用户名: 密码: 验证码:
脊髓胶质细胞参与吗啡镇痛耐受:P2X_7受体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吗啡耐受是临床控制疼痛的一大障碍,其机制的研究已有很长历史。近年来的研究表明,脊髓小胶质细胞在吗啡耐受过程中具有重要作用。但是关于小胶质细胞参与吗啡耐受的作用机制尚未阐明。P2X7受体(P2X7R),作为ATP受体P2X家族的一种亚型,属于ATP门控的离子通道受体。它在身体各个组织中有比较广泛的分布,主要表达在免疫系统。在中枢神经系统中,小胶质细胞作为免疫源性细胞,也表达大量的P2X7R。P2X7R的功能不仅涉及多种促炎因子(proinflammatory cytokines)的合成和释放,还对谷氨酸(glutamate)的释放和再摄取具有调控作用。最近有研究显示,神经病理性疼痛引起脊髓P2X7R表达明显上调,而干扰P2X7R的功能可以减轻疼痛。鉴于吗啡镇痛耐受与神经病理性疼痛形成机制上的相似性,提示脊髓P2X7R可能参与吗啡镇痛耐受的形成。
     本实验采用行为学、细胞培养、Western blot、免疫荧光以及分子生物学技术,在吗啡镇痛耐受的大鼠模型上,对脊髓P2X7R的作用进行了研究,并对其机制进行了探讨。取得的主要结果如下:
     1.脊髓小胶质细胞中P2X7R对慢性吗啡镇痛耐受形成和维持的影响
     对胚胎大鼠(孕17d)脊髓原代混合培养细胞以及正常或吗啡耐受成年大鼠脊髓切片进行免疫荧光染色的结果显示,P2X7R仅分布在OX42阳性的小胶质细胞,而不位于星形胶质细胞或神经元。大鼠脊髓P2X7R蛋白水平随着吗啡耐受的形成而逐渐增加,在给药后第4d出现统计学差异。鞘内预先给予P2X7R的拮抗剂(oxATP或BBG)或针对P2X7R的小干扰RNA片段(P2X7siRNA)均能对吗啡镇痛耐受的形成产生抑制作用。在已经建立了吗啡镇痛耐受的实验大鼠上,每天皮下注射吗啡前30 min鞘内预先给予BBG,连续3天,对已经减弱的吗啡镇痛效能没有改善。提示,脊髓P2X7R参与慢性吗啡镇痛耐受的形成,但不参与耐受的维持。
     2.脊髓P2X7R在吗啡耐受过程中增强神经元与胶质细胞的活化
     脊髓小胶质细胞标志物Iba1、神经元激酶PKCγ与星形胶质细胞标志物GFAP的蛋白随着吗啡镇痛耐受的形成均出现表达增加,分别在吗啡注射的第2d、第4d及第6d与对照组相比出现统计学差异。鞘内预先给予BBG抑制P2X7R的功能或者给予P2X7 siRNA预先下调P2X7R的表达,均可显著抑制由长期吗啡注射引起的脊髓小胶质细胞中Iba1或p-p38的蛋白表达增加,同时抑制由慢性吗啡引起的GFAP及PKCγ的蛋白水平增高。这些结果表明,脊髓P2X7R通过影响神经元与胶质细胞的活化介导吗啡耐受。
     3.脊髓促炎因子IL-18在P2X7R介导的吗啡耐受中的作用
     大鼠脊髓中促炎症因子IL-18及其受体IL-18R的蛋白水平随着吗啡镇痛耐受的形成均逐渐增加,分别在吗啡注射的第4d和第6d与对照组相比出现统计学差异。形态学研究显示,IL-18主要位于脊髓小胶质细胞;而IL-18R主要位于星形胶质细胞,少量分布于神经元。鞘内预先给予拮抗IL-18功能的IL-18BP或IL-18Ab均能显著抑制吗啡耐受的形成。鞘内预先给予BBG或者P2X7 siRNA均能显著抑制慢性吗啡引起的脊髓IL-18、IL-1β以及pNFκB的表达增加。而鞘内预先给予IL-18BP,也可以显著抑制由长期吗啡注射引起GFAP及PKCγ的蛋白水平增高,但对小胶质细胞标志物Iba1或星形胶质细胞中pNFκB的表达变化没有显著影响。从而提示,脊髓小胶质细胞的促炎因子IL-18可能作为P2X7R下游靶点之一,通过介导星形胶质和神经元的激活而参与吗啡耐受过程。此外,NFκB参与了P2X7R介导的吗啡耐受过程,但不作为IL-18影响星形胶质细胞活化的主要通路。
     综上所述,本研究首次揭示脊髓小胶质细胞特异性表达的P2X7R在吗啡镇痛耐受发展过程中发生了显著地改变,并且对吗啡镇痛耐受的产生而非维持有着重要的作用。此外,促炎因子IL-18作为其可能的下游机制之一,介导小胶质细胞-星形胶质细胞-神经元的级联反应,影响它们的活化,从而参与吗啡耐受的形成。这些结果拓展了胶质细胞参与吗啡镇痛耐受的可能机制,并且为临床上改善吗啡的长期镇痛效能提供了一个潜在靶点。
Opioid substances, like morphine, are the most effective analgesics used to treat moderate to severe pain. However, their use is limited by the development of tolerance, which is manifested clinically by the need for increasing opioid dosages over time to maintain the same level of pain relief. Recently, the role of microglia in the central nervous system in the development of analgesic tolerance has been studied. Although considerable progress has been made, the mechanism underlying microglial contribution to morphine analgesic tolerance is not fully explored.
     P2X7 receptor (P2X7R) is a subtype of the ATP-gated non-selective ion channel family P2X. It has a widespread tissue distribution and its expression is particularly strong in the immune system. In spinal cord, P2X7R is predominately present in microglia. P2X7R plays an important role in the production of proinflammatory cytokines and the regulation of glutamate transporter efficiency. Recently, mounting evidence indicates that P2X7R is involved in multiple neuropathic models. Given that morphine analgesic tolerance and neuropathic pain are supposed to share some common mechanisms, it is reasonable to hypothesize that spinal P2X7R contributes to morphine analgesic tolerance.
     Here, we tested our hypothesis in rats using experimental techniques including behavioral tests, RNA interference, Western blot analysis, immunofluorescence and cell culture. The results were as follows:
     1. Spinal microglia-expressed P2X7R contributed to the development of chronic morphine tolerance but not the maintenance
     P2X7Rs were exclusively localized in OX42-labeled microglia in spinal dorsal horn revealed by immunofluorescence, which was performed on lumbar spinal cord sections from normal and morphine tolerated adult rats. The cellular localization of P2X7R was confirmed in the mixed-glia culture from 17-day-old embryonic (E17) SD rats. The expression of spinal P2X7R was upregulated gradually during the development of morphine analgesic tolerance; and the significant increase occurred since D4 (after 3 days'morphine injection), at which tolerance was just generated. Pretreatment with P2X7R antagonists [oxidized ATP (oxATP) or brilliant blue G (BBG)] or P2X7R-targetting siRNA intrathecally inhibited the development of chronic morphine tolerance significantly. However, intrathecal administration of BBG failed to reverse the established tolerance to morphine analgesia.
     2. Spinal P2X7R mediated the activation of glia and neurons in the development of morphine analgesic tolerance
     The expressions of microglial marker Ibal, the neuronal kinase PKCy and astroglial marker GFAP in rat lumbar spinal cord were upregulated upon the development of chronic morphine tolerance; and the significant increase began at D2, D4 and D6 respectively. Pretreatment with P2X7R antagonist BBG or P2X7R-targetting siRNA intrathecally not only inhibited the upregulation of Ibal and p-p38 expression in microglia, but also suppressed the upregulation of GFAP expression in astroglia and PKCy expression in neurons of the spinal cord treated by chronic morphine.
