用户名: 密码: 验证码:
神经激肽B及其受体-3激活p38MAPK信号系统与子痫前期发病机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的1.研究正常妊娠、子痫前期胎盘组织中神经激肽B(neurokinin B, NKB)及其受体(neurokinin B receptor, NKR)在蛋白和mRNA水平的表达,以及正常妊娠、子痫前期孕妇血浆中神经激肽B的含量,籍此探讨神经激肽B和子痫前期的关系;
     2.研究活化状态的p38MAPK蛋白在正常与子痫前期胎盘中的表达,探讨NKB与p-p38MAPK表达的相关性。
     方法选择正常妊娠、轻度子痫前期、重度子痫前期患者各20例,采用酶联免疫吸附法(ELISA)定量检测孕妇血浆中NKB含量;采用伊红—苏木素(HE)染色,光镜观察正常妊娠和子痫前期胎盘结构的病理学改变;用免疫组织化学检测胎盘组织中NKB/NKR、p38MAPK蛋白的定位及定量表达;用逆转录聚合酶链反应(reverse transcription polymerasechain reaction, RT-PCR)检测胎盘组织中NKB/NKR mRNA的表达。
     结果1.轻度及重度子痫前期孕妇血浆中NKB水平明显高于正常孕妇;
     2.正常妊娠胎盘中NKB/NKR少量分布于合体滋养细胞、毛细血管内皮细胞,主要表达于胞浆和胞膜,p-p38MAPK少量分布于滋养细胞、毛细血管内皮细胞,主要表达于胞核;正常妊娠胎盘、轻度子痫前期、重度子痫前期组NKB表达分别为:0.078±0.005、0.082±0.011、0.101±0.022,轻、重度子痫前期胎盘中NKB蛋白表达较正常妊娠显著升高(P<0.05,P<0.01);正常妊娠胎盘、轻度子痫前期、重度子痫前期组NKR表达分别为:0.069±0.054、0.076±0.110、0.090±0.120,轻、重度子痫前期胎盘中NKR蛋白表达较正常妊娠显著升高(P<0.05,P<0.05);正常妊娠胎盘、轻度子痫前期、重度子痫前期组p-p38MAPK蛋白分别为:0.052±0.012、0.069±0.054、0.094±0.047,轻、重度子痫前期胎盘中p-p38MAPK蛋白表达较正常妊娠显著升高(P<0.05,P<0.01),;且正常妊娠胎盘中NKB与p-p38MAPK表达呈正相关(r=0.503,p<0.05);轻、重度子痫前期组中,NKB与p-p38MAPK水平亦呈正相关(r=0.515,p<0.05及r=0.657,p<0.01);
     3.正常妊娠胎盘中NKB与NKR3 mRNA表达水平分别是:0.560±0.248、0.441±0.206,而子痫前期中NKB与NKR3表达水平均明显增加,NKB轻度子痫前期组为0.772±0.142,重度子痫前期组为0.954±0.237 NKR3轻度子痫前期组为0.578±0.253,重度子痫前期组为0.804±0.316。
     结论NKB/NKR表达增高与子痫前期密切相关,p-p38MAPK与NKB/NKR的上调表达相互影响,可能是其参与子痫前期发病重要机制之一。目的1.研究缺氧对人早孕绒毛滋养细胞株(TEV-1) NKB/MKR3表达的影响;以及缺氧、P38MAPK抑制剂SB203580对P38MAPK激酶活性的影响,从细胞水平探讨NKB/MKR3、P38MAPK与子痫前期的关系;
     2.研究缺氧、SB203580干预对TEV-1细胞株凋亡、增殖能力的改变,深入研究缺氧、P38MAPK对滋养细胞生物学特性的调控。
     方法1.采用cocl2体外诱导TEV-1细胞化学缺氧,模拟滋养细胞体外缺氧模型,采用RT-PCR检测TEV-1中NKB/NKR3的mRNA表达;另外,分别用cocl2和SB203580干预TEV-1细胞株,研究TEV-1细胞中P38MAPK激酶活性的变化;
     2.采用二氯化钴、SB203580体外干预TEV-1细胞株后,流式细胞术检测不同时间点细胞凋亡率,噻唑兰(Methl thiazolyl tetrazolium, MTT)比色法测定不同时间点滋养细胞增殖力。
     结果1.随着缺氧时间的增加,滋养细胞NKB/NKR3 mRNA表达逐渐增加,至24小时达峰值,与缺氧1h、6h、12h相比显著升高,与正常培养24h相比也显著升高,其后缓慢下降;另外,cocl2处理滋养细胞20分钟后呈浓度依赖性地激活p38MAPK,而p38MAPK的选择性抑制剂SB203580呈浓度依赖性抑制p38MAPK的激酶活性;
     2.随着缺氧时间的延长滋养细胞早期凋亡率逐渐增加,尤其从24h开始(24h、48h、72h)与正常培养相比,凋亡率显著升高,而p38MAPK的选择性抑制剂SB可减弱缺氧诱导的滋养细胞早期凋亡率增加;随缺氧干预时间的延长,滋养细胞的增殖能力均受不同程度抑制,培养24h抑制滋养细胞增殖最明显,而p-p38MAPK抑制剂SB可减弱CoCl2对滋养细胞的增殖抑制作用。
     结论1.缺氧可诱导TVE-1细胞高表达NKB/NKR3,亦可呈浓度依赖性激活p38MAPK激酶活性;
     2.随缺氧时间增加,滋养细胞凋亡率逐渐增加,增殖能力逐渐下降,而SB可减弱缺氧对滋养细胞的二者作用,说明p38MAPK通路在缺氧诱导滋养细胞凋亡率增加和增殖力下降中发挥重要作用。
     目的研究NKB、SB203580对TEV-1细胞株侵袭力的影响,探求NKB、p38MAPK在子痫前期中的可能调控机制。
     方法1.研究NKB及SB203580对p38MAPK激酶活性的影响;
     2.研究不同浓度NKB、不同干预时间对TEV-1细胞株侵袭力的影响;
     3.研究SB203580对TEV-1细胞株侵袭力的影响。
     结果1.滋养细胞中NKB呈浓度依赖性激活p38MAPK,而p38MAPK的选择性抑制剂SB203580呈浓度依赖性抑制NKB对p38MAPK的激活;
     2.剂量依赖性分析表明,经不同浓度NKB处理48小时,滋养细胞侵袭指数随NKB浓度的增高而降低,0.8mg/L NKB作用48h后,滋养细胞侵袭力最弱;时间依赖性分析表明,经0.8mg/L NKB分别处理12、24、48小时,滋养细胞侵袭指数随NKB干预时间的延长而降低,干预48小时,滋养细胞侵袭力最弱;
     3.NKB可抑制TEV-1细胞的体外侵袭作用;单独给予SB203580能抑制滋养细胞的侵袭,SB203580亦能明显减弱NKB对滋养细胞的侵袭抑制作用。
     结论滋养细胞中NKB呈浓度依赖性激活p38MAPK,呈浓度、时间依赖性的抑制TEV-1细胞的侵袭力,而p38MAPK抑制剂SB203580可减弱NKB对滋养细胞的侵袭抑制作用。说明NKB可通过p38MAPK通路调控滋养细胞的体外侵袭能力。
