用户名: 密码: 验证码:
叶酸代谢酶相关基因多态性与结直肠癌易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     结直肠癌是一种常见消化道恶性肿瘤之一。无论是世界范围内还是在我国,结直肠癌发病率和死亡率都居常见恶性肿瘤前列。我国虽属结直肠癌的低发区,但近年来,随着居民饮食结构、生活方式的改变,人均期望寿命明显延长,我国结直肠癌的发生率和死亡率均呈逐年上升趋势。
     结直肠癌的发生是一个多因素、多步骤的过程,主要受环境暴露因素的影响。流行病学研究表明与结直肠癌易感性有关的环境暴露因素主要包括高脂肪低纤维素饮食,煎炸熏烤食品,少食蔬菜及水果,吸烟、饮酒、饮用不洁水、体力活动较少或静坐时间过长等。此外,肿瘤遗传易感性在结直肠癌发生发展中也起着十分重要的作用,体内参与癌变的基因序列的改变,赋予个体不同的遗传背景。有关结直肠癌机体遗传易感性,与致癌物活化/失活代谢密切相关的代谢酶及与DNA损伤修复密切相关的DNA修复酶基因多态性己得到广泛的研究。
     近十多年来,叶酸代谢与恶性肿瘤的关系日益受到关注。叶酸代谢过程包括两个主要分支:核苷酸生物合成和甲基化反应,其代谢障碍可引起异常的DNA合成和DNA甲基化。叶酸、蛋氨酸、VitB2、VitB6和VitB12是叶酸代谢过程中的主要营养素,而亚甲基四氢叶酸还原酶(methylenetetrahydrofolate,MTHFR)、蛋氨酸合成酶(methionine synthase, MTR)、蛋氨酸合成酶还原酶(methionine synthase reductase,MTRR)和胸苷酸合成酶(thymidylate synthase, TS)是叶酸代谢过程中的关键酶。这些营养素水平或代谢酶活性发生变化,都可能影响叶酸代谢过程,破坏核苷酸生物合成和甲基化反应之间的平衡,参与结直肠癌的发生发展。
     目前,结直肠癌病因学研究中存在的主要问题是:一.大多数研究独立、分散进行,结果缺乏可比性;二.遗传易感性对不同人群结直肠癌危险影响的相关研究较少,许多基因的多态性对发病的影响亟待研究;三.缺乏全面考虑环境-膳食-基因间相互作用对发病综合影响的研究,仅考虑单一因素时很难作出明确的病因学结论。
     因此,将基因分析、营养研究和流行病学调查相结合,按统一的方法和标准,进行多地区、多种族的人群研究,将为得出结直肠癌明确的病因结论提供依据。为此,中、日、韩三国共同协作开展了大规模的人群结直肠癌膳食危险因素和保护因素与遗传易感性关系的系统研究。本课题作为该国际合作研究的组成部分,进行了本溪地区人群的环境膳食因素及遗传易感性对结直肠癌发病影响的研究。
     本研究应用以非配对的病例-对照研究,了解叶酸代谢酶基因多态性在人群中的分布频率及其在群体水平上与结直肠癌易感性的关系,并在此基础上,分析叶酸代谢酶基因-基因交互作用,以及基因多态性与相关环境暴露因素以及叶酸代谢相关营养素之间的交互作用与结直肠癌易感性的关系。
     材料与方法
     1.关联研究中,研究对象包括300例结直肠癌患者和300例非癌症对照,病例采病例来源于2003年1月至2005年6月期间在本溪地区钢铁集团公司总医院住院治疗的结直肠癌患者,对照来源于总医院的同期住院病人(无肿瘤史),对病例与对照组人群的性别、年龄等因素进行频数匹配。
     2.通过流行学问卷调查获得现场资料。调查内容包括:一般状况,生活方式与习惯,饮食习惯与种类以及既往疾病史等。通过询问各类食物的单次摄入量和摄入频率获得常见食物摄入量信息。
     3.每位研究对象同时抽取5ml外周血。采用Promage Winzard Genomic DNA Extract提取外周血有核细胞DNA;采用聚合酶链-限制性片断长度多态性(PCR-RFLP)方法检测MTHFRC677T、A1298C、MTRA2756G、MTRRA66G和TS3'-UTR、TS5'-UTR多态位点。CBS844ins68多态位点检测采用PCR方法扩增目的片段后直接经琼脂糖凝胶电泳分析。
     4.统计分析。分类变量在病例组和对照组的分布特征采用χ2检验;采用SPSS13.0统计软件的非条件Logistic回归模型计算各基因型与结直肠癌风险的相关性,分析时对性别、年龄、吸烟、饮酒等混杂因素进行分层,结果经性别、年龄、文化程度、肿瘤家族史、吸烟和饮酒等因素校正。采用卡方趋势检验判断是否存在剂量一反映关系,采用相乘模型来判断基因一基因和基因一环境之间是否存在交互,同时采用似然比检验来分析总的交互模型是否有意义。全部统计分析均在SPSS13.0 for Windows和Microsoft Excel 2007软件中进行。
     结果
     1.相关环境暴露因素与结直肠癌
     1.1大学及以上文化程度、家族肿瘤史是结直肠癌的危险因素(P<0.05)。
     1.2饮酒年限与结直肠癌发病风险有关(OR=1.54,95%CI,0.83-2.86);吸烟程度与结直肠癌发病风险有关(OR=1.76,95%CI,1.12-2.76)。被动吸烟者结直肠癌风险有统计学意义的升高(OR=1.87,95%CI,1.09-3.19)。无吸烟史,但有饮酒史者,个体患结直肠癌的风险显著升高,OR值为1.69(95%CI,1.03-2.78)。
     1.3膳食因素中:视黄醇、维生素C、总膳食纤维等营养素,水果、豆制品和绿叶蔬菜类食物包括花菜、白菜类和大蒜类食物,钾摄入对结直肠癌均表现出较强的保护效应;中等MUFA摄入组个体患结直肠癌的风险显著升高(OR=2.65,95%CI,1.47-4.57)
     2.叶酸代谢酶基因多态与结直肠癌
     2.1 MTHFR-677CT/1298AC组合基因型发生结直肠癌的风险增加(OR = 2.32,95%CI,1.10-4.92)。
     2.2 MTRR-66AG、MTRR-66GG和MTRR-66 G等位基因型发生结直肠癌的风险增加(OR=1.49,95%CI,1.02-2.18;OR=2.49,95%CI,1.35-4.60和1.62(95%CI,1.13-2.32)。
     2.3 TS5’-UTR 2R/2R基因型发生结直肠癌的风险下降, OR值为0.35(95%CI,0.12-0.98)。
     3.基因-基因交互作用与结直肠癌
     3.1 MTHFRC677T与MTRR A66G基因之间存在负交互作用,交互作用产生的ORint=0.46,似然比检验P=0.046。在MTHFR-677CC基因型的个体中,MTRR-66 AG或GG基因型发生结直肠癌风险增加,OR为2.84(95%CI,1.43-5.66),在MTHFR-677 CT或TT等位基因型的个体中,MTRR-66AA基因型发生结直肠癌风险增加,OR为1.93(95%CI,1.01-3.68),MTRR-66AG或GG等位基因型发生结直肠癌风险增加,OR为2.34(95%CI,1.33-4.14)。
     3.2在MTR-2756AA基因型的个体中,携带MTRR-66 AG或GG基因型者发生结直肠癌风险增加,OR为1.62(95%CI,1.05-2.51)。
     3.3在MTRR-66AG或GG基因型的个体中,携带TS5’-UTR 3Rg/3Rg基因型者发生结直肠癌风险增加,OR为3.24(95%CI,1.22-8.58)。