     3. Spinal proinflammatory cytokine interleukin 18 (IL-18) as one downstream of P2X7R was involved in chronic tolerance to morphine analgesia
     The expressions of proinflammatory cytokine IL-18 and its corresponding receptor IL-18 receptor (IL-18R) in rat lumbar spinal cord were upregulated upon the development of chronic morphine tolerance; and the significant increase began at D4 and D6 respectively. IL-18 was mainly localized in OX42-positive microglia of rat spinal cord, whereas IL-18R majorly distributed in GFAP-labeled astroglia. Pretreatment with IL-18 antagonists IL-18BP or IL-18Ab intrathecally inhibited the development of morphine tolerance significantly. Pre-administration of P2X7R antagonist BBG or P2X7R-targetting siRNA intrathecally suppressed the upregulation of spinal IL-18, IL-1βand pNFκB induced by repeated morphine injection remarkably. Pretreatment with IL-18BP intrathecally suppressed the upregulation of spinal GFAP and PKCy significantly, but not affected the upregulation of either Ibal or pNFκB induced by chronic morphine.
     Taken together, we demonstrated that the expression of spinal microglia-expressed P2X7R was increased after chronic exposure to morphine, which facilitated the development but not the maintenance of morphine analgesic tolerance. Moreover, as one of P2X7R downstream targets, pro inflammatory cytokine IL-18 was involved in the generation of morphine tolerance, possibly by mediating the activation of microglia-astroglia-neurons cascade. Although NFκB was involved in the downstream of P2X7R, it might not be the predominant pathway through which IL-18 mediated the activation of astroglia. These findings highlight the possibility of a new clinical strategy to improve morphine tolerance.
引文
[1]Adler, M. W., Geller, E. B., Chen, X. and Rogers, T. J. Viewing chemokines as a third major system of communication in the brain [J]. AAPS J,2005,7(4): E865-870.
    [2]Aigner, A. Gene silencing through RNA interference (RNAi) in vivo:strategies based on the direct application of siRNAs [J]. J Biotechnol,2006,124(1): 12-25.
    [3]Anderson, C. M., Bergher, J. P. and Swanson, R. A. ATP-induced ATP release from astrocytes [J]. J Neurochem,2004,88(1):246-256.
    [4]Ballerini, P., Rathbone, M. P., Di Iorio, P., Renzetti, A., Giuliani, P., D'Alimonte, I., Trubiani, O., Caciagli, F. and Ciccarelli, R. Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release [J]. Neuroreport,1996,7(15-17):2533-2537.
    [5]Beigi, R. D., Kertesy, S. B., Aquilina, G. and Dubyak, G. R. Oxidized ATP (oATP) attenuates proinflammatory signaling via P-2 receptor-independent mechanisms [J]. Br J Pharmacol,2003,140(3):507-519.
    [6]Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J. and Volterra, A. CXCR4-activated astrocyte glutamate release via TNFalpha:amplification by microglia triggers neurotoxicity [J]. Nat Neurosci,2001,4(7):702-710.
    [7]Boraschi, D. and Dinarello, C. A. IL-18 in autoimmunity:review [J].Eur Cytokine Netw,2006,17(4):224-252.
    [8]Bringmann, A., Pannicke, T., Moll, V., Milenkovic, I., Faude, F., Enzmann, V., Wolf, S. and Reichenbach, A. Upregulation of P2X (7) receptor currents in Muller glial cells during proliferative vitreoretinopathy [J]. Invest Ophthalmol Vis Sci,2001,42(3):860-867.
    [9]Broom, D. C., Matson, D. J., Bradshaw, E., Buck, M. E., Meade, R., Coombs, S., Matchett, M., Ford, K. K., Yu, W. F., Yuan, J., Sun, S. H., Ochoa, R., Krause, J. E., Wustrow, D. J. and Cortright, D. N. Characterization of N-(Adamantan-1-ylmethyl)-5-[(3R-aminopyrrolidin-1-yl)methyl]-2-chloro-ben zamide, a P2X(7) Antagonist in Animal Models of Pain and Inflammation [J]. J Pharmacol Exp Ther,2008,327(3):620-633.
    [10]Casanovas, A., Hernandez, S., Tarabal, O., Rossello, J. and Esquerda, J. E. Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis [J]. J Comp Neurol,2008,506(1):75-92.
    [11]Cavaliere, F., Amadio, S., Sancesario, G., Bernardi, G. and Volonte, C. Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures [J]. J Cereb Blood Flow Metab,2004,24(4):392-398.
    [12]Cavaliere, F., Sancesario, G, Bernardi, G. and Volonte, C. Extracellular ATP and nerve growth factor intensify hypoglycemia-induced cell death in primary neurons:role of P2 and NGFRp75 receptors [J]. J Neurochem,2002,83(5): 1129-1138.
    [13]Chen, X., Geller, E. B., Rogers, T. J. and Adler, M. W. The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats [J]. Brain Res,2007,1153: 52-57.
    [14]Chessell, I. P., Hatcher, J. P., Bountra, C., Michel, A. D., Hughes, J. P., Green, P., Egerton, J., Murfin, M., Richardson, J., Peck, W. L., Grahames, C. B., Casula, M. A., Yiangou, Y., Birch, R., Anand, P. and Buell, G. N. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain [J]. Pain,2005,114(3):386-396.
    [15]Collo, G., Neidhart, S., Kawashima, E., Kosco-Vilbois, M., North, R. A. and Buell, G. Tissue distribution of the P2X7 receptor [J]. Neuropharmacology, 1997,36(9):1277-1283.
    [16]Cui, Y., Chen, Y., Zhi, J. L., Guo, R. X., Feng, J. Q. and Chen, P. X. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance [J]. Brain Res,2006,1069(1):235-243.
    [17]Cui, Y., Liao, X. X., Liu, W., Guo, R. X., Wu, Z. Z., Zhao, C. M., Chen, P. X. and Feng, J. Q. A novel role of minocycline:attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia [J]. Brain Behav Immun,2008,22(1):114-123.
    [18]DeLeo, J. A., Colburn, R. W., Nichols, M. and Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model [J]. J Interferon Cytokine Res,1996, 16(9):695-700.
    [19]Dell'Antonio, G., Quattrini, A., Cin, E. D., Fulgenzi, A. and Ferrero, M. E. Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP [J]. Arthritis Rheum,2002a,46(12): 3378-3385.
    [20]Dell'Antonio, G., Quattrini, A., Dal Cin, E., Fulgenzi, A. and Ferrero, M. E. Antinociceptive effect of a new P (2Z)/P2X7 antagonist, oxidized ATP, in arthritic rats [J]. Neurosci Lett,2002b,327(2):87-90.
    [21]Denlinger, L. C., Fisette, P. L., Sommer, J. A., Watters, J. J., Prabhu, U., Dubyak, G. R., Proctor, R. A. and Bertics, P. J. Cutting edge:the nucleotide receptor P2X7 contains multiple protein-and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide [J]. J Immunol,2001, 167(4):1871-1876.
    [22]Deuchars, S. A., Atkinson, L., Brooke, R. E., Musa, H., Milligan, C. J., Batten, T. F., Buckley, N. J., Parson, S. H. and Deuchars, J. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems [J]. J Neurosci,2001,21(18):7143-7152.
    [23]Di Virgilio, F. Novel data point to a broader mechanism of action of oxidized ATP:the P2X(7) receptor is not the only target [J]. Br J Pharmacol,2003, 140(3):441-443.
    [24]Di Virgilio, F., Falzoni, S., Mutini, C., Sanz, J. M. and Chiozzi, P. Purinergic P2X(7) receptor:A pivotal role in inflammation and immunomodulation [J]. Drug Develop Res,1998,45(3-4):207-213.