Objective 1. To investigate the expression of neukinin B(NKB)/neuokinin B receptor(NKR) in placentas obtained from normal pregnancy and preeclampsia, and the relationship between NKB and preeclampsia; and the plasma NKB levels from normal and preeclampsia pregnant women;
     2. To investigate the the correlation of NKB and p-p38MAPK on the pathogenic mechanism of preeclampsia by detecting the expression of activating p38MAPK in placentas obtained from normal pregnancy and preeclampsia pregnant women;
     Methods 1.20 nomal pregnant women,20 mild preeclampsia, and 20 severe preeclampsia women were enrolled in the study, enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of plasma NKB levels from normal and preeclampsia women;
     2. HE staining observed the pathology changes in placental tissues from normal and preeclampsia women; Immuno-histochemistry observed the expression of NKB/NKR, p-p38MAPK protein in placentas, and reverse transcript polymerase chain reaction (RT-PCR) were used to detect the expression of NKB/NKR3 mRNA in placental tissues from 20 normal pregnant women and 40 preeclampsia patients.
     Result 1. The plasma NKB level in the preeclampsia was significantly higher than that of normal pregnancy;
     2. Under the microscopic examination, nodules of syncytiotrophoblast, fibrinoid necrosis and damage of umbilical venous endomembrane were observed by HE staining. However, these microstructural changes are rarely found in the normal placenta; The positive staining of NKB/NKR were mainly located at cell membrane, and cytoplasma of trophoblast, p-p38MAPK protein were mainly located at nuclear membrane of trophoblast. The levels of NKB/NKR expression of placenta from preeclampsia patients were significant higher than that of normal group, the levels of p-p38MAPK protein expression of placenta from preeclampsia patients were higher than that of normal group; and there was obvious positive correlation between NKB and p-p38MAPK protein from normal and preeclampsia women;
     3. Contrast with normal group, the expression of NKB and NKR3 mRNA in preeclampsia group was significantly higher.
     Conclusion The increase levels of NKB/NKR may play an important role in the pathogenic mechanism of preeclampsia. The activation of p38MAPK signal pathway interaction with the over expression of NKB may play an important role in the pathgenic mechanism of preeclampsia.
     Objective 1. Investigating the effect of CoCl2 induced hypoxia on the expression of NKB/NKR3 of human first-trimester extravillous trophoblast cell line(TEV-1) in order to evaluate the role of NKB/NKR3 in preeclampsia. To investigate the effects of the activation of p38MAPK which was intervened by hypoxia, inhibition of p38MAPK(SB203580);
     2. To investigate the effects of CoCl2 induced hypoxia, SB203580 on the apoptosis and proliferation of trophoblast in order to further study the regulation of NKB and p38MAPK on the biological characteristics of trophoblast.