     3.4 TS5’-UTR 3Rg/3Rc+3Rg/2R+3Rc/2R+2R/2R+3Rc/3Rc组合基因型合并TS3’-UTR ins6等位基因携带者患结直肠癌的风险有一定程度下降,OR值为0.47(95%CI,0.22-1.19)。
     4.基因-环境交互作用与结直肠癌
     4.1吸烟-基因与结直肠癌:MTRR A66G基因多态与吸烟对结直肠癌发生的风险表现出明显的协同作用。在不吸烟者中,66G等位基因携带者发生结直肠癌的风险增加,OR为1.72(95%CI, 1.10-2.69);而在吸烟者中,66G等位基因携带者发生结直肠癌的风险增加,OR为2.08(95%CI, 1.16-3.71)。MTRR A66G基因型与吸烟之间存在负交互作用(ORint=0.78,似然比检验P=0.04)。吸烟程度与MTHFR C677T、A1298C,MTR A2756G,MTRRA66G,TS5’-UTR和TS3’-UTR基因之间均存在交互作用(P< 0.05)。以不吸烟者为参照组,吸烟<16包年者中,MTHFR-677 T等位基因型患结直肠癌的风险增加2.09(95%CI,1.07-4.04),MTRR-66 G等位基因型患结直肠癌的风险增加,OR为2.91(95%CI,1.51-5.62);而在吸烟≥16包年者中,MTHFR-1298AA基因和TS3’-UTR del6/del6基因型者患结直肠癌的风险明显下降,OR值分别为0.37(95%CI,0.17-0.80)和0.17(95%CI,0.05-0.56)。MTRR A66G基因型与吸烟年限之间存在负交互作用(ORint=0.70,似然比检验P=0.002),在吸烟年限小于26年者中,MTRR-66G等位基因型者患结直肠癌的风险增加,OR为4.55(95%CI,1.98-10.43)。
     4.2饮酒-基因与结直肠癌: MTRR A66G多态与饮酒之间存在正交互作用(ORint=1.07,似然比检验P=0.001)。MTHFR C677T、MTR A2756G、MTRR A66G与饮酒年限之间存在负交互作用,而MTHFR A1298C和TS5’-UTR与饮酒年限之间存在正交互作用。饮酒年限<20年者,MTRR-66G等位基因型发生结直肠癌的风险增加,OR为3.98(95%CI,1.54-10.24);而饮酒年限≥20年者,MTHFR-677AA、1298AA基因型发生结直肠癌的风险下降,OR值分别为0.24(95%CI,0.10-0.58)和0.58(95%CI,0.34-0.98)。
     4.3饮酒-吸烟-基因与结直肠癌:在饮酒的人群中,吸烟者并MTHFR -677T等位基因发生结直肠癌的风险增加,OR为4.61(95%CI,1.57-13.46),吸烟者并MTRR-66 G等位基因型发生结直肠癌的风险增加,OR为4.06(95%CI,1.53-10.79)。
     5.基因-膳食交互作用与结直肠癌
     5.1 MTHFRC677T与VitB12、蛋氨酸之间存在交互作用(P<0.05),ORint分别为1.07和1.12。在高VitB 12和蛋氨酸中、高摄入组中,677CC和677T等位基因携带者患直肠癌的风险显著下降。在VitB2中等摄入和叶酸高摄入组中,MTHFR-677T等位基因型发生结直肠癌的风险显著下降。
     5.2 MTHFR A1298C与VB12、叶酸摄入之间分别存在交互作用(P<0.05),在VB12高摄入组中,1298AA、AC或CC基因型者结直肠癌的风险均显著下降。
     5.3 MTRA2756G在高VitB12摄入水平组中,AA、G等位基因发生结肠癌的风险显著下降。
     5.4 MTRRA66G与VitB2、烟酸、VitB6、叶酸和蛋氨酸之间分别存在正交互作用(P<0.05),ORint分别为1.46、1.29、1.19、1.10和1.07,与VitB12摄入之间存在负交互作用(P<0.05),ORint为0.79。低和高VitB12摄入组,叶酸、蛋氨酸高摄入组中,66G等位基因携带者患直肠癌的风险显著下降,在高VitB12摄入组中,66AA基因型患结直肠癌的风险显著下降。
     5.5 TS3'-UTR多态和VitB12摄入之间存在交互作用(P<0.05),ORint为0.70,在高VitB12摄入组中,TS3'-UTR del6/del6和ins6等位基因发生结直肠癌的风险显著下降。
     5.6 TS5'-UTR多态和与VB2、叶酸和蛋氨酸摄入之间亦存在交互作用(P<0.05),ORint分别为1.35、1.41和1.47。在烟酸中等摄入组中,TS5’-UTR 3Rg/3Rc+3Rg/2R +3Rc/2R+2R/2R +3Rc/3Rc组合基因型发生结直肠癌的风险是3Rg/3Rg的2.65倍。
     结论
     本次以非配对人群为基础的病例对照研究揭示:
     1.结直肠癌的危险因素有大学以上文化程度、家族肿瘤史和被动吸烟、MTHFR-677CT/1298AC组合型基因、MTRR -66G等位基因;
     2.结直肠癌的保护因素有常吃蔬菜、水果,视黄醇、维生素C、总膳食纤维等营养素的摄入较高、TS5’-UTR 2R/2R基因型。
     3. MTHFRC677T和MTRR A66G基因多态,吸烟史与MTRR A66G,吸烟年限与MTRR A66G多态,吸烟程度与MTHFRC677T,吸烟程度与MTHFRA1298C,吸烟程度与MTRA2756G,吸烟程度与MTRRA66G,吸烟程度与TS3’-UTRHE,吸烟程度与TS5’-UTR基因,饮酒史与MTRR A66G多态,饮酒年限与MTHFRC677T,饮酒年限与MTHFRA1298C,饮酒年限与MTRA2756G,饮酒年限与MTRRA66G,饮酒年限与TS5'-UTR多态,饮食VitB2摄入和MTRRA66G,饮食VitB2摄入和TS5'-UTR多态,饮食烟酸摄入和MTRRA66G,饮食VitB6摄入和MTRR A66G,饮食VitB12摄入和MTHFRC677T、A1298C,饮食VitB12摄入和MTRR A66G,饮食VitB12摄入和TS3'-UTR多态,饮食叶酸摄入和MTHFRA 1298C,饮食叶酸摄入和MTRR A66G,饮食叶酸摄入和TS5'-UTR多态、饮食蛋氨酸摄入和MTHFRC677T,饮食蛋氨酸摄入和MTRR A66G,饮食蛋氨酸摄入和TS 5'-UTR多态之间存在交互作用,共同改变个体结直肠癌风险。
Background and Objective
     Colorectal cancer is one of the most common malignant tumors of human alimentary tract. lts incidence rate and mortality rate rank the forefront among all common cancers both domestic and worldwide. Although China is a low-incidence area, its incidence rate and mortality rate in China show a yearly increasing trend with changes in dietary structures and life styles of residents and prolongation of per capita expectancy in recent years.