    [25]Duan, S. M., Anderson, C. M., Keung, E. C., Chen, Y. M., Chen, Y. R. and Swanson, R. A. P2X(7) receptor-mediated release of excitatory amino acids from astrocytes [J]. J Neurosci,2003,23(4):1320-1328.
    [26]Egan, T. M., Samways, D. S. and Li, Z. Biophysics of P2X receptors [J]. Pflugers Arch,2006,452(5):501-512.
    [27]Evanko, D. S., Zhang, Q., Zorec, R. and Haydon, P. G. Defining pathways of loss and secretion of chemical messengers from astrocytes [J]. Glia,2004, 47(3):233-240.
    [28]Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E. and Di Virgilio, F. The P2X(7) receptor:A key player in IL-1 processing and release [J]. J Immunol,2006,176(7):3877-3883.
    [29]Fortes, F. S., Pecora, I. L., Persechini, P. M., Hurtado, S., Costa, V., Coutinho-Silva, R., Braga, M. B., Silva-Filho, F. C., Bisaggio, R. C., De Farias, F. P., Scemes, E., De Carvalho, A. C. and Goldenberg, R. C. Modulation of intercellular communication in macrophages:possible interactions between GAP junctions and P2 receptors [J]. J Cell Sci,2004,117(Pt 20):4717-4726.
    [30]Franke, H., Grosche, J., Schadlich, H., Krugel, U., Allgaier, C. and Illes, P. P2X receptor expression on astrocytes in the nucleus accumbens of rats [J]. Neuroscience,2001,108(3):421-429.
    [31]Franke, H., Gunther, A., Grosche, J., Schmidt, R., Rossner, S., Reinhardt, R., Faber-Zuschratter, H., Schneider, D. and Illes, P. P2X7 receptor expression after ischemia in the cerebral cortex of rats [J]. J Neuropathol Exp Neurol, 2004,63(7):686-699.
    [32]Franke, H., Klimke, K., Brinckmann, U., Grosche, J., Francke, M., Sperlagh, B., Reichenbach, A., Liebert, U. G. and Illes, P. P2X (7) receptor-mRNA and-protein in the mouse retina; changes during retinal degeneration in BALBCrds mice [J]. Neurochem Int,2005,47(4):235-242.
    [33]Fulgenzi, A., Dell'Antonio, G., Foglieni, C., Dal Cin, E., Ticozzi, P., Franzone,
    J. S. and Ferrero, M. E. Inhibition of chemokine expression in rat inflamed paws by systemic use of the antihyperalgesic oxidized ATP [J]. BMC Immunol, 2005,6:18.
    [34]Gabra, B. H., Bailey, C. P., Kelly, E., Smith, F. L., Henderson, G. and Dewey, W. L. Pre-treatment with a PKC or PKA inhibitor prevents the development of morphine tolerance but not physical dependence in mice [J]. Brain Res,2008, 1217:70-77.
    [35]Garrison, C. J., Dougherty, P. M., Kajander, K. C. and Carlton, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury [J]. Brain Res,1991,565(1):1-7.
    [36]Gazzinelli, R. T., Wysocka, M., Hieny, S., Scharton-Kersten, T., Cheever, A., Kuhn, R., Muller, W., Trinchieri, G. and Sher, A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha [J]. J Immunol,1996, 157(2):798-805.
    [37]Griffiths, R. J., Stam, E. J., Downs, J. T. and Otterness, I. G. ATP induces the release of IL-1 from LPS-primed cells in vivo [J]. J Immunol,1995,154(6): 2821-2828.
    [38]Hogquist, K. A., Nett, M. A., Unanue, E. R. and Chaplin, D. D. Interleukin 1 is processed and released during apoptosis [J]. Proc Natl Acad Sci U S A,1991, 88(19):8485-8489.
    [39]Honore, P., Donnelly-Roberts, D., Namovic, M. T., Hsieh, G., Zhu, C. Z., Mikusa, J. P., Hernandez, G., Zhong, C. M., Gauvin, D. M., Chandran, P., Harris, R., Medrano, A. P., Carroll, W., Marsh, K., Sullivan, J. P., Faltynek, C. R. and Jarvis, M. F. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino)methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X(7) receptor antagonist, dose-dependently reduces neuropathic pain in the rat [J]. J Pharmacol Exp Ther,2006,319(3):1376-1385.
    [40]Hutchinson, M. R., Coats, B. D., Lewis, S. S., Zhang, Y., Sprunger, D. B., Rezvani, N., Baker, E. M., Jekich, B. M., Wieseler, J. L., Somogyi, A. A., Martin, D., Poole, S., Judd, C. M., Maier, S. F. and Watkins, L. R. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia [J]. Brain Behav Immun,2008,22(8):1178-1189.
    [41]Inoue, K. ATP receptors of microglia involved in pain [J]. Novartis Found Symp,2006,276:263-272; discussion 273-281.
    [42]Ireland, M. F., Noakes, P. G. and Bellingham, M. C. P2X7-like receptor subunits enhance excitatory synaptic transmission at central synapses by presynaptic mechanisms [J]. Neuroscience,2004,128(2):269-280.
    [43]Ishii, K., Kaneda, M., Li, H., Rockland, K. S. and Hashikawa, T. Neuron-specific distribution of P2X7 purinergic receptors in the monkey retina [J]. J Comp Neurol,2003,459(3):267-277.
    [44]Jabs, R., Matthias, K., Grote, A., Grauer, M., Seifert, G. and Steinhauser, C. Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region [J]. Glia,2007,55(16):1648-1655.
    [45]Jarvis, M. F. and Khakh, B. S. ATP-gated P2X cation-channels [J]. Neuropharmacology,2009,56(1):208-215.
    [46]Jhamandas, K. H., Marsala, M., Ibuki, T. and Yaksh, T. L. Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine [J]. J Neurosci,1996,16(8):2758-2766.
    [47]Khakh, B. S. and North, R. A. P2X receptors as cell-surface ATP sensors in health and disease [J]. Nature,2006,442(7102):527-532.
    [48]Kukley, M., Barden, J. A., Steinhauser, C. and Jabs, R. Distribution of P2X receptors on astrocytes in juvenile rat hippocampus [J]. Glia,2001,36(1): 11-21.
    [49]Kukley, M., Stausberg, P., Adelmann, G., Chessell, I. P. and Dietrich, D. Ecto-nucleotidases and nucleoside transporters mediate activation of adenosine receptors on hippocampal mossy fibers by P2X7 receptor agonist
    2'-3'-O-(4-benzoylbenzoyl)-ATP [J]. J Neurosci,2004,24(32):7128-7139.
    [50]Labasi, J. M., Petrushova, N., Donovan, C., McCurdy, S., Lira, P., Payette, M. M., Brissette, W., Wicks, J. R., Audoly, L. and Gabel, C. A. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response [J]. J Immunol,2002,168(12):6436-6445.
    [51]Leon, D., Hervas, C. and Miras-Portugal, M. T. P2Y1 and P2X7 receptors induce calcium/calmodulin-dependent protein kinase II phosphorylation in cerebellar granule neurons [J]. Eur J Neurosci,2006,23(11):2999-3013.
    [52]Light, A. R., Wu, Y., Hughen, R. W. and Guthrie, P. B. Purinergic receptors activating rapid intracellular Ca increases in microglia [J]. Neuron Glia Biol, 2006,2 (2):125-138.
    [53]Lim, G. W., Wang, S. X., Zeng, Q., Sung, B., Yang, L. L. and Mao, J. R. Expression of spinal NMDA receptor and PKC gamma after chronic morphine is regulated by spinal glucocorticoid receptor [J]. J Neurosci,2005,25(48): 11145-11154.
    [54]Lindenlaub, T. and Sommer, C. Partial sciatic nerve transection as a model of neuropathic pain:a qualitative and quantitative neuropathological study [J]. Pain,2000,89(1):97-106.