     Methods 1. TEV-1 was cultured respectively in normal and hypoxia circumstance which induced by CoCl2. RT-PCR was used to detect expression of NKB/NKR3 mRNA of TEV-1; the activation of p38MAPK was detected by cell ELISA after the intervention of CoCl2 and SB203580;
     2. TEV-1 was cultured respectively in CoCl2 and SB203580 circumstance, flowcytomery was performed to evaluate apoptosis of TEV-1 at different time, methl thiazolyl tetrazolium(MTT) was performed to evaluate proliferation of TEV-1 at different time.
     Result 1. The levels of NKB/NKR3 mRNA in TEV-1 of both groups increase gradually as the culturing time goes on, and they all go to the top at the 24-hour cultured time. Hypoxia could up-regulate the expression of NKB/NKR3. In TEV-1 cells, p38MAPK was activated by CoCl2 in a dose-dependent manner, and SB203580 could weaken the p38MAPK activation also in a dose-dependent manner;
     2. Under the hypoxia condition the trophoblast apoptotic rate was increase with time goes on. They all go to the top at the 24-hour cultured time, and after that decrease very tardily, and the inhibition of p38MAPK(SB203580) could weaken this effect; Under the hypoxia condition the trophoblast proliferation was decrease with time. They all go to the lowest point at the 24-hour cultured time, and after that decrease very tardily, and the inhibition of p38MAPK(SB203580) could also weaken this effect.
     Conclusion 1. CoCl2 simulated hypoxia up-regulate the expression of NKB/NKR3 and activated p38MAPK in a dose-dependent manner;
     2. The trophoblast apoptotic rate was increase and the proliferation was decrease with time goes on, and SB could weaken these effects. p38MAPK signal pathway may have an important role in the hypoxia induced the increase of trophoblast apoptotic rate and the decrease of trophoblast proliferation.
     Objective To investigate the effects of human recombinant NKB protein, the inhibition of p38MAPK(SB203580) on the invasiveness of TEV-1, in order to further study the regulation mechanism of NKB and p38MAPK on the biological characteristics of trophoblast.
     Methods 1. Cell ELISA was used to detected the activation of p38MAPK after the intervention of CoCl2 and SB203580;
     2. The TEV-1 cell's invasiveness was detected by transwell at different concentration and different time culture of NKB;
     3. The effect of SB on TEV-1 cell's invasiveness was detected by transwell.
     Result 1. NKB up-regulate the activation of p38MAPK in a dose-dependent manner, and SB203580 could weaken the p38MAPK activation also in a dose-dependent manner;
     2. The trophoblast invasiveness was decrease with the concentration of NKB increase, and the trophoblast invasiveness was decrease with the NKB cultured time goes on;
     3. NKB could inhibit the in vitro invasion of TEV-1; SB203580 solely could increase the in vitro invasion of TEV-1; but NKB and SB203580 combined will decrease the in vitro invasion of TEV-1 obviously.
     Conclusion NKB up-regulate the activation of p38MAPK in a dose-dependent manner, inhibit the in vitro invasion of TEV-1 in the dose-dependent and time-dependent manner; the inhibition of p38MAPK(SB203580) could weaken the inhibition invation of TEV-1. NKB coule regulate the trophoblast invasion in vitro by p38MAPK signal pathway.
引文
[1]Page NM, Woods RJ, Gardiner SM, et al. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature,2000,405(6788):797-800.
    [2]Mastrangelo D, Mathison R, Huggel HJ, et al. The rat isolated portal vein:a preparation sensitive to neurokinins, particularly neurokinin B. Eur J Pharmacol,1987, 134(3):321-326.
    [3]D'Orleans-Juste P, Claing A, Telemaque S, et al. Neurokinins produce selective venoconstriction via NK-3 receptors in the rat mesenteric vascular bed. Eur J Pharmacol,1991,204(3):329-334.
    [4]Dianzani C, Collino M, Lombardi G, et al. Substance P increases neutrophil adhesion to human umbilical vein endothelial cells. Br J Pharmacol,2003,139(6):1103-1110.
    [5]Santos JM, Tatsuo MA, Turchetti-Maia RM, et al. Leukocyte recruitment to peritoneal cavity of rats following formalin injection:role of tachykinin receptors. J Pharmacol Sci,2004,94(4):384-392.
    [6]Leik CE, Walsh SW. Neutrophils infiltrate resistance-sized vessels of subcutaneous fat in women with preeclampsia. Hypertension,2004,44(1):72-77.
    [7]Kyriakis JM, Avruch J. Mammalian mitogen2activated p rotein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev,2001,81 (2): 807-869.
