Polizzi KM,Bommarius AS.Better library design:data-driven protein engineering[J].Biotechnol,2007,2:180-191
    [118]Santoro SW, Schultz PG. Directed evolution of the site specificity of Cre recom-binase[J].Proc Nat Acad Sci USA,2002,99:4185-4190
    [119]Reetz MT.Controlling the enanAtioselectivity of enzymes by directed evolution: practical and theoretical ramifications[J].Proc Natl Acad Sci USA 2004,101:5716-5722.
    [120]Hayes RJ., Bentzien J., Ary ML., Hwang MY., Jacinto JM., Vielmetter J., Kundu A., Dahiyat BI. Combining computational and experimental screening for rapid optimization of protein properties[J]. Proc Natl Acad Sci USA,2002,99:15926-15931.
    [121]Cereghino JL and Cregg JM. Heterologous protein expression in the methylotrophie yeast Pichia Pastoris[J].FEMS Microbiol Rev,200,24:45-66
    [122]Daly R and Heam MT. Expression of heterologous proteins in Pichia pastoris:a useful experimental tool in protein engineering and production[J]. Mol Recognit,2005, 18:119-138
    [123]Parekh R, Forrester K and Wittrup D. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae[J] Prorein Expr Purif,1995,6:537-545
    [124]Sarramegna V, Demange P, Milon A, et al. Optimizing functional versus total expression of the human mu-opioid receptor in Pichia pastoris[J]. Protein Expr Purif, 2002,24:212-220
    [125]Whittaker MM and Whittaker JW. Expression of recombinant galactose oxdiase by Pichia pastoris [J] Protein Expr Purif,2000,20:105-111
    [126]Klis,F.M., M.P.Schreuder, H.Y.Toschka, and C.T.Verrips. Process for immobilizing enzymes to the cell wall of a microbial cell by producing a fusion protein. Patent,1994, Wo 94/01567
    [127]Klis, F.M. Review:Cell wall assembly in yeast [J].Yeast,1994,10:851-869.
    [128]Kapteyn,J.C., R.C.Montijn, E.Vink, J.delaCruz, A.Llobell, J.E.Douwes, H.Shimoi, P.N.Lipke,andF.M.Klis. Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked b-1,3-/b-1,6-glucan heteropolymer[J]. Glycobiology, 1996,6:337-345
    [129]Liljeqvist,S. et al. Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus.[J]Appl Environ Microbiol,1997,63:2481-2488
    [130]Xu DG, Xiao LS, Cai Y, et al. Research of lipase-catalyzed synthesis of ethyl hexanoate in non aqueous conditions[J] Fine Chem,2004,21(4):279-281
    [131]Kennedy JF, Kumar H, Panesar PS, et al. Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds.[J] Chem Technol Biotechnol,2006,81(6):866?876.
    [132]Chang SW, Shaw JF. Biocatalysis for the production of carbohydrate esters.[J] Nat Biotechnol,2009,26(4):109-116.
    [133]Karmee SK.Lipase catalyzed synthesis of ester-based surfactants from biomass derivatives.[J] Biofuels Bioprod Bioref,2008,2(2):144-154.
    [134]Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils.[J] Biosci Bioeng,2001,92(5):405-416.
    [135]Han SY, Pan ZY, Huang DF, et al. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase.[J] Mol Catal B:Enzym,2009,59(1/3):168-172.
    [136]Cao L, Bornscheuer UT, Schmid RD. Lipase-catalyzed solid-phase synthesis of sugar esters.influence of immobilization on productivity and stability of the enzyme.[J] Mol Catal B:Enzym,1999,6(3):279-285.
    [137]Pan ZY, Han SY, Lin Y, et al. Experssion of Candida antarctica lipase B on yeast surface and synthesis of ethyl hexanoate catalyzed by CALB[J].Chin Biotech,2008,24 (4):673-678
    [138]Zheng SP, Ren CQ, Han SY, and Lin Y. Synthesis of glucose laurate monoester catalyzed by Candida antarctica lipase B-displaying Pichia pastoris whole-cells[J] Chin J Biotech,2009,25(12):1933-1939
    [139]Jin Z, Lin Y, Huang DF, Su GD, and Han SY. Synthesis of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in non-aqueous phase[J] Chin J Biotech,2009,25(12):1927-1932
    [140]Larios A, Garcia HS, Oliart RM, et al. Synthesis of flavor and fragrance esters using Candida antarctica lipase.[J] Appl Microbiol Biotechnol,2004,65(4):373-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700