    [55]Lister, M. F., Sharkey, J., Sawatzky, D. A., Hodgkiss, J. P., Davidson, D. J., Rossi, A. G. and Finlayson, K. The role of the purinergic P2X7 receptor in inflammation [J]. J Inflamm (Lond),2007,4:5.
    [56]Liu, G. J., Kalous, A., Werry, E. L. and Bennett, M. R. Purine release from spinal cord microglia after elevation of calcium by glutamate [J]. Mol Pharmacol,2006,70(3):851-859.
    [57]MacKenzie, A., Wilson, H. L., Kiss-Toth, E., Dower, S. K., North, R. A. and Surprenant, A. Rapid secretion of interleukin-lbeta by microvesicle shedding [J]. Immunity,2001,15(5):825-835.
    [58]Malarkey, E. B. and Parpura, V. Mechanisms of glutamate release from astrocytes [J]. Neurochem Int,2008,52(1-2):142-154.
    [59]Mao, J. R., Price, D. D. and Mayer, D. J. Mechanisms of Hyperalgesia and Morphine-Tolerance-a Current View of Their Possible Interactions [J]. Pain, 1995,62(3):259-274.
    [60]Mao, J., Sung, B., Ji, R. R. and Lim, G. Chronic morphine induces downregulation of spinal glutamate transporters:implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci,2002,22(18): 8312-8323.
    [61]Mayer, D. J., Mao, J. R., Holt, J. and Price, D. D. Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions [J]. Proc Natl Acad Sci U S A,1999,96(14):7731-7736.
    [62]McLarnon, J. G., Ryu, J. K., Walker, D. G. and Choi, H. B. Upregulated expression of purinergic P2X (7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus [J]. J Neuropathol Exp Neurol,2006,65(11):1090-1097.
    [63]Mehta, V. B., Hart, J. and Wewers, M. D. ATP-stimulated release of interleukin (IL)-1 beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage [J]. J Biol Chem,2001,276 (6):3820-3826.
    [64]Miyoshi, K., Obata, K., Kondo, T., Okamura, H. and Noguchi, K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury [J]. J Neurosci,2008, 28(48):12775-12787.
    [65]Monif, M., Reid, C. A., Powell, K. L., Smart, M. L. and Williams, D. A. The P2X(7) Receptor Drives Microglial Activation and Proliferation:A Trophic Role for P2X(7)R Pore [J]. J Neurosci,2009,29(12):3781-3791.
    [66]Morioka, N., Abdin, M. J., Kitayama, T., Morita, K., Nakata, Y. and Dohi, T. P2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport [J]. Glia,2008,56(5): 528-538.
    [67]Narcisse, L., Scemes, E., Zhao, Y., Lee, S. C. and Brosnan, C. F. The cytokine
    IL-lbeta transiently enhances P2X7 receptor expression and function in human astrocytes [J]. Glia,2005,49(2):245-258.
    [68]Nelson, D. W., Gregg, R. J., Kort, M. E., Perez-Medrano, A., Voight, E. A., Wang, Y., Grayson, G., Namovic, M. T., Donnelly-Roberts, D. L., Niforatos, W., Honore, P., Jarvis, M. F., Faltynek, C. R. and Carroll, W. A. Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists [J]. J Med Chem,2006,49(12):3659-3666.
    [69]Nicholls, D. and Attwell, D. The release and uptake of excitatory amino acids [J]. Trends Pharmacol Sci,1990,11(12):462-468.
    [70]North, R. A. Molecular physiology of P2X receptors [J]. Physiol Rev,2002, 82(4):1013-1067.
    [71]Panenka, W., Jijon, H., Herx, L. M., Armstrong, J. N., Feighan, D., Wei, T., Yong, V. W., Ransohoff, R. M. and MacVicar, B. A. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase [J]. J Neurosci,2001, 21(18):7135-7142.
    [72]Papp, L., Vizi, E. S. and Sperlagh, B. Lack of ATP-evoked GABA and glutamate release in the hippocampus of P2X7 receptor-/- mice [J]. Neuroreport,2004,15(15):2387-2391.
    [73]Parpura, V, Scemes, E. and Spray, D. C. Mechanisms of glutamate release from astrocytes:gap junction "hemichannels", purinergic receptors and exocytotic release [J]. Neurochem Int,2004,45(2-3):259-264.
    [74]Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B. and Posmantur, R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease [J]. J Biol Chem,2003,278(15):13309-13317.
    [75]Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J. Y., Takano, H., Moss, S. J., McCarthy, K. and Haydon, P. G. Astrocytic purinergic signaling coordinates synaptic networks [J]. Science,2005, 310(5745):113-116.
    [76]Perregaux, D. and Gabel, C. A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity [J]. J Biol Chem,1994,269(21):15195-15203.
    [77]Queiroz, G, Meyer, D. K., Meyer, A., Starke, K. and von Kugelgen, I. A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors [J]. Neuroscience,1999,91(3): 1171-1181.
    [78]Raghavendra, V., Rutkowski, M. D. and DeLeo, J. A. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats [J]. J Neurosci,2002,22(22):9980-9989.
    [79]Raghavendra, V., Tanga, F. Y. and DeLeo, J. A. Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats [J]. Neuropsychopharmacology,2004,29(2):327-334.
    [80]Rappold, P. M., Lynd-Balta, E. and Joseph, S. A. P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain [J]. Brain Res,2006,1089(1):171-178.
    [81]Rassendren, F., Buell, G. N., Virginio, C., Collo, G., North, R. A. and Surprenant, A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA [J]. J Biol Chem,1997,272(9):5482-5486.
    [82]Reeve, A. J., Patel, S., Fox, A., Walker, K. and Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat [J]. Eur J Pain,2000,4(3):247-257.
    [83]Roberts, J. A., Vial, C., Digby, H. R., Agboh, K. C., Wen, H., Atterbury-Thomas, A. and Evans, R. J. Molecular properties of P2X receptors [J]. Pflugers Arch,2006,452(5):486-500.
    [84]Sanz, J. M. and Di Virgilio, F. Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells [J]. J Immunol,2000,164(9):4893-4898.
    [85]Seltzer, Z., Dubner, R. and Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury [J]. Pain,1990, 43(2):205-218.
    [86]Shavit, Y., Wolf, G., Goshen, I., Livshits, D. and Yirmiya, R. Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance [J]. Pain, 2005,115(1-2):50-59.
    [87]Sluyter, R., Dalitz, J. G. and Wiley, J. S. P2X(7) receptor polymorphism impairs extracellular adenosine 5'-triphosphate-induced interleukin-18 release from human monocytes [J]. Genes Immun,2004,5(7):588-591.
    [88]Smith, F. L., Javed, R., Elzey, M. J., Welch, S. P., Selley, D., Sim-Selley, L. and Dewey, W. L. Prolonged reversal of morphine tolerance with no reversal of dependence by protein kinase C inhibitors [J]. Brain Res,2002,958(1):28-35.
    [89]Solle, M., Labasi, J., Perregaux, D. G., Stam, E., Petrushova, N., Koller, B. H., Griffiths, R. J. and Gabel, C. A. Altered cytokine production in mice lacking P2X (7) receptors [J]. J Biol Chem,2001,276(1):125-132.
    [90]Song, P. and Zhao, Z. Q. The involvement of glial cells in the development of morphine tolerance [J]. Neurosci Res,2001,39(3):281-286.
    [91]Soto, F., Garcia-Guzman, M., Karschin, C. and Stuhmer, W. Cloning and tissue distribution of a novel P2X receptor from rat brain [J]. Biochem Biophys Res Commun,1996,223(2):456-460.
    [92]Sperlagh, B., Vizi, E. S., Wirkner, K. and Illes, P. P2X7 receptors in the nervous system [J]. Prog Neurobiol,2006,78(6):327-346.