    [8]Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res, 2005,15(1):11-18.
    [9]KarinM, Hunter T. Transcriptional control by protein phosphorylation:Signal transmission from the cell surface to the nucleus. Curr Biol,1995,5 (7):747-757.
    [10]Carvalho H, Evelson P, Sigaud S, et al. Mitogen activated p rotein kinases modulate H2O2-induced apop tosis in primary rat alveolar epithelial cells. J Cel Biochem,2006, 92 (3):502-513.
    [11]Sakamoto R, Osada H, Iitsuka Y, et al. Profile of neurokinin B concentrations in maternal and cord blood in normal pregnancy. Clin Endocrinol,2003,58(5):597-600.
    [12]Brownbill P, Bell NJ, Woods RJ, et al. Neurokinin B is a paracrine vasodilator in the human fetal placental circulation. J Clin Endocrinol Metab,2003,88(5):2164-2170.
    [13]Sawicki G, Dakour J, Morrish DW. Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences. Proteomics,2003,3(10):2044-2051.
    [14]Almeida TA, Rojo J, Nieto PM, et al. Tachykinins and tachykinin receptors:structure and activityrelationships. Curr Med Chem,2004, 11(15):2045-2081.
    [15]LaMarca BB, Cockrell K, Sullivan E, et al. Role of endothelin in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension,2005, 46(1):82-86.
    [16]Kimura S, Okada M. Novel neuropeptides, neurokinin a and β isolatide from porcine spinal cord. Proc Japan Acad,1983,59:101-104.
    [17]Almeida TA, Rojo J, Nieto PM, et al. Tachykinins and tachykinin receptors:structure and activity relationships. Curr Med Chem,2004, 11(15):2045-2081.
    [18]Page NM, Woods RJ, Lowry PJ. A regulatory role for neurokinin B in placental physiology and pre-eclampsia. Regul Pept,2001,98(3):97-104.
    [19]Laliberte C, DiMarzo L, Morrish DW, et al. Neurokinin B causes concentration-dependent relaxation of isolated human placental resistance vessels. Regul Pept, 2004,117(2):123-126.
    [20]Grill S, Rusterholz C, Zanetti-Dallenbach R, Tercanli S, Holzgreve W, Hahn S, Lapaire O. Potential markers of preeclampsia-a review. Reprod Biol Endocrinol 2009,7:70-84.
    [21]Roberts JM. Endothelial dysfunction in preeclampsia. Semin Reprod Endocrinol 1998, 16:5-15.
    [22]Page N, Butlin D, Manyonda I, Lowry P. The development of a genetic profile of placental gene expression during the first trimester of pregnancy:a potential tool for identifying novel secreted markers. Fetal Diagn Ther 2000,15:237-245.
    [23]Page NM, Kemp CF, Butlin DJ, Lowry PJ. Placental peptides as markers of gestational disease. Reproduction 2002,123:487-495.
    [24]Page NM, Butlin DJ, Lomthaisong K, Lowry PJ. The characterization of pregnancy associated plasma protein-E and the identification of an alternative splice variant. Placenta 2001,22:681-687.
    [25]Page NM, Butlin DJ, Lomthaisong K, Lowry PJ. The human apolipoprotein L gene
    cluster:identification, classification, and sites of distribution. Genomics 2001, 74:71-78.
    [26]Page NM, Bell NJ, Gardiner SM, Manyonda IT, Brayley KJ, Strange PG, Lowry PJ. Characterization of the endokinins:human tachykinins with cardiovascular activity. Proc Natl Acad Sci USA 2003,100:6245-6250.
    [27]Page NM. New challenges in the study of the mammalian tachykinins. Peptides 2005, 26:1356-1368.
    [28]Patacchini R, Maggi CA, Holzer P. Tachykinin autoreceptors in the gut. Trends Pharmacol Sci 2000,21:166-166.
    [29]Page NM, Lowry PJ. Is'pre-eclampsia'simply a response to the side effects of a placental tachykinin?. J Endocrinol 2000,167:355-361.
    [30]Graham GJ, Stevens JM, Page NM, Grant AD, Brain SD, Lowry PJ, Gibbins JM. Tachykinins regulate the function of platelets. Blood 2004,104:1058-1065.
    [31]Perianin A, Snyderman R, Malfroy B. Substance P primes human neutrophil activation: a mechanism for neurological regulation of inflammation. Biochem Biophys Res Commun 1989,161:520-524.
    [32]Grant AD, Akhtar R, Gerard NP, Brain SD. Neurokinin B induces oedema formation in mouse lung via tachykinin receptor-independent mechanisms. J Physiol 2002, 543:1007-1014.
    [33]Wasseff S. Mechanisms of convulsions in eclampsia. Med Hypotheses 2009,72:49-51.