     The accumulated evidence suggest the occurrence of colorectal cancer is a multi-factor involved and multi-stage process, which is mainly influenced by environmental exposures. Epidemiological studies indicated common environmental exposures related to the susceptibility of colorectal cancer are high-fat and/or low-fiber diet, fried, fumed, or baked food, low intakes of vegetables and fruits, smoking, drinking, low physical activity or long sedentary time.
     Associations between folate metabolism and cancers development showed more and more importance in last decade. Folate metabolic process includes two main branches, biological synthesis of nucleic acid and methylation process. Disturbances of folate metabolism can cause abnormal DNA synthesis and DNA methylation. Folate, methionine, VitB2, VitB6, and VitB12 are primary nutrients taking part in folic acid metabolism, and methylenetetrahydrofolate(MTHFR), methionine(MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TS) are primary enzymes enrolling in folic acid metabolism. The level or activity changes of the above-mentioned nutrients or metabolic enzymes might influence folate metabolism, cause inbalance between biological synthesis of nucleic acid and methylation reaction, and take part in colorectal carcinogenesis.
     Major defects in past etiology study may be: first, most study was carried out independently and separately which lack of comparability among mass of results; second, little was known about the linkage between cancer development and some special polymorphism in different ethnics demanding the necessity to get more evidence about it; third, it was hard to get absolute conclusion with single aspect taken into consideration, above all, study on the role of diet-environment-gene interaction in colorectal cancer is still rare.
     To carry out lagre scale cooperative population studies in different ethnics with standard methodology which integrated epidemiology, nutriology, molecularbiology and bioinformatics will help overcoming the problems remaining in CRC ,concluding clearer etiological evidence. So, a collaborative study was carried out in China, Japan and Korea for the purpose of revealing dietary protective / risk factors and relationship between genetic susceptibility and colorectal cancer in eastern Asian populations. The present study is part of the study with the aim to examine the effects of environmental and dietary factors, genetic susceptibility and their interactions on colorectal cancer in Benxi population.
     The purpose of the case-control study is to explore distributions of gene polymorphisms of folate metabolic enzymes in a natural population and associations between these polymorphisms and susceptibility to colorectal cancer at a population level, and further to analyze the role of gene-gene and gene-environment interactions in the development of colorectal cancer.
     Materials and Methods
     The cases were 300 patients who were histologically diagnosed as having CRCs between January 2003 and June 2005 at Benxi country steel group center hospital and not having any earlier history of cancer. Controls were inpatient who visited Benxi country steel group Center Hospital during the same period as cases and were confirmed to have no cancers and no prior history of cancers. Controls were randomly selected and matched for age and sex strata to cases .
     Field data were obtained by an epidemiological questionnaire investigation. The investigation contents mainly included common state , life styles and habits, dietary habits and categories,and past disease histories. Intake quantities of all common kinds of foods were obtained by asking subjects single time intake and intake frequencies of foods.
     A sample of venous blood (5m1) was taken from every subject. Genomic DNA was extracted from karyocyte by Promage Winzard Genomic DNA Extract . Genotypes of MTHFRC677T,A1298C,MTR A2756G,MTRR A66G ,TS3'-UTR and TS5'-UTR polymorphisms were determined by PCR-restriction fragment lengthen polymorphism method.Genotype of CBS844ins68 polymorphism was determined by directly electrophoreses of PCR products on agarose gels.
     Distributional characteristics of cases and controls were analyzed by X2 test, and the non-conditional Logistic model was applied to estimate the ORs delaminated by age, sex, smoking and drinking for colorectal cancer of related study factors ,adjusted for age sex status of smoking and drinking where appropriate.Chi-square trend test was applied to analyze dose-reaction relationship, subjugation model to ananlyze gene-gene and gene-environment interactions,likelihood test for calculating P values . All statistical analysis was processed by SPSS 13.0 for windows and Microsoft Excel 2007.
     Results
     1. Related environmental exposures and colorectal cancer
     1.1 For demographic factors, Subjects with education degrees of college and above, Family cancer history are significant risk factors of CRC .
     1.2 For smoking and drinking, long period drinkers had a statistically significant increased risk of CRC with OR value of 1.54 (95%Cl, 0.83-2.86). Smoking was associated with CRC at the OR of 1.76(95%CI,1.12-2.76).Passive smokers were at statistically significant increased risks of CRC with OR values of 1.87 (95%CI,1.09-3.19) .The drinkers without smoking history showed significantly increased risk to CRC with the OR value of 1.69(95%CI,1.03-2.78).
     1.3 For dietary factors,retinol,VitC,dietary total fibre,fruit,bean and its derivates,leafy vegetables including Cauliflover,cabbage and garlic are strong protective factors to CRC,as also potassium intake .Middle level of MUFA intake increased the risk of CRC significantly(OR=2.65, 95%CI,1.47-4.57)
     2. Gene polymorphisms of folate metabolic enzymes and colorectal cancer
     2.1 MTHFR-677CT/1298AC genes were associated with significantly increased risk of CRC(OR=2.32,95%CI, 1.10-4.92)
     2.2 MTRR-66AG,66GG and 66G allele are associated with increased risk of CRC(OR=1.49,95%CI, 1.02-2.18; OR=2.49,95%CI, 1.35-4.60 and OR=1.62,95%CI, 1.13-2.32, respectively).
     2.3 TS5’-UTR 2R/2R showed decreaed risk to CRC with the OR value of 0.35(95%CI, 0.12-0.98)
     3. Gene-gene interactions and colorectal cancer
     3.1 The interaction between MTHFR C677T and MTRR A66G showed a decreased risk of CRC with the ORint value of 0.46,and its likelihood test P is 0.046.Individuals carrying MTHFR-677CC showed increased risk of CRC eith the OR value of 2.84(95% CI,1.43-5.66), when also carrying MTRR-66AG or GG;Individuals carrying MTHFR-677CT or TT allele ,showed increased risk of CRC with the OR value of 1.93(95%CI,1.01-3.68)when also carrying MTRR-66AA,and 2.34(95%CI,1.33-4.14)when also carrying MTRR-66AG or GG allele..
     3.2 Individuals with MTR-2756AA,showed increased risk of CRC with the OR value of 1.62(95%CI,1.43-5.66), when also carrying MTRR-66AG or GG.