    [93]Storkson, R. V., Kjorsvik, A., Tjolsen, A. and Hole, K. Lumbar catheterization of the spinal subarachnoid space in the rat [J]. J Neurosci Methods,1996, 65(2):167-172.
    [94]Suadicani, S. O., Brosnan, C. F. and Scemes, E. P2X(7) receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling [J]. J Neurosci,2006,26(5):1378-1385.
    [95]Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. and Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7) [J]. Science,1996,272(5262):735-738.
    [96]Suzuki, T., Hide, I., Ido, K., Kohsaka, S., Inoue, K. and Nakata, Y. Production and release of neuroprotective tumor necrosis factor by P2X(7) receptor-activated microglia [J]. J Neurosci,2004,24(1):1-7.
    [97]Szabo, I., Chen, X. H., Xin, L., Adler, M. W., Howard, O. M., Oppenheim, J. J. and Rogers, T. J. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain [J]. Proc Natl Acad Sci U S A,2002,99(16):10276-10281.
    [98]Tai, Y. H., Wang, Y. H., Tsai, R. Y, Wang, J. J., Tao, P. L., Liu, T. M., Wang, Y C. and Wong, C. S. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats [J]. Pain,2007, 129(3):343-354.
    [99]Tai, Y H., Wang, Y H., Wang, J. J., Tao, P. L., Tung, C. S. and Wong, C. S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats [J]. Pain,2006,124(1-2):77-86.
    [100]Takenouchi, T., Sugama, S., Iwamaru, Y, Hashimoto, M. and Kitani, H. Modulation of the ATP-Induced Release and Processing of IL-1 beta in Microglial Cells [J]. Crit Rev Immunol,2009,29(4):335-343.
    [101]Tawfik, V. L., Lacroix-Fralish, M. L., Bercury, K. K., Nutile-McMenemy, N., Harris, B. T. and Deleo, J. A. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype [J]. Glia,2006,54(3):193-203.
    [102]Verderio, C. and Matteoli, M. ATP mediates calcium signaling between astrocytes and microglial cells:modulation by IFN-gamma [J]. J Immunol,
    2001,166(10):6383-6391.
    [103]Vianna, E. P., Ferreira, A. T., Naffah-Mazzacoratti, M. G., Sanabria, E. R., Funke, M., Cavalheiro, E. A. and Fernandes, M. J. Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy:fluorimetric, immunohistochemical, and Western blot studies [J]. Epilepsia,2002,43 (Suppl 5):227-229.
    [104]Wang, X. H., Arcuino, G., Takano, T., Lin, J., Peng, W. G., Wan, P. L., Li, P. J., Xu, Q. W., Liu, Q. S., Goldman, S. A. and Nedergaard, M. P2X7 receptor inhibition improves recovery after spinal cord injury [J]. Nat Med,2004,10(8): 821-827.
    [105]Watanabe, T., Yamamoto, T., Abe, Y., Saito, N., Kumagai, T. and Kayama, H. Differential activation of microglia after experimental spinal cord injury [J]. J Neurotrauma,1999,16(3):255-265.
    [106]Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J. and Maier, S. F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat [J]. Pain,1997,71(3):225-235.
    [107]Watkins, L. R., Milligan, E. D. and Maier, S. F. Glial activation:a driving force for pathological pain [J]. Trends Neurosci,2001,24(8):450-455.
    [108]Wen, Z. H., Chang, Y. C., Cherng, C. H., Wang, J. J., Tao, P. L. and Wong, C. S. Increasing of intrathecal CSF excitatory amino acids concentration following morphine challenge in morphine-tolerant rats [J]. Brain Res,2004,995(2): 253-259.
    [109]Wu, N., Lu, X. Q., Yan, H. T., Su, R. B., Wang, J. F., Liu, Y, Hu, G. and Li, J. Aquaporin 4 deficiency modulates morphine pharmacological actions [J]. Neurosci Lett,2008,448(2):221-225.
    [110]Xiang, Z. and Burnstock, G. Expression of P2X receptors on rat microglial cells during early development [J]. Glia,2005,52(2):119-126.
    [111]Xu, J. J., Walla, B. C., Diaz, M. F., Fuller, G. N. and Gutstein, H. B. Intermittent lumbar puncture in rats:a novel method for the experimental study of opioid tolerance [J]. Anesth Analg,2006,103(3):714-720.
    [112]Yaksh, T. L. and Rudy, T. A. Chronic catheterization of the spinal subarachnoid space [J]. Physiol Behav,1976,17(6):1031-1036.
    [113]Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S. and Ransom, B. R. Functional hemichannels in astrocytes:a novel mechanism of glutamate release [J]. J Neurosci,2003,23(9):3588-3596.
    [114]Yiangou, Y, Facer, P., Durrenberger, P., Chessell, I. P., Naylor, A., Bountra, C., Banati, R. R. and Anand, P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord [J]. BMC Neurol,2006,6:12.
    [115]Yu, Y, Ugawa, S., Ueda, T., Ishida, Y, Inoue, K., Kyaw Nyunt, A., Umemura, A., Mase, M., Yamada, K. and Shimada, S. Cellular localization of P2X7 receptor mRNA in the rat brain [J]. Brain Res,2008,1194:45-55.
    [116]Zeitz, K. P., Malmberg, A. B., Gilbert, H. and Basbaum, A. I. Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC gamma mutant mice [J]. Pain,2001,94 (3):245-253.
    [117]Zhang, J. M., Wang, H. K., Ye, C. Q., Ge, W., Chen, Y., Jiang, Z. L., Wu, C. P., Poo, M. M. and Duan, S. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression [J]. Neuron,2003,40(5): 971-982.
    [118]Zhang, N., Rogers, T. J., Caterina, M. and Oppenheim, J. J. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons [J]. J Immunol,2004,173(1):594-599.
    [119]Zhang, X., Chen, Y., Wang, C. and Huang, L. Y. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia [J]. Proc Natl Acad Sci U S A,2007,104(23):9864-9869.
    [1]Bell, J. A., and Beglan, C. L. Co-treatment with MK-801 potentiates naloxone-precipitated morphine withdrawal in the isolated spinal cord of the neonatal rat [J]. Eur J Pharmacol,1995,294(1):297-301.
    [2]Brenner, G. J., Ji, R. R., Shaffer, S. and Woolf, C. J. Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons [J]. Eur J Neurosci,2004,20(2):375-384.
    [3]Buccafusco, J. J., Terry, A. V., Jr. and Shuster, L. Spinal NMDA receptor--nitric oxide mediation of the expression of morphine withdrawal symptoms in the rat [J]. Brain Res,1995,679(2):189-199.
    [4]Cao, J. L., Ding, H. L., He, J. H., Zhang, L. C., Wang, J. K. and Zeng, Y. M. Different roles of the spinal protein kinase C alpha and gamma in morphine dependence and naloxone-precipitated withdrawal [J]. Sheng Li Xue Bao, 2005,57(2):161-168.
    [5]Cao, J. L., Zeng, Y. M., Zhang, L. C. and Duan, S. M. Increased expression of formalin-induced Fos and NADPH-d positive neurons in the spinal cord of morphine-tolerant rats [J]. Sheng Li Xue Bao,2000,52(3):235-258.
    [6]Carmosino, M., Procino, G., Tamma, G., Mannucci, R., Svelto, M. and Valenti, G. Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells [J]. Biol Cell,2007,99(1):25-36.
    [7]Fang, L., Wu, J., Lin, Q. and Willis, W. D. Protein kinases regulate the phosphorylation of the GluRl subunit of AMPA receptors of spinal cord in rats following noxious stimulation [J]. Brain Res Mol Brain Res,2003,118, (1-2): 160-165.