    [34]D'Anna R, Baviera G, Corrado F, Crisafulli A, Ientile R, Buemi M, Squadrito F. Neurokinin B and nitric oxide plasma levels in pre-eclampsia and isolated intrauterine growth restriction. BJOG 2004,111:1046-1050.
    [35]Geissbuehler V, Moser R, Zimmermann K, Hillermann R, Czarniecki J, Gebhardt SG, Eberhard J. Altered plasma neurokinin B levels in patients with pre-eclampsia. Arch Gynecol Obstet 2007,276:151-157.
    [36]Zulfikaroglu E, Ugur M, Taflan S, Ugurlu N, Atalay A, Kalyoncu S. Neurokinin B levels in maternal and umbilical cord blood in preeclamptic and normal pregnancies. J Perinat Med 2007,35:200-202.
    [37]Geissbuehler V, Hillermann R, Czarniecki J, Gebhardt SG, Forst S, Eberhard J, Moser R. Third trimester plasma neurokinin B levels in women with and without preeclampsia. J Matern Fetal Neonatal Med 2008,21:95-100.
    [38]Li ZM, Zhao Y, Chen Q, Zou L, Wang ZH. Relationship between neurokinin B and endothelin-1 and hypertensive disorders complicating pregnancy. Zhonghua Fu Chan Ke Za Zhi 2008,43:584-588.
    [39]Liu Y, Chen X, Chen H. Placental and umbilical cord levels of neurokinin B and neurokinin B receptor in pre-eclampsia. Int J Gynaecol Obstet 2009,107:58-59.
    [40]Page NM, Morrish DW, Weston-Bell NJ. Differential mRNA splicing and precursor processing of neurokinin B in neuroendocrine tissues. Peptides 2009,30:1508-1513.
    [41]Huppertz B. Placental origins of preeclampsia:challenging the current hypothesis. Hypertension 2008,51:970-975.
    [42]Page NM. Characterization of the gene structures, precursor processing and pharmacology of the endokinin peptides. Vascul Pharmacol 2006,45:200-208.
    [43]D'Anna R, Corrado F, Baviera G, Jasonni VM. Neurokinin B peptide levels in normal pregnancy. Eur J Obstet Gynecol Reprod Biol 2002,103:101-102.
    [44]Tjoa ML, Lomecky M, Martens F, van Wijk IJ, van Vugt JM, Blankenstein MA, Oudejans CB. Neurokinin B levels in maternal circulation during early pregnancy. Clin Chem Lab Med 2004,42:611-623.
    [45]Torricelli M, Giovannelli A, Leucci E, Florio P, De Falco G, Torres PB, Reis FM, Leoncini L, Petraglia F. Placental neurokinin B mRNA expression increases at preterm labor. Placenta 2007,28:1020-1023.
    [1]Cunningham FG威廉姆斯产科学.第21版.段涛主译.济南:山东科学技术出版社,2006.6592660.
    [2]W it RD, Boonst ra J, V erk leij AJ, et al. L arge scale screening fo r the pho spho rylat ion of MA PKinase in cells. J B iomo 1 Screening,1998,3 (4):277-284.
    [3]Szony BJ, Hegedus K, Bata Z, et al. Cytotrophoblast cells from human first-trimester p lacental villi:isolation, characterization, cultivation and research app lications. Orv Hetil, 2002,143(35):204722054.
    [4]PotgensAJG, Gaus G, Frank HG, et al. Characterization of trophoblast cell solation by a modified flow cytometry assay[J]. Placenta,2001,22:2512-2515.
    [5]Haigh T, Chen C, Jones CJ, Aplin JD. Studies of mesenchymal cells from 1st trimester human placenta:Expression of cytokeratin outside the trophoblast lineage. Placenta 1999,20:615-25.
    [6]Maldonado-Estrada J, Menu E, Roques P, Barre-Sinoussi F, Chaouat G. Evaluation of cytokeratin 7 as an accurate intracellular marker with which to assess the purity of human placental villous trophoblast cells by flow cytometry. J Immunol Methods.2004, 286:21-34.
    [7]Proll J, Blaschitz A, Hutter H, Dohr G. First trimester human endovascular trophoblast cells express both HLA-C and HLA-G. Am J Reprod Immunol 1999,42:30-6.
    [8]McMaster MT, Librach CL, Zhou Y, et al. Human placentalHLA-G expression is restricted to differentiated cytotrophoblasts. J Immunol 1995,154:3771-8.
    [9]Hirano T, Higuchi T, Ueda M, et al. CD9 is expressed in extravillous trophoblasts in association with integrin alpha3 and integrin alpha5. Mol Hum Reprod 1999,5:162-7.
    [10]Nagamatsu T, Fujii T, Kusumi M, et al. Cytotrophoblasts upregulate soluble fms-like tyrosine kinase-expression under reduced oxygen:an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology,2004, 145(11):4 838-45.
    [11]Graham CH, Postovit LM, Canning MT, et al. Role of oxygen intheregulation of trophoblast gene expression and invasion. Placenta,2000,21(5-6):443-50.