     3.3 Individuals with MTRR-66AG or GG allele showed increased risk of CRC with the OR value of 3.24(95%CI,1.22-8.58), when also carrying TS5’-UTR 3Rg/3Rg
     3.4 TS5’-UTR 3Rg/3Rc+3Rg/2R +3Rc/2R+2R/2R +3Rc/3Rc combined gene with TS3’-UTR ins6 allele was associated with decreased the risk of CRC with the OR of 0.47(95%CI,0.22-1.19)
     4. Gene-environment interactions and colorectal cancer
     4.1 Smoking-gene and CRC : MTRR A66G polymorphism and smoking showed synergistic effect on CRC. In non-smokers,the risk of CRC in 66G allele carrier was 1.72-fold to that in 66AA gene carrier ;While in smokers ,this increased to 2.08-fold,which means negative interaction between MTRR A66G and smoking (ORint=0.78, likelihood test P=0.04).Interactions were found between the extent of smoking and MTHFR C677T、A1298C,MTR A2756G,MTRRA66G,TS5’-UTR and TS3’-UTR.Refered to non-smokers,the risk of CRC increased by 2.09(95%CI,1.07-4.04) in smokers lower than 16 pack year with MTHFR-677T allele ,while MTRR-66G allele 2.91(95% CI,151-5.62). In MTHFR-1298AA gene and TS3’-UTR del6/del6 significantly decreased the risk CRC by 0.37 (95%CI,0.17-0.80) and 0.17(95%CI, 0.05-0.56), respectively .Negative interation between smoking years and MTRR A66G was found (ORint=0.70, likelihood test P=0.002).In smokers ,smoking less than 26years,MTRR-66G increased risk of CRC by 4.55(95%CI,1.98-10.43).
     4.2 Drinking-gene and CRC: Interation between drinking and MTRR A66G was found (ORint=1.07, likelihood test P=0.001). Negative interation between drinking extent and MTHFR A1298C or was found ,while interation between drinking extent and MTHFR C677T、MTR A2756G or TS5’-UTR was also found ;The risk of CRC increased by 3.98(95%CI,1.54-10.24) in drinkers lower than 20 years with MTRR-66G allele ,while In drinkers lower than 20 years with MTHFR-677AA and 1298AA gene significantly decreased the risk CRC by 0.24(95%CI,0.10-0.58)and 0.58(95%CI,0.34-0.98 ),respectively.
     4.3 Drinking-smoking-gene and CRC: In drinkers,the risk of CRC in smokers and MTHFR-677T allele increased by 4.61(95%CI,1.57-13.46) ,when also carrying MTRR-66G 4.06(95%CI,1.53-10.79).
     5. gene-meal interactions and colorectal cancer
     5.1 The interaction between MTHFR C677T and VitB12 or Methionine was showed , the ORint value of 1.07 and 1.12 ,respectively. In high VitB12 and middle、high Methionine intake groups, the risk of CRC in MTHFR-677CC and 677T allele significantly decreased . In middle VitB2 and high folate intake groups, the risk of CRC in MTHFR-677T allele significantly decreased .
     5.2 The interaction between MTHFR A1298C and VitB12 or folate was showed. In high VitB12 intake groups, the risk of CRC in MTHFR-1298AA and 1298C allele significantly decreased .
     5.3 In high VitB12 intake groups, the risk of CRC in MTR-2756AA and 2756G allele significantly decreased .
     5.4 The interaction between MTRR A66G and VitB2 or nicacid or VitB6 or folate or Methionine were showed, the ORint value of 1.46、1.19、1.10 and 1.07,respectively. In high VitB12 intake groups, the risk of CRC in MTHFR-1298AA and 1298C allele significantly decreased. while negative interation and VitB12 intake, the ORint value of 0.79. In lower、high VitB12 intake groups and in high folate、methionine intake groups, the risk of CRC in MTRR-66G allele significantly decreased . the risk of CRC in MTR-2756AA and 2756G allele significantly decreased . In high VitB12 intake groups, the risk of CRC in MTRR-66AA significantly decreased .
     5.5 The interaction between TS3’-UTR and VitB12 was showed, the ORint value of 0.70. In high VitB12 intake groups, the risk of CRC in TS3’-UTR del6/del6 and ins6 allele significantly decreased .
     5.6 The interaction between TS5’-UTR and VitB2、folate and methionine was showed, the ORint value of 1.35、1.41 and 1.47,respectively. In middle nicacid intake group, the risk of CRC in TS5’-UTR 3Rg/3Rc+3Rg/2R +3Rc/2R+2R/2R +3Rc/3Rc combine genes was 2.65-fold to than 3Rg/3Rg gene carrier .
     Conclusions
     1. The risk factors of CRC are education degrees of college and above, individual histories of cancer, passive smoking, MTHFR-677CT/1298AC combine genotype and MTRR -66G allele .
     2. The protective factors of CRC are often eating vegetable、fruit and higher retinol or VitC or dietary total fibre intake, TS5’-UTR 2R/2R genotype.
     3. There are interactions between MTHFR C677T and MTRR A66G polymorphisms, smoking history and MTRR A66G, smoking duration and MTHFRC677T,smoking duration and MTRRA66G, smoking extent and MTHFRC677T , smoking extent and MTHFR A1298C, smoking extent and MTRA2756G, smoking extent and MTRRA66G, smoking extent and TS3'-UTR, smoking extent and TS5'-UTR ,drinking history and MTRR A66G, drinking duration and MTHFRC677T、A1298C, drinking duration and MTRA2756C, drinking duration and MTRRA66C, drinking duration and TS5'-UTR polymorphism, dietary VitB2 intakes and MTRRA66G , dietary VitB2 intakes and TS5'-UTR, dietary nicacid intakes and MTRRA66G, dietary VitB6 intakes and MTRRA66G, dietary VitB12 intakes and MTHFR C677T or A1298C, dietary VitB12 intakes and MTRRA66G , dietary VitB12 intakes and TS3'-UTR polymorphism ,dietary folate intakes and MTHFR A1298C, dietary folate intakes and MTRRA66G, dietary folate intakes and TS5'-UTR, dietary methionine intakes and MTHFRC677T, as welL as dietary methionine intakes and MTRR A66G or TS5'-UTR.
     Gene-gene and gene-environment interactions in folate metabolic process can jointly influence individual susceptibility of CRC.
引文
1. Globocan 2002. http://www-depdb.iarc.fr/globocan/GLOBOframe.htm
    2. WHO IARC 2002. http://www-depdb.iarc.fr/globocan/GLOBOframe.htm
    3. Jemal A, Thomas A, Murray T, et al. Cancer statistics, 2002. CA Cancer J Clin 2002;52:23-47.
    4.杨月欣,王光亚,潘兴昌.中国食物成分表2002.北京:北京大学医学出版社,2002.
    5.杨月欣,何梅,潘兴昌.中国食物成分表2004.北京:北京大学医学出版社,2005.