    [8]Frigeri, A., Gropper, M. A., Turck, C. W. and Verkman, A. S. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes [J]. Proc Natl Acad Sci U SA,1995,92(10):4328-4331.
    [9]Haydon, P. G. and Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling [J]. Physiol Rev,2006,86(3):1009-1031.
    [10]Hua, X. Y., Moore, A., Malkmus, S., Murray, S. F., Dean, N., Yaksh, T. L. and Butler, M. Inhibition of spinal protein kinase C alpha expression by an antisense oligonucleotide attenuates morphine infusion-induced tolerance [J]. Neuroscience,2002,113(1):99-107.
    [11]Jhamandas, K. H., Marsala, M., Ibuki, T. and Yaksh, T. L. Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine [J]. J Neurosci,1996,16(8):2758-2766.
    [12]Johnson, S. M. and Fleming, W. W. Mechanisms of Cellular Adaptive Sensitivity Changes-Applications to Opioid Tolerance and Dependence [J]. Pharmacol Rev,1989,41(4):435-488.
    [13]Jung, J. S., Bhat, R. V., Preston, G. M., Guggino, W. B., Baraban, J. M. and Agre, P. Molecular Characterization of an Aquaporin Cdna from Brain Candidate Osmoreceptor and Regulator of Water-Balance [J]. Proc Natl Acad Sci U S A,1994,91(26):13052-13056.
    [14]Langerman, L., Zakowski, M. I., Piskoun, B. and Grant, G. J. Hot Plate Versus Tail-Flick-Evaluation of Acute Tolerance to Continuous Morphine Infusion in the Rat Model [J]. Journal of Pharmacological and Toxicological Methods, 1995,34(1):23-27.
    [15]Maestroni, G. J. M. and Conti, A. Beta-Endorphin and Dynorphin Mimic the Circadian Immunoenhancing and Anti-Stress Effects of Melatonin [J]. Int J Immunopharmacol,1989,11(4):333-340.
    [16]Mao, J. R., Sung, B. K., Ji, R. R. and Lim, G. Chronic morphine induces downregulation of spinal glutamate transporters:Implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci,2002,22(18): 8312-8323.
    [17]Marshall, D. C. and Buccafusco, J. J. Supraspinal and spinal mediation of naloxone-induced morphine withdrawal in rats [J]. Brain Res,1985,329(1-2): 131-142.
    [18]Miletic, V., Bowen, K. K. and Miletic, G. Loose ligation of the rat sciatic nerve is accompanied by changes in the subcellular content of protein kinase C beta
    Ⅱ and gamma in the spinal dorsal horn [J]. Neurosci Lett,2000,288(3): 199-202.
    [19]Miyamoto, Y. and Takemori, A. E. Sites of action of naloxone in precipitating withdrawal jumping in morphine-dependent mice:investigations by the ED50 value and CNS content of naloxone [J]. Drug Alcohol Depend,1993,32(2): 163-167.
    [20]Nagelhus, E. A., Horio, Y., Inanobe, A., Fujita, A., Haug, F. M., Nielsen, S., Kurachi, Y. and Ottersen, O. P. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains [J]. Glia, 1999,26(1):47-54.
    [21]Nagelhus, E. A., Mathiisen, T. M. and Ottersen, O. P. Aquaporin-4 in the central nervous system:Cellular and subcellular distribution and coexpression with Kir4.1 [J]. Neuroscience,2004,129(4):905-913.
    [22]Nakahama, K., Nagano, M., Fujioka, A., Shinoda, K. and Sasaki, H. Effect of TPA on aquaporin 4 mRNA expression in cultured rat astrocytes [J]. Glia, 1999,25(3):240-246.
    [23]Narita, M., Oe, K., Kato, H., Shibasaki, M., Narita, M., Yajima, Y., Yamazaki, M. and Suzuki, T. Implication of spinal protein kinase C in the suppression of morphine-induced rewarding effect under a neuropathic pain-like state in mice [J]. Neuroscience,2004,125(3):545-551.
    [24]Nielsen, S., Nagelhus, E. A., Amiry-Moghaddam, M., Bourque, C., Agre, P. and Ottersen, O. P. Specialized membrane domains for water transport in glial cells:high-resolution immunogold cytochemistry of aquaporin-4 in rat brain [J]. J Neurosci,1997,17(1):171-180.
    [25]Oshio, K., Binder, D. K., Yang, B., Schecter, S., Verkman, A. S. and Manley, G. T. Expression of aquaporin water channels in mouse spinal cord [J]. Neuroscience,2004,127(3):685-693.
    [26]Padmawar, P., Yao, X. M., Bloch, O., Manley, G. T. and Verkman, A. S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator [J]. Nat Methods,2005,2(11):825-827.
    [27]Rash, J. E., Yasumura, T., Hudson, C. S., Agre, P. and Nielsen, S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord [J]. Proc Natl Acad Sci U S A,1998,95(20):11981-11986.
    [28]Raval, A. P., Dave, K. R., Mochly-Rosen, D., Sick, T. J. and Perez-Pinzon, M. A. epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice [J]. J Neurosci,2003,23(2):384-391.
    [29]Roerig, S. C., Hoffman, R. G., Takemori, A. E., Wilcox, G. L. and Fujimoto, J. M. Isobolographic Analysis of Analgesic Interactions between Intrathecally and Intracerebroventricularly Administered Fentanyl, Morphine and D-Ala2-D-Leu5-Enkephalin in Morphine-Tolerant and Nontolerant Mice [J]. J Pharmacol Exp Ther,1991,257(3):1091-1099.
    [30]Rohde, D. S. and Basbaum, A. I. Activation of coeruleospinal noradrenergic inhibitory controls during withdrawal from morphine in the rat [J]. J Neurosci, 1998,18(11):4393-4402.
    [31]Rohde, D. S., Detweiler, D. J. and Basbaum, A. I. Formalin-evoked Fos expression in spinal cord is enhanced in morphine-tolerant rats [J]. Brain Res, 1997,766(1-2):93-100.
    [32]Rohde, D. S., McKay, W. R., Chang, D. S., Abbadie, C. and Basbaum, A. I. The contribution of supraspinal, peripheral and intrinsic spinal circuits to the pattern and magnitude of Fos-like immunoreactivity in the lumbar spinal cord of the rat withdrawing from morphine [J]. Neuroscience,1997,80(2): 599-612.
    [33]Rossetti, Z. L., Longu, G., Mercuro, G. and Gessa, G. L. Extraneuronal Noradrenaline in the Prefrontal Cortex of Morphine-Dependent Rats Tolerance and Withdrawal Mechanisms [J]. Brain Res,1993,609 (1-2): 316-320.
    [34]Song, P. and Zhao, Z. Q. The involvement of glial cells in the development of morphine tolerance [J]. Neurosci Res,2001,39(3):281-286.
    [35]Sweitzer, S. M., Wong, S. M. E., Peters, M. C., Mochly-Rosen, D., Yeomans,
    D. C. and Kendig, J. J. Protein kinase C epsilon and gamma:Involvement in formalin-induced nociception in neonatal rats [J]. J Pharmacol Exp Ther,2004, 309(2):616-625.
    [36]Sweitzer, S. M., Wong, S. M. E., Tjolsen, A., Allen, C. P., Mochly-Rosen, D. and Kendig, J. J. Exaggerated nociceptive responses on morphine withdrawal: roles of protein kinase C epsilon, and gamma [J]. Pain,2004,110(1-2): 281-289.
    [37]Tai, Y. H., Wang, Y. H., Tsai, R. Y, Wang, J. J., Tao, P. L., Liu, T. M., Wang, Y. C. and Wong, C. S. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats [J]. Pain,2007, 129(3):343-354.
    [38]Tai, Y H., Wang, Y H., Wang, J. J., Tao, P. L., Tung, C. S. and Wong, C. S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats [J]. Pain,2006,124(1-2):77-86.