    [12]Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science,2001,294(5 545):1337-40.
    [13]Burton GJ, Hempstak J, Wetson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy. Obstet Gynecol,1999, 181(3):718-24.
    [14]Burton GJ, Wetson AL, Hempstak J, et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab,2002,87(6):2954-9.
    [15]Burton G, J auniaux E,Wat son A,et al. Matemalarteriaconn to the placenta intervillousspace during the first rimester of human pregnancy:the Boyd collection revisited. Am J Obstet Gynecol 1999,18 (3):7182724.
    [16]J auniaux E,Wat son AL, Hemp stock J,et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol,2000,157 (6):2 11122 122.
    [17]De Marco CS,Caniggia I.Mechanisms of oxygen sensing in human trophoblast cells.Placenta,2002,23:58.
    [18]Zhu H, Bunn HE Oxygen sensing and signaling impact on the regulation of physiologically important genes. Res physiol,1999,115:239-247.
    [19]吴维光,陈亚琼,王玉萍等.不同缺氧方法诱导BeWo细胞缺氧诱导因子1A表达的实验研究.武警医学院学报.2005,14(2):86-89.
    [20]Sakamoto R, Osada H, Iitsuka Y, et al. Profile of neurokinin B concentrations in maternal and cord blood in normal pregnancy. Clin Endocrinol,2003,58(5):597-600
    [21]Page NM, Woods RJ, Gardiner SM, et al. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature,2000,405(6788):797-800
    [22]Page NM, Kemp CF, Butlin DJ, Lowry PJ. Placental peptides as markers of gestational disease. Reproduction 2002,123:487-495.
    [23]Page NM, Butlin DJ, Lomthaisong K, Lowry PJ. The characterization of pregnancy associated plasma protein-E and the identification of an alternative splice variant. Placenta 2001,22:681-687.
    [24]Page NM, Butlin DJ, Lomthaisong K, Lowry PJ. The human apolipoprotein L gene cluster:identification, classification, and sites of distribution. Genomics 2001,74: 71-78.
    [25]Page NM, Bell NJ, Gardiner SM, Manyonda IT, Brayley KJ, Strange PG, Lowry PJ. Characterization of the endokinins:human tachykinins with cardiovascular activity. Proc Natl Acad Sci USA 2003,100:6245-6250.
    [26]Feng HC, Choy MY, Deng W, Establishment and characterization of a human first-trimester extravillous trophoblast cell line (TEV-1). J Soc Gynecol Investig.2005, 12(4):21-32.
    [27]Gary C,Normal FG,Kenneth JL,etal.Williams Obstetrics,21sted. Bejing:Science Press and McGraw-hill.2002:567.
    [28]胡蓉,李笑天,左仅等.缺氧促进妊娠早期细胞滋养细胞凋亡机理研究.中华围产医学杂志.2006,9(4):225-228.
    [29]Wen J, Watanabe K, Ma M, et al. Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats. Biol Pharm Bull, 2006,29(4):713-718.
    [30]Morissette M, AL Sweidi S, Callier S, et al. Estrogen and SERM neuroprotection in animal model of Parkinson's disease. Mol Cell Endocrinol,2008,290(1-2):60-69.
    [31]Noguchi K, Yamana H, Kitanaka C, Mochizuki T, kokubu A, Kuchino Y. Differential role of the JNK and p38MAPK pathway in c-Myc and s-Myc-mediated apoptosis. Biochem Biophys Res Commun,2000,267(1):221-227.
    [32]Michael B, Yalle MD PhD, Jian Xu MD, et al. Priming of the neutrophil respiratory burst is species-dependent and involves MAP kinase activation. Surgery,1999,126(2): 248-254.
    [33]Cobb MH, Goldsmith EJ. How MAP kinase are regulated. J Biol Chem,1995,270: 14843-14846.
    [34]Du A, Zhao B,Miao J, et al. Safrole oxide induces apop tosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells. B ioorg M ed Chem, 2006,14:2438-45.
    [1]Cunningham FG威廉姆斯产科学.第21版.段涛主译.济南:山东科学技术出版社,2006.659-660.
    [2]Dokras A, Gardner LM, Seftor EA, et al. Regulation of human cytotrophoblast morphogenesis by hepatocyte growth factor/scatter factor. Biol Rep rod,2001,65:
    1278-1288.
    [3]LaMarca HL, Dash PR, Vishnuthevan K, et al. Ep idermal growth factor stimulated extravillous cytotrophoblast motility is mediated by the activation of P I32K, Akt and both p38 and p42/44 mitogen2activated p rotein kinases. Hum Rep rod,2008,23: 1733-1741.
    [4]Ferretti C, Bruni L, Dangles-Marie V, et al. Molecular circuits shared by p lacental and cancer cells, and their implications in the p roliferative, invasive and migratory capacities of trophoblasts. Hum Rep rod Update,2007,13:121-141.