    6. Stephens FO. The increased incidence of cancer of the pancreas: is there a missing dietary factor? Can it be reversed? Aust N Z J Surg 1999,69:331-5
    7. Jin F, Devesa SS, Zheng W, Blot WJ, Fraumeni JF Jr, Gao YT. Cancer incidence trends in urban Shanghai, 1972-1989. Int J Cancer 1993 ,53:764-70
    8. Farrow DC, Davis S. Diet and the risk of pancreatic cancer in men. Am J Epidemiol 1990, 132: 423-31
    9. Norell SE, Ahlbom A, Erwald R, JacobsonqLindberg-Navier I, Olin R, Tornberg B,Wiechel KL. Diet and pancreatic cancer: a case-control study. Amer J Epidemiol 1986, 124:894-902
    10. Longnecker DS. Abnormal methyl metabolism in pancreatic toxicity and diabetes. J Nutr 2002,132:2373S-765
    11. Stolzenberg-Solomon RZ, Pietinen P, Barrett MJ, Taylor PR, Virtamo J, Albanes D.Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol 2001,153:680-7
    12. Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, Hartman TJ, Tangrea JA, Rautalahti M, Sehlub J, Virtamo J, Taylor PR. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J Natl Cancer Inst 1999, 91: 535-1
    13. Frosst P, Blom HJ, Milos R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995,10:111-13
    14. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP,Blom HJ. A second common mutation in the methylenetetrahydrofolate reductase gene:an additional risk factor for neural-tube defects. Am J Hum Genet1998,62:1044-51
    15. Stren LL, Mason JB, Selhub J.Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol. Biomarkers Prev 2000,9:849-53
    16. Song C, Xing D, Tan W, Wei Q, Lin D. Methylenetetrahydrofolate reductase polymorphisms increase risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Res 2001,61:3272-5
    17. Miao X, Xing D, Tan W, Qi J, Lu W, Lin D.Susceptibility to gastric cardia adenocarcinoma and genetic polymorphisms in methylenetetrahydrofolate reductase in an at-risk Chinese population. Epidemiol Biomarkers Prev 2002, 11:1454-1458
    18. Giovannucci E, Chen J, Smith-Warner SA, Rimm EB, Fuchs CS, Palomeque C, Willett WC, Hunter DJ.Methylenetetrahydrofolate reductase, alcohol dehydrogenase, diet, and risk of colorectal adenomas.Cancer Epidemiol Biomarkers Prev 2003,12:970-9
    19. Esteller M, Garcia A, Martinez-Palones JM.Germ line polymorphisms in cytochrome-P450 lAl (C4887CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) gnes and endometrial cancer susceptibility. Carcinogenesis 1997, 18: 2307-11
    20. Skibola CF, Smith MT, Kane E. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated susceptibility to acute leukemia in adults. Proc Natl. Acad Sci USA 1999, 96:12810-5
    21. Leclerc D, Odievre M, Wu Q, Wilson A, Huizenga JJ, Rozen R, Scherer SW, Gravel RA.Molecular cloning, expression and physical mapping of the human methionine synthase reductase gene.Gene 1999, 240:75-88
    22. Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR, Rollinson S, Roman E, Cartwright RA, Morgan GJ.Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia.Blood 2002,99:3786-91
    23. Chen J, Stampfer MJ, Ma J, Selhub J, Malinow MR, Hennekens CH, Hunter DJ.Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction.Atherosclerosis 2001, 154:667-72
    24. Tsai MY, Bignell M,Yang F, Welge BGS Graham KJ, Hanson homocysteine: association of two prevalent NQ. Polygenic influence on plasma mutations,844ins68 of cystathionine beta-synthase and A(2756)G of methionine lowered plasma homocysteine levels. Atherosclerosis 2000,149:131-7
    25. Harmon DL, Shields DC, Woodside JV, McMaster D, Yarnell JW, Young IS, Peng K, Shane B, Evans AE, Whitehead AS. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 1999,17:298-309
    26. Morita H, Kurihara H, Sugiyama T, Hamada C, Kurihara Y, Shindo T, Oh-hashi Y, Yazaki Y Polymorphism of the methionine synthase gene:association with homocysteine metabolism and late-onset vascular diseases in the Japanese populafion. Arterioscler Thromb Vasc Biol 1999 ,19:298-302
    27. Jacques PF, Bostom AG Selhub J, Rich S, Ellison RC, Eckfeldt JH, Gravel RA, Rozen R; National Heart, Lung and Blood Institute, National Institutes of Health.Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study. Atherosclerosis 2003 ,166:49-55
    28. Klerk M, Lievers KJ, Kluijtmans LA, Blom HJ, den Heijer M, Schouten EGG Kok FJ, Verhoef P The 2756A>G variant in the gene encoding methionine synthase: its relation with plasma homocysteine levels and risk of coronary heart disease in a Dutch case-control study. Thromb Res 2003,110:87-91
    29. Goode EL, Potter JD, Bigler J, Ulrich CM.Methionine synthase D919G polymorphism, folate metabolism, and colorectal adenoma risk.Cancer Epidemiol Biomarkers Prev 2004 ,13:157-62
    30. Matsuo K, Suzuki Asakura S, Kaba R, Hamajima N, Ogura M,Kagami Y, Taji H, Kondoh E, Maeda S, Asakura S, Kaba S,Nakamura S,Seto M,Morishima Y, Tajima K.Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma.Blood 2001,97:3205-9
    31. Ma J, Stampfer MJ, Christensen B, Giovannucci E, Hunter DJ, Chen J, Willett WC, Selhub J, Hennekens CH, Gravel R, Rozen R.A polymorphism of the methioninesynthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 1999 ,8:825-9
    32. Leclerc D, Wilson A, Dumas R, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A 1998;95:3059-64.
    33. Hone N, Aiba H, Oguro K, Hojo H, Takeishi K.Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase.Cell Struct Funct 1995, 20:191-7
    34. Marsh, S., Collie-Duguid, E. S., Li, T., Liu, X., and McLeod, H. L. Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics 1999, 58: 310-2
    35. Kawakami K, Omura K, Kanehira E, Watanabe Y. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinalcancers.Anticancer Res 1999,19:3249-52
    36. Pullarkat ST, Stoehlmacher J, Ghaderi V, Xiong YP, Ingles SA, Sherrod A, Warren R, Tsao-Wei D, Groshen S, Lenz HJ.Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 2001, 1:65-70
    37. Kawakami K, Salonga D, Park JM, Danenberg KD, Uetake H, Brabender 3, Omura K, Watanabe GS Danenberg PV Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin Cancer Res 2001,7:4096-101
    38. Mandola, M. V, Stoehlmacher, J., Muller-Weeks, S., Cesarone G, Yu, M. C., Lenz,H. J. and Ladner, R. D. A novel single nucleotide polymorphism within the 5' tandem repeat polymorphism of the Thymidylate synthase gene Abolishes USF-1 binding and alters transcriptional activity. Cancer Res 2003, 63: 2898-904
    39. Kawakami, K., Watanabe, G Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of Thymidylate Synthase gene. Cancer Res 2003, 63: 6004-7
    40. Hori T, Ayusawa D, Shimizu K, Koyama H, Seno T.Chromosome breakage induced by thymidylate stress in thymidylate synthase-negative mutants of mouse FM3Acells.Cancer Res 1984,44:703-9
    41. Hu YC, Komorowski RA, Graewin S, Hostetter G Kallioniemi OP, Pitt HA, Ahrendt SA. Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clin Cancer Res 2003, 9:4165-71
    42. Chen J, Hunter DJ, Stampfer MJ, Kyte C, Chan W, Wetmur JCS Mosig R, Selhub J, Ma J.Polymorphism in the thymidylate synthase promoter enhancer region modifies the risk and survival of colorectal cancer.Cancer Epidemiol Biomarkers Prev 2003,12: 958-62
    43. Ulrich CM, Bigler J, Bostick R, Fosdick L, Potter JD.Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas.Cancer Res 2002 ,62:3361-4
    44. Hishida A, Matsuo K, Hamajima N, Ito H, Ogura M, Kagami Y, Taji H, Morishima Y, Emi N,Tajima K.Associations between polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and susceptibility to malignant lymphoma.Haematologica 2003,88:159-66
    45. Osias GL, Osias KB, Srinivasan R. Colorectal cancer in women: an equal opportunity disease. J Am Osteopath Assoc 2001;101:57-12.