    [39]Vescovi, P. P., Pedrazzoni, M., Gerra, G., Pioli, G., Maninetti, L., Michelini, M. and Passeri, M. Impaired Acth and Beta-Endorphin Response to Sauna-Induced Hyperthermia in Heroin-Addicts [J]. Acta Endocrinol,1989, 121(4):484-488.
    [40]Vitellaro-Zuccarello, L., Mazzetti, S., Bosisio, P., Monti, C. and De Blasi, S. Distribution of aquaporin 4 in rodent spinal cord:Relationship with astrocyte markers and chondroitin sulfate proteoglycans [J]. Glia,2005,51(2):148-159.
    [41]Wang, J. F., Wang, Z. Y, Wu, N., Yan, H. T. and Li, J. Effects of aquaporin4 deficiency on opioid receptors characteristics in naive and chronic morphine-treated mice [J]. Neurosci Lett,2009,457(3):111-114.
    [42]Watkins, L. R., Hutchinson, M. R., Johnston, I. N. and Maier, S. F. Glia:novel counter-regulators of opioid analgesia [J]. Trends Neurosci,2005,28(12): 661-669.
    [43]Wen, Z. H., Guo, Y. W., Chang, Y C. and Wong, C. S. D-2-amino-5-phosphonopentanoic acid inhibits intrathecal pertussis toxin-induced thermal hyperalgesia and protein kinase C gamma up-regulation [J]. Brain Res,2003,963(1-2):1-7.
    [44]Wu, N., Lu, X. Q., Yan, H. T., Su, R. B., Wang, J. F., Liu, Y., Hu, G. and Li, J. Aquaporin 4 deficiency modulates morphine pharmacological actions [J]. Neurosci Lett,2008,448(2):221-225.
    [45]Yashpal, K., Fisher, K., Chabot, J. G. and Coderre, T. J. Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats [J]. Pain,2001,94(1):17-29.
    [46]Yoburn, B. C., Lutfy, K., Azimuddin, S. and Sierra, V. Differentiation of spinal and supraspinal opioid receptors by morphine tolerance [J]. Life Sci,1990, 46(5):343-350.
    [47]Zeitz, K. P., Malmberg, A. B., Gilbert, H. and Basbaum, A. I. Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC gamma mutant mice [J]. Pain,2001,94(3):245-253.
    [48]Zelenina, M., Zelenin, S., Bondar, A. A., Brismar, H. and Aperia, A. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine [J]. Am J Physiol Renal Physiol,2002,283(2):F309-F318.
    [49]Zeng, X. N., Sun, X. L., Gao, L., Fan, Y., Ding, J. H. and Hu, G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes [J]. Mol Cell Neurosci,2007,34(1):34-39.
    [50]Zhou, Y., Li, G. D. and Zhao, Z. Q. State-dependent phosphorylation of epsilon-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury [J]. J Neurochem,2003,85(3):571-580.
    [1]Adler, M. W., Geller, E. B., Chen, X. H. and Rogers, T. J. Viewing chemokines as a third major system of communication in the brain [J]. AAPS J, 2006,7(4):E865-E870.
    [2]Aicher, S. A., Sharma, S., Cheng, P. Y. and Pickel, V. M. The N-methyl-D-aspartate (NMDA) receptor is postsynaptic to substance P-containing axon terminals in the rat superficial dorsal horn [J]. Brain Res, 1997,772(1-2):71-81.
    [3]Babcock, A. A., Kuziel, W. A., Rivest, S. and Owens, T. Chemokine expres-sion by glial cells directs leukocytes to sites of axonal injury in the CNS [J]. J Neurosci,2003,23(21):7922-7930.
    [4]Belcheva, M. M., Haas, P. D., Tan, Y., Heaton, V. M. and Coscia, C. J. The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells [J]. J Pharmacol Exp Ther,2002,303(3):909-918.
    [5]Belcheva, M. M., Vogel, Z., Ignatova, E., Avidor-Reiss, T., Zippel, R., Levy, R., Young, E. C., Barg, J. and Coscia, C. J. Opioid modulation of extracellular signal-regulated protein kinase activity is ras-dependent and involves G (beta gamma) subunits [J]. J Neurochem,1998,70(2):635-645.
    [6]Besong, G., Battaglia, G., D'Onofrio, M., Di Marco, R., Ngomba, R. T., Storto, M., Castiglione, M., Mangano, K., Busceti, C. L., Nicoletti, F. R., Bacon, K., Tusche, M., Valenti, O., Conn, P. J., Bruno, V. and Nicoletti, F. Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures [J]. J Neurosci,2002,22(13):5403-5411.
    [7]Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J. and Volterra, A. CXCR4-activated astrocyte glutamate release via TNFa:amplification by mi-croglia triggers neurotoxicity [J]. Nat Neurosci,2001,4(7):702-710.
    [8]Chang, S. L., Sharp, B. M. and Madden, J. J. Cellular mechanisms involved in the modulation of the immune system by drugs of abuse [J]. Adv Exp Med Biol,1998,437:1-12.
    [9]Chapman, G. A., Moores, K., Harrison, D., Campbell, C. A., Stewart, B. R. and Strijbos, P. J. L. M. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage [J]. J Neurosci,2000,20(15):RC87.
    [10]Chen, X. H., Geller, E. B., Rogers, T. J. and Adler, M. W. The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats [J]. Brain Res,2007,1153: 52-57.
    [11]Chen, Y., Geis, C. and Sommer, C. Activation of TRPV1 contributes to morphine tolerance:involvement of the mitogen-activated protein kinase signaling pathway [J]. J Neurosci,2008,28(22):5836-5845.
    [12]Cui, Y., Chen, Y., Zhi, J. L., Guo, R. X., Feng, J. Q. and Chen, P. X. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance [J]. Brain Res,2006,1069(1): 235-243.
    [13]Cui, Y., Liao, X. X., Liu, W., Guo, R. X., Wu, Z. Z., Zhao, C. M., Chen, P. X. and Feng, J. Q. A novel role of minocycline:Attenuating morphine antino-ciceptive tolerance by inhibition of p38 MAPK in the activated spinal micro-glia [J]. Brain Behav Immun,2008,22(1):114-123.
    [14]DeLeo, J. A., Colburn, R. W., Nichols, M. and Malhotra, A. Inter-leukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model [J]. J Interferon Cytokine Res,1996,16(9): 695-700.
    [15]Fan, X. L., Zhang, J. S., Zhang, X. Q. and Ma, L. Chronic morphine treatment and withdrawal induce up-regulation of c-Jun N-terminal kinase 3 gene expression in rat brain [J]. Neuroscience,2003,122(4):997-1002.
    [16]Garrison, C. J., Dougherty, P. M., Kajander, K. C. and Carlton, S. M. Staining of Glial Fibrillary Acidic Protein (Gfap) in Lumbar Spinal-Cord Increases Following a Sciatic-Nerve Constriction Injury [J]. Brain Res,1991,565(1): 1-7.
    [17]Guo, R. X., Zhang, M., Liu, W., Zhao, C. M., Cui, Y. Wang, C. H., Feng, J. Q.
    and Chen, P. X. NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance [J]. Neurosci Lett,2009, 467(2):95-99.
    [18]Horvath, R. J. and DeLeo, J. A. Morphine enhances microglial migration through modulation of P2X4 receptor signaling [J]. J Neurosci,2009,29(4): 998-1005.
    [19]Hutchinson, M. R., Bland, S. T., Johnson, K. W., Rice, K. C., Maier, S. F. and Watkins, L. R. Opioid-induced glial activation:mechanisms of activation and implications for opioid analgesia, dependence, and reward [J]. ScientificWorldJournal,2007,7:98-111.