    [5]张曦倩,庞战军,陈士岭,邢福琪.P38MAPK抑制剂SB203580抑制人绒癌JAR细胞的体外侵袭作用.实用肿瘤杂志,2003,18(2):95-97
    [6]Kyriak is JM, A cruch J. Mammalian mitogen-act ivated protein kinase signal transduction pathways activat-ed by stress and inflammation. Physiol Rev,2001,81 (2):807-869.
    [7]Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and invitro invasion. Cancer Res,1998,58 (6):1135-1139.
    [8]Huang S, New L, Pan Z, et al. Urokinase plasmmogen activator/urokmase-specific surface recep to rexpression and matrix invasion by breast cancer cells requires const itut ive p 38 alpha m itogen-act ivated protein kinase activity. J Biol Chem,2000, 275(16):12266-12272.
    [9]Rajakumar A, Conrad KP. Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. Biol Reprod,2000,63(3):559-69.
    [10]Gorostizaga A, Brion L, Maloberti P, Maciel FC, Podesta EJ, Paz C. Heat shock triggers MAPK activation and MKP-1 induction in Leydig testicular cells. Biochem Biophys Res Commun,2005; 327:23-28.
    [11]Sanlorenzo L, Zhao B, Spight D, Denenberg AG, Page K, Wong HR, Shanley TP. Heat shock inhibition of lipopolysaccharide-mediated tumor necrosis factor expression is
    associated with nuclear induction of MKP-1 and inhibition of mitogenactivated protein kinase activation. Crit Care Med,2004; 32:2284-2292.
    [12]Jones CA, Greer-Phillips SE, Borkovich KA. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol Biol Cell,2007; 18:2123-2136.
    [13]Chen RE, Thorner J. Function and Regulation in MAPK Signaling Pathways, Biochim Biophys Acta,2007; 1773:1311-1340.
    [14]Thor sen M, Di Y, Tangemo C, Mor i l las M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tamas MJ. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell,2006; 17:4400-4410.
    [15]Bruchas MR, Land BB, Aita M, Xu M, Barot SK, Li S, Chavkin C. Stress-induced p38 mitogenactivated protein kinase activation mediates kappaopioid-dependent dysphoria. J Neurosci,2007; 27:11614-11623.
    [16]Sanchez-Arevalo Lobo VJ, Aceves Luquero CI, Alvarez-Vallina L, Tipping AJ, Viniegra JG, Hernandez Losa J, Parada Cobo C, Galan Moya EM, Gayoso Cruz J, Melo JV, Ramon y Cajal S, Sanchez-Prieto R. Modulation of the p38 MAPK (mitogenactivated protein kinase) pathway through Bcr/Abl:implications in the cellular response to Ara-C. Biochem J,2005; 387:231-238.
    [17]Lawrence CL, Botting CH, Antrobus R, Coote PJ. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast:regulating adaptation to citric acid stress. Mol Cell Biol,2004; 24:3307-3323.
    [18]Jin Y, Weining S, Nevo E. A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing:Prospects for saline agriculture. Proc Natl Acad Sci U S A,2005; 102:18992-18997.
    [19]Woll S, Windoffer R, Leube RE. p38 MAPKdependent shaping of the keratin cytoskeleton in cultured cells. J Cell Biol.2007; 177:795-807.
    [20]Malago JJ, Koninkx JF, van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones.2002; 7:191-199.
    [21]张曦倩.蜕膜及其它因子对滋养细胞侵入的影响及其与MAPK的关系[D].第一军医大学硕士研究生毕业论文,2002.31-40.
    [22]王永清,宓淑芳,李俊,等.细胞外基质金属蛋白酶诱导因子在子痫前期-子痫胎盘组织中表达的研究.中华妇产科杂志,2006,41(7):436-439.
    [23]王永清,李俊,尚涛,等.细胞外基质金属蛋白酶诱导因子在绒毛和胎盘组织中的表达.中华妇产科杂志,2005,40(7):457-459.
    [24]王永清,李俊,尚涛,等.细胞外基质金属蛋白酶诱导因子在人胎盘滋养层细胞的表达及其对滋养细胞分泌基质金属蛋白酶的调节.中华妇产科杂志,2006,41(8):560-562.
    [25]王抒,孙兰,杜冠华.p38MAPK—控制阿尔采末病进程的新靶点.中国药理学通报,2004,20(5):595-598.
    [26]陈旭林,夏照帆,韦多,贲道锋,王永杰.P38丝裂原活化蛋白激酶信号转导通路在严重烧伤大鼠枯否细胞肿瘤坏死因子α和白细胞介素1β产生中的作用.中华外科杂志,2005,43(3):185-188.
    [27]Lee JC, Laydon JT, McDonnel PC, et al.Indentification and characterization of a novel protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature,1994,372:739-746.