    46. Gazelle GS, McMahon PM, Scholz FJ. Screening for colorectal cancer. Radiology 2000;215:327-35
    47. Neagoe A, Molnar AM, Acalovschi M, et al. Risk factors for colorectal cancer: an epidemiologic descriptive study of a series of 333 patients. Rom J Gastroenterol 2004; 13:187-93.
    48. Slattery ML, Edwards S, Curtin K, et al. Physical activity and colorectal cancer. Am J Epidemiol 2003;158:214-24.
    49. Nilsen TI, Vatten LJ. Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer 2041;84:417-22.
    50. Steindorf K, Tobiasz-Adamczyk B, Popiela T, et al. Combined risk assessment of physical activity and dietary habits on the development of colorectal cancer. A hospital-based case-control study in Poland Eur J Cancer Prev 2000;9:309-16
    51. Kato I, Tominaga S, Ikari A. A case-control study of male colorectal cancer in AichiPrefecture, Japan: with special reference to occupational activity level, drinking habits and family history. Jpn J Cancer Res 1990;81:115-21
    52. Samad AK, Taylor RS, Marshall T, et al. A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Colorectal Dis 2005;7:204-13.
    53. Colbert LH, Hartman TJ, Malila N, et al. Physical activity in relation to cancer of the colon and rectum in a cohort of male smokers. Cancer Epidemiol Biomarkers Prev 2001;10:265-8
    54. Shephard RJ, Shek PN. Potential impact of physical activity and sport on the inunune system--a brief review. Br J Sports Med 1994;28:247-55.
    55. Rogers AE. Selected recent studies of exercise, energy metabolism, body weight, and blood lipids relevant to interpretation and design of studies of exercise and cancer. Adv Exp Med Biol 1992;322:239-45
    56. McKeown-Eyssen Cx Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomarkers Prev 1994;3:687-95
    57. Boyle P, Langman JS. ABC of colorectal cancer: Epidemiology. Bmj 2000;321:805-8
    58. Singh S, Sheppard MC, Langman MJ. Sex differences in the incidence of colorectal cancer: an exploration of oestrogen and progesterone receptors. Gut 1993;34:61 I-5
    59. Ji BT, Devesa SS, Chow WH, et al. Colorectal cancer incidence trends by subsite in urban Shanghai, 1972-1994. Cancer Epidemiol Biomarkers Prev 1998;7:661-6.
    60. Stocks P. Cancer incidence in North Wales and Liverpool region in relation to habits and environmen,Br Emp Cancer Canpaign 35th Annual Report 1957;1:127.
    61. Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer lnst 1999;91:916-32
    62. Otani T, Iwasaki M, Yamamoto S, et al. Alcohol consumption, smoking, and subsequent risk of colorectal cancer in middle-aged and elderly Japanese men Center-based prospective study. Cancer Epidemiol Biomarkers Prev And 2003 women: Japan Public Health 12:1492-500.
    63. Wakai K, Kojima M, Tamakoshi K, et al. Alcohol consumption and colorectal cancer risk: findings from the JACC Study. J Epidemiol 2005;15 Supp12:S173-9
    64. Ji BT, Dai Q, Gao YT; et al. Cigarette and alcohol consumption and the risk ofcolorectal cancer in Shanghai, China. Eur J Cancer Prev 2002;11:237-44
    65. Cho E, Smith-Warner SA, Ritz J, et al. Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann Intern Med 2004;140:603-13
    66. Chen K, Jiang Q, Ma X, et al. Alcohol drinking and colorectal cancer: a population-based prospective cohort study in China. Eur J Epidemiol 2005;20:149-54
    67. Giovannucci E. An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2001;10:725-31.
    68. Satia-Abouta J, Galanko JA, Martin CF, et al. Associations of micronutrients with colon cancer risk in African Americans and whites: results from the North Carolina Colon Cancer Study. Cancer Epidemiol Biomarkers Prev 2003;12:747-54
    69. Slattery ML, Edwards S, Curtin K, et al. Associations between smoking, passive smoking, GSTM-1 NAT2, and rectal cancer. Cancer Epidemiol Biomarkers Prev 2003;12:882-9.
    70. Ravasco P, Monteiro-Grillo I, Marques Vidal P, et al. Nutritional risks and colorectal cancer in a Portuguese population. Nutr Hasp 2005;20:165-72.
    71. Lilla C, Verla-Tebit E, Risch A, et al. Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption. Cancer Epidemiol Biomarkers Prev 2006;15:99-i07
    72. Giovannucci E, Martinez ME. Tobacco, colorectal cancer, and adenomas: a review of the evidence. J Natl Cancer Inst 1996;88:1717-30.
    73. Werner K. Lutz. Carcinogens in the diet vs. overnutrition: Individual dietary habits, malnutrition, and genetic susceptibility modify carcinogenic potency and cancer risk. Mutation Research, 1999; 443, (1-2): 251-258.
    74. Demarini David M. Dietary interventions of human carcinogenesis. Mutat Res, 1998; 400: 457-465.
    75. Manson M M, Benford D J. Factors influencing the carcinogenicity of food chemicals. Toxicology, 1999; 134 (2-3): 93-108.
    76. Lipkin Martin, Reddy Bandaru, Newmark Harold, Sergio A. Lamprecht. Dietary factors in human colorectal cancer. Annu Rev Nutr, 1999; 19: 545–586.
    77. Hughes R, Magee E A, Bingham S. Protein degradation in the large intestine: relevanceto colorectal cancer. Curr Issues Intest Microbiol, 2000; 1 (2): 51-5
    78. Debruyne P R, Bruyneel E A, Li X, Zimber A. Gespach C, Mareel M M. The role of bile acids in carcinogenesis. Mutat Res, 2001; 480-481: 359-369.
    79. Bruce W R, Wolever T M, Giacca A. Mechanisms linking diet and colorectal cancer: the possible role of insulin resistance. Nutr Cancer, 2000; 37 (1): 19-26.
    80. Lin Jennifer, Zhang Shumin M, Cook Nancy R, Lee I Min, Buring Julie E. Dietary Fat and Fatty Acids and Risk of Colorectal Cancer in Women. Am J Epidemiol, 2004; 160 (10): 1011-1022.
    81. Llor X, Pons E, Roca A, Alvarez M, Mane J, Fernandez Banares F, Gassull M A. The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin Nutr, 2003; 22 (1): 71-79.
    82. Franceschi S, Favero A. The role of energy and fat in cancers of the breast and colon-rectum in a Southern European population. Ann Onco, 1999; 10 (Suppl 6): S61–S63.
    83. Jarvinen R, Knekt P, Hakulinen T, Rissanen H, Heliovaara M. Dietary fat, cholesterol and colorectal cancer in a prospective study. Br J Cancer, 2001; 85 (3): 357-361.