    [20]Hutchinson, M. R., Coats, B. D., Lewis, S. S., Zhang, Y., Sprunger, D. B., Rezvani, N., Baker, E. M., Jekich, B. M., Wieseler, J. L., Somogyi, A. A., Martin, D., Poole, S., Judd, C. M., Maier, S. F. and Watkins, L. R. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia [J]. Brain Behav Immun,2008,22(8):1178-1189.
    [21]Inoue, K. The function of microglia through purinergic receptors:neuropathic pain and cytokine release [J]. Pharmacol Ther,2006,109(1-2):210-226.
    [22]Johnston, I. N., Milligan, E. D., Wieseler-Frank, J., Frank, M. G., Zapata, V., Campisi, J., Langer, S., Martin, D., Green, P., Fleshner, M., Leinwand, L., Maier, S. F. and Watkins, L. R. A role for proinflammatory cytokines and frac-talkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine [J]. J Neurosci,2004,24(33):7353-7365.
    [23]Liu, G. J., Kalous, A., Werry, E. L. and Bennett, M. R. Purine release from spinal cord microglia after elevation of calcium by glutamate [J]. Mol Pharmacol,2006,70(3):851-859.
    [24]Liu, W., Wang, C. H., Cui, Y., Mo, L. Q., Zhi, J. L., Sun, S. N., Wang, Y. L., Yu, H. M., Zhao, C. M., Feng, J. Q. and Chen, P. X. Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia [J]. Neurosci Lett,2006, 410(3):174-177.
    [25]Ma, W., Zheng, W. H., Powell, K., Jhamandas, K. and Quirion, R. Chronic morphine exposure increases the phosphorylation of MAP kinases and the transcription factor CREB in dorsal root ganglion neurons:an in vitro and in vivo study [J]. Eur J Neurosci,2001,14(7):1091-1104.
    [26]Malarkey, E. B. and Parpura, V. Mechanisms of glutamate release from astro-cytes [J]. Neurochem Int,2008,52(1-2):142-154.
    [27]Mao, J. R., Sung, B. K., Ji, R. R. and Lim, G. Chronic morphine induces downregulation of spinal glutamate transporters:Implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci,2002,22(18): 8312-8323.
    [28]Mouledous, L., Diaz, M. F. and Gutstein, H.B. Modulation of extracellular signal-regulated kinase (ERK) activity by acute and chronic opioid treatment in neuronal and glial cell lines [J]. J Neurochem,2004,90(6):1371-1377.
    [29]Mouledous, L., Diaz, M.F. and Gutstein, H.B. Extracellular signal-regulated kinase (ERK) inhibition does not prevent the development or expression of tolerance to and dependence on morphine in the mouse [J]. Pharmacol Biochem Behav,2007,88(1):39-46.
    [30]Narita, M., Suzuki, M., Yajima, Y., Suzuki, R., Shioda, S. and Suzuki, T. Neuronal protein kinase C gamma-dependent proliferation and hypertrophy of spinal cord astrocytes following repeated in vivo administration of morphine [J]. Eur J Neurosci,2004,19(2):479-484.
    [31]Queiroz, G., Meyer, D. K., Meyer, A., Starke, K. and von Kugelgen, I. A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors [J]. Neuroscience,1999,91(2): 1171-1181.
    [32]Raghavendra, V., Rutkowski, M. D. and DeLeo, J. A. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats [J]. J Neurosci,2002,22(22):9980-9989.
    [33]Raghavendra, V., Tanga, F. Y. and DeLeo, J. A. Attenuation of morphine tol-erance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats [J]. Neuropsychopharmacology, 2004(2),29:327-334.
    [34]Reeve, A. J., Patel, S., Fox, A., Walker, K. and Urban, L. Intrathecally admin-istered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat [J]. Eur J Pain, 2000,4(3):247-257.
    [35]Schulz, R., Eisinger, D. A. and Wehmeyer, A. Opioid control of MAP kinase cascade [J]. Eur J Pharmacol,2004,500(1-3):487-497.
    [36]Shavit, Y., Wolf, G., Goshen, I., Livshits, D. and Yirmiya, R. Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance [J]. Pain, 2005,115(1-2):50-59.
    [37]Song, P. and Zhao, Z. Q. The involvement of glial cells in the development of morphine tolerance [J]. Neurosci Res,2001,39(3):281-286.
    [38]Stefano, G. B. and Kream, R. Endogenous opiates, opioids, and immune func-tion:Evolutionary brokerage of defensive behaviors [J]. Semin Cancer Biol, 2008,18(3):190-198.
    [39]Suzuki, T., Hide, I., Ido, K., Kohsaka, S., Inoue, K. and Nakata, Y. Production and release of neuroprotective tumor necrosis factor by P2X(7) recep-tor-activated microglia [J]. J Neurosci,2004,24(1):1-7.
    [40]Szabo, I., Chen, X. H., Xin, L., Adler, M. W., Howard, O. M. Z., Oppenheim, J. J. and Rogers, T. J. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain [J]. Proc Natl Acad Sci U S A,2002,99(16):10276-10281.
    [41]Tai, Y. H., Wang, Y. H., Tsai, R. Y., Wang, J. J., Tao, P. L., Liu, T. M., Wang, Y. C. and Wong, C. S. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats [J]. Pain, 2007,129(3):343-354.
    [42]Tai, Y. H., Wang, Y. H., Wang, J. J., Tao, P. L., Tung, C. S. and Wong, C. S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats [J]. Pain,2006,124(1-2):77-86.
    [43]Takayama, N. and Ueda, H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia [J]. J Neurosci,2005,25(2):
    430-435.
    [44]Takenouchi, T., Sugama, S., Iwamaru, Y., Hashimoto, M. and Kitani, H. Modulation of the ATP-induced release and processing of IL-1 beta in microglial cells [J]. Crit Rev Immunol,2009,29(4):335-343.
    [45]Tawfik, V. L., Lacroix-Fralish, M. L., Bercury, K. K., Nutile-McMenemy, N., Harris, B. T. and Deleo, J. A. Induction of astrocyte differentiation by propen-tofylline increases glutamate transporter expression in vitro:Heterogeneity of the quiescent phenotype [J]. Glia,2006,54(3):193-203.
    [46]Tikka, T. M. and Koistinaho, J. E. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia [J]. J Immunol,2001,166(12):7527-7533.
    [47]Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., Goetz, M., Lucius, R., Herdegen, T. and Hanisch, U. K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia [J]. Glia,2005, 50(3):235-246.
    [48]Wang, Z., Ma, W., Chabot, J.G. and Quirion, R. Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia [J]. FASEB J,2009,23(8): 2576-2586.
    [49]Watanabe, T., Yamamoto, T., Abe, Y., Saito, N., Kumagai, T. and Kayama, H. Differential activation of microglia after experimental spinal cord injury [J]. J Neurotrauma,1999,16(3):255-265.
    [50]Watkins, L. R., Hutchinson, M. R., Johnston, I. N. and Maier, S. F. Glia:novel counter-regulators of opioid analgesia [J]. Trends Neurosci,2005,28(12): 661-669.
    [51]Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J. and Maier, S. F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hy-peralgesia in the rat [J]. Pain,1997,71(3):225-235.
    [52]Watkins, L. R., Milligan, E. D. and Maier, S. F. Glial activation:a driving force for pathological pain [J]. Trends Neurosci,2001,24(8):450-455.
    [53]Wen, Z. H., Chang, Y. C., Cherng, C. H., Wang, J. J., Tao, P. L. and Wong, C. S. Increasing of intrathecal CSF excitatory amino acids concentration follow-ing morphine challenge in morphine-tolerant rats [J]. Brain Res,2004,995(2): 253-259.
    [54]Zhang, N., Rogers, T. J., Caterina, M. and Oppenheim, J. J. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons [J]. J Immunol,2004,173(1):594-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700