    [28]Kupferminc MJ, Peaceman AM, Wigton TR, et al. Tumor necrosis factor-α is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol,1994,170:1752-1759.
    [29]Reister F, Frank HG, Kingdom JC, et al. Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest,2001,81(8):1143-1152.
    [1]乐杰主编.妇产科学.第六版.北京:人民卫生出版社,2004.97-106.
    [2]Roberts JM. Endothelial dysfunction in preeclampsia. Semin Reprod Endocrinol,1998, 16:5-15.
    [3]林其德.妊娠高血压综合征的病因学研究现状[J].中华妇产科杂志,2001,36(4):197-198.
    [4]蒋荣珍,陈汉平.妊高征患者血管内皮细胞损伤的研究进展[J].广东医学,2003,24(9):1017-1019.
    [5]金镇,裴凌,王德智.肿瘤坏死因子α对脐静脉血管内皮细胞增殖和细胞内游离钙浓度的影响[J].中华妇产科杂志,2000,35(11):657-659.
    [6]杨菁,徐望明,谢青贞.妊娠高血压综合征患者和脐带血管内皮细胞损伤与肿瘤坏死因子的关系[J].中华妇产科杂志,2000,35:279-281.
    [7]Joyama S, Yoshida T, Koshikawa M. C4d and C4bp deposition along the glomerular capillary walls in a patient with preeclampsia. Am J Kidney Dis,2001,37(1):E6.
    [8]Alfirevic Z, Roberts D, Martlew, et al. How strong is the association between maternal thrombophilia and adverse pregnancy outcome? A systematic review. Eur J Obstet Gynecol Reprod Biol,2002,101(1):6.
    [9]Higgins JR, Papayianni A, Brady HR, et al. Circulating vascular cell adhesion molecular-1 in preeclampsia, gestational hypertension, and normal pregnancy: Evidence of selective dysregulation of vascular cell adhesion molecular-1 homeostasis in preeclampsia. Am J Obstet Gynecol,1998,179:464-469.
    [10]Frenette PS, Wanger DD. Adhesion molecular-part 1. N Eng J Med,1996,334:1526.
    [11]Krauss T, Emons G, Kuhn W, et al. Related articles, links predictive value of routine circulating soluble endothelial cell adhesion molecule measurements during pregnancy. Clin Chem,2002,48(9):1418.
    [12]Rester F, Frank HG, Kindom JC, etal.Macrophage-induced apoptosis limites endovascular trophoblast invasion in the uterine wall of preeclampsia woman. Lab Invest 2001,81(8):1143-1152.
    [13]Huppertz B:Placental origins of preeclampsia:challenging the current hypothesis. Hypertension 2008,51:970-975.
    [14]Scalera F, Dittrich R, Beckmann MW, et al. Related articles, links effect of endothelin-1 on intracellular glutathione and lipid peroxide availability and on the secretion of vasoactive substances by human umbilical vein endothelial cells. Eur J Clin Invest,2002,32(8):556.
    [15]Cadnapaphornchai MA, Morris KG Jr, et al. Related articles, links chronic NOS inhibition reverses systemic vasodilatation and glomerular hyper filtration in pregnancy. Am J Physiol Renal Physiol,2001,280(4):F59.
    [16]Soares MP, Seldom MP, Gregoire IP, et al. Heme oxygenase-1 modulatos the expression of adhesion molecules associated with endothelial cell activation. J Immunol,2004 Mar 15,172(6):3553-3563.
    [17]Yachie A, Niida Y, Wada T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest,1999,103:129-135.
    [18]Murohara T, Horowitz JR, Sliver M, et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular per me-ability via nitric oxide and prostacyclin. Circulation,1998,97:99-107.
    [19]王雁,尚涛,汤巍巍.妊娠高血压综合征患者血中循环内皮细胞及肝细胞生长因子的变化及意义.中华妇产科杂志,2004,39(1):18-20.
    [20]Solovey A, Gui L, Ramakrishnan S, et al. Sickle cell anemia as a possible state of enhanced anti-apoptotic tone:survival effect of vascular endothelial growth factor on circulation and unanchored endothelial cells. Blood,1999,93:3824-3830.
    [21]Kanfer A, Bruch JF, Nguyen G Increased placental ant fibrimolytic potential and deposit in pregnancy induced hypertension and preeclamps. Lab Invest.1996,14: 2532-2631.
    [22]Rogersr G, Throp JM. Pregnancy-induced hypertension:genesis of and response to endothelial injury and the role of endothelin-1. Obstet Gynecol Surv,1997,52(12):723-727.
    [23]Roberts GM. Endothelial dysfunction in preeclampsia. SeminRepord Endurinol.1998, 16:5215.
    [24]Grill S, Rusterholz C, Zanetti-Dallenbach R, Tercanli S,Holzgreve W, Hahn S, Lapaire O:Potential markers of preeclampsia-a review. Reprod Biol Endocrinol 2009,7:70-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700