    84. Giovannucci E, Rimm E B, Stampfer M J, et al. Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer Res, 1994; 54: 2390–2397.
    85. Goldbohm RA, van den Brandt PA, van‘t Veer P, et al. A prospective cohort study on the relation between meat consumption and the risk of colon cancer. Cancer Res 1994; 54: 718–723.
    86. Bostick R M, Potter J D, Kushi L H, et al. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control 1994;5: 38–52.
    87. Howe GR, Aronson KJ, Benito E, et al. The relationship between dietary fat intake and risk of colorectal cancer: evidence from the combined analysis of 13 case-control studies. Cancer Causes Control 1997;8:215–228.
    88. Flood A, Velie E M, Sinha R, et al. Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women. Am J Epidemiol 2003;158: 59–68.
    89. Willett Walter, Stampfer M J. Total energy intake: Implications for epidemiologic analyses. Am J Epidemiol, 1986, 124 (1): 17-27.
    90. Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakulinen T. Body iron stores and risk of cancer. Int J Cancer, 1994; 56 (3): 379-382.
    91. Sempos C T. Iron and colorectal cancer. Nutrition Review, 2001; 59 (10): 344-346.
    92. Seril D N, Liao J, Ho K L, Warsi A, Yang C S, Yang G Y. Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig Dis Sci, 2002; 47 (6): 1266-1278.
    93. Xi Huang. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res, 2003; 533 (1-2): 153-171.
    94. More Details on Red Meat, Colon Cancer Link: American Cancer Society, 2005:143-I44
    95. Tiemersma EW,Kampman E, Bueno de Mesquita HB, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control 2002;13:383-93
    96. English DR, Maclnnis RJ, Hodge AM, et al. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2004;13:1509-14
    97. Chao A, Thun MJ, Connell CJ, et al. Meat consumption and risk of colorectal cancer. Jama 2005;293:172-82.
    98. Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res 2003;63:2358-60.
    99. Bingham SA, Hughes R, Cross AJ. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J Nutr 2002; 132: 3522S-35255
    100. Sugimura T. Nutrition and dietary carcinogens. Carcinogenesis 2000;21:387-95.
    101. Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk; a meta-analytical approach. Cancer Epidemiol Biomarkers Prev 2001;10:439-46.
    102. Kodama N, Komuta K, Nanba H. Effect of Maitake (Grifola frondosa) D-Fraction on the activation of NK cells in cancer patients. .J Med Food, 2003; 6 (4): 371-377.
    103. Sugimura T. Nutrition and dietary carcinogens. Carcinogenesis, 2000; 21 (3): 387-395.
    104.蒋沁婷,陈坤,邹艳,赵玉婉,马新源,李其龙,姚开颜,郑树.随访队列的结直肠癌危险因素的病例-对照研究.肿瘤, 2004; 24 (1): 6-10.
    105. Hill M. Meat, cancer and dietary advice to the public. Eur J Clin Nutr, 2002; 56 (Suppl
    1): S36-41. 106. Hill,-M-J. Cereals, cereal fibre and colorectal cancer risk: a review of the epidemiological literature. Eur J Cancer Prev, 1997; 6 (3): 219-225.
    107. Story J A, Savaiano D A. Dietary fiber and colorectal cancer: what is appropriate advice? Nutr Rev, 2001; 59 (3 Pt 1): 84-86.
    108. Key T J, SchatzkinA, Willett W C, Allen N E, Spencer E A, Travis R C. Diet, nutrition and the prevention of cancer. Public Health Nutr, 2004; 7 (1A): 187-200.
    109. Levi F, Pasche C, Lucchini F, La Vecchia C. Dietary fibre and the risk of colorectal cancer. Eur J Cancer, 2001; 37 (16): 2091-2096.
    110. Bingham S A, Day N E, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet, 2003; 361 (9368): 1496-1501.
    111. Peters U, Sinha R, Chatterjee N, Subar A F, Ziegler R G, Kulldorff M, Bresalier R, Weissfeld J L, Flood A, Schatzkin A, Hayes R B. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet, 2003; 361 (9368): 1491-1495.
    112. Kampman E, Arts I C, Hollman P C. Plant foods versus compounds in carcinogenesis; observational versus experimental human studies. Int J Vitam Nutr Res, 2003; 73 (2): 70-78.
    113. Mai V, Flood A, Peters U, Lacey J V, Jr Schairer C, Schatzkin A. Dietary fibre and risk of colorectal cancer in the Breast Cancer Detection Demonstration Project (BCDDP) follow-up cohort. Int J Epidemiol, 2003; 32 (2): 234-239.
    114. Terry P, Giovannucci E, Michels K B, Bergkvist L, Hansen H, Holmberg L, Wolk A. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst, 2001; 93 (7): 525-533.
    115. McMillan L, Butcher S K, Pongracz J, Lord J M. Opposing effects of butyrate and bile acids on apoptosis of human colon adenoma cells: differential activation of PKC and MAP kinases. Br J Cancer, 2003; 88 (5): 748-753.
    116. Kim Y I. AGA technical review: impact of dietary fiber on colon cancer occurrence.Gastroenterology, 2000; 118 (6): 1235-1257.
    117. Slattery M L, Neuhausen S L, Hoffman M, Caan B, Curtin K, Ma K N, Samowitz W. Dietary calcium, vitamin D, VDR genotypes and colorectal cancer. Int J Cancer, 2004; 111 (5): 750-756.
    118. Franceschi S. Nutrients and food groups and large bowel cancer in Europe. Eur J Cancer Prev, 1999; 8 (Suppl 1): S49-52.
    119. La Vecchia C, Altieri A, Tavani A. Vegetables, fruit, antioxidants and cancer: a review of Italian studies. Eur J Nutr, 2001; 40 (6): 261-267.
    120. Jansen M C, Bueno de Mesquita H B, Buzina R, Fidanza F, Menotti A, Blackburn H, Nissinen A M, Kok F J, Kromhout D. Dietary fiber and plant foods in relation to colorectal cancer mortality: the Seven Countries Study. Int J Cancer, 1999; 81 (2): 174-179.
    121. Jacobs E T, Jiang R, Alberts D S, Greenberg E R, Gunter E W, Karagas M R, Lanza E, Ratnasinghe L, Reid M E, Schatzkin A, Smith Warner S A, Wallace K, Martinez M E. Selenium and colorectal adenoma: results of a pooled analysis. J Natl Cancer Inst, 2004; 96 (22): 1669-1675.
    122. Norat T, Riboli E. Dairy products and colorectal cancer. A review of possible mechanisms and epidemiological evidence. European J Clinical Nutrition, 2003; 57 (1): 1-17.
    123. Voorrips LE, Goldbohm RA, van Poppel Q et al. Vegetable and加it consumption and risks of colon and rectal cancer in a prospective cohort study: The Netherlands Cohort Study on Diet and Cancer. Am J Epidemiot 2000;152:1081-92.
    124. Terry P, Giovannucci E, Michels KB, et al. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst 2001;93:525-33.
    125. Lin J, Zhang SM, Cook NR, et al. Dietary intakes of fruit, vegetables, and fiber, and risk of colorectal cancer in a prospective cohort of women (United States). Cancer Causes Control 2005;16:225-33.
    126. Flood A, Caprario L, Chaterjee N, et al. Folate, methionine, alcohol, and colorectal cancer in a prospective study ofwomen in the United States. Cancer Causes Control 2002;13:551-61
    127. Zhang B, Li X, Nakama H, et al. A case-control study on risk of changing foodconsumption for colorectal cancer. Cancer Invest 2002;20:458-63.
    128. Satia-Abouta J, Galanko JA, Martin CF, et al. Food groups and colon cancer risk in African-Americans and Caucasians. Int J Cancer 2004;109:728-36.
    129. Witte JS, Longnecker MP, Bird CL, et al. Relation of vegetable, fruit, and grain consumption to colorectal adenomatous polyps. Am J Epidemiol 1996;144:1015-25.
    130. Eastwood MA. Interaction of dietary antioxidants in vivo: how fruit and vegetables prevent disease? Qjm 1999;92:527-30.
    131. Mark Lucock. Folic Acid: Nutritional Biochemistry, Molecular Biology,and Role in Disease Processes. Mol Genet Metaboli, 2000; 71 (1-2): 121-138.
    132. Little J, Sharp L. Colorectal neoplasia and genetic polymorphisms associated with folate metabolism. Eur J Cancer Prev, 2002; 11 (1): 105-110.
    133. Johnson WG. DNA polymorphism-diet-cofactor-development hypothesis and the gene-teratogen model for schizophrenia and other developmental disorders. Am J Med Genet, 1999; 88 (4): 311-323.
    134. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000, 50:7-33
    135. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R.A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity.Mol Genet Metab 1998,64:169-72
    136. Stern LL, Mason JB, Selhub J, Choi SW.Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene.Cancer Epidemiol Biomarkers Prev 2000 ,9:849-53
    137. Laird PW, Jaenisch R. DNA methylation and cancer.Hum Mol Genet 1994,3 S:1487-95
    138. James SJ, Pogribna bny IP, Pogribna M, Miller BJ, Jernigan S, Melnyk S. Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis.J Nutr 2003,133:37405-75
    139. Jhaveri MS, Wagner C, Trepel JB. Impact of extracellular folate levels on global geneexpression.Mol Pharmacol 2001,60:1288-95
    140. Kim YI, Pogribny IP, Basnakian AC; Miller JW, Selhub J, James SJ, Mason JB.Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53tumor suppressor gene.Am J Clin Nutr 1997 ,65:46-52
    141. Stegmann K, Ziegler A, Ngo ET, Kohlschmidt N, Schroter B, Ermert A, Koch MC.Linkage disequilibrium of MTHFR genotypes 677C/T 1298A/C in the German population and association studies in probands with neural tube defects(NTD).Am J Med Genet 1999,87:23-9
    142. Shen H, Spitz MR, Wang LE, Hong WK, Wei Q.Polyrnorphisms of methylene-tetrahydrofolate reductase and risk of lung cancer: a case-control study.Cancer Epidemiol Biomarkers Prev 2001,10:397-401
    143. Meisel C, Cascorbi I, Gerloff T, Stangl V, Laule M, Muller JM, Wernecke KD, Baumann q Roots I, Stangl K. Identification of six methylenetetrahydrofolate reductase (MTHFR) genotypes resulting from common polymorphisms: impact on plasma homocysteine levels and development of coronary artery disease.Atherosclerosis 2001,154:651-8
    144. Chen J, Ma J, Stampfer MJ, Palomeque C, Selhub J, Hunter DJ. Linkage disequilibrium between the 677C>T and 1298A>C polymorphisms in human methylenetetrahydrofolate reductase gene and their contributions to risk of colorectal cancer.Pharmacogenetics 2002,12:339-42
    145. Drennan CL, Huang S, Drummond JT, et al. How a protein binds B12: A 3.0 A X-ray structure of B 12-binding domains of methionine synthase. Science 1994;266:1669-74.
    146. Matsuo K, Hamajima N, Hirai T, et al. Methionine Reductase Gene A66G Polymorphism is Associated with Risk of Colorectal Cancer. Asian Pac J Cancer Prev 2002;3:353-359
    147. Cumin K, Bigler J, Slattery ML, et al. MTHFR C677T and A1298C polymorphisms: diet, estrogen, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 2004;13:285-92.
    148. Ma J, Stampfer MJ, Christensen B, et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 1999;8:825-9.
    149. Ulvik A,Vollset SE, Hansen S, et al. Colorectal cancer and the methylenetetrahydrofolate reductase 677C→T and methionine synthase 2756A→G polymorphisms: a study of 2,168 case-control pairs from the JANUS cohort. CancerEpidemiol Biomarkers Prev 2004;13:2175-80.
    150. Leclerc D, Wilson A, Dumas R, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A 1998;95:3059-64.
    151. Le Marchand L, Donlon T, Hankin JH, et al. B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control 2002;13:239-48
    152. Kraus JP. Biochemistry and molecular genetics of cystathionineβ-synthase deficiency. Eur J Pediatr, 1998; 157(suppl 2): S50-S53.
    153. Dekou V, Gudnason V, Hawe E, et al. Gene-environment and gene-gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men. Thromb Haemost, 2001; 85 (1): 67-74.
    154. Silaste ML, Rantala M, Sampi M, et al. Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J Nutr, 2001; 131 (10): 2643-2647.
    155. Geisel J, Zimbelmann I, Schorr H, et al. Genetic defects as important factors for moderate hyperhomocysteinemia. Clin Chem Lab Med, 2001; 39: 698-704.
    156. Kluijtmans LAJ, Boers GHJ, Trijbels FJM, et al. A common 844INS68 insertion variant in the cystathionineβ-synthase gene. Biochem Mol Med, 1997; 62 (1): 23-25.
    157. Tsai MY, Yang F, Bignell M, et al. Relation between plasma homocysteine concentration, the 844ins68 variant of the cystathionineβ-synthase gene, and pyridoxal-5′-phosphate concentration.Mol Genet Metab, 1999; 67 (4): 352-356.
    158. Franco RF, Elion J, Lavinha J, et al. Heterogeneous ethnic distribution of the 844ins68 in the cystathionineβ-synthase gene. Hum Hered, 1998; 48 (6): 338-342.
    159. Richter B, Stegmann K, Roper B, et al. Interaction of folate and homocysteine pathway genotypes evaluated in susceptibility to neural tube defects (NTD) in a German population. J Hum Genet, 2001; 46 (3): 105-109.
    160. Linnebank M, Homberger A, Junker R, et al. High prevalence of the 1278T mutation of the human cystathionineβ-synthase detected by a novel screening application. Thromb Haemost, 2001; 85 (6): 986-988.
    161. Grossmann R, Geisen U, Merati G, et al. Genetic risk factors in young adults with 'cryptogenic' ischemic cerebrovascular disease. Blood Coagul Fibrinolysis, 2002; 13(7): 583-90.
    162. Sperandeo MP, De Franchis R, Andria G, et al. A 68-bp insertion found in a homocystinuric patient is a common variant and is skipped by alternative splicing of the cystathionineβ-synthase mRNA. Am J Hum Genet, 1996; 59 (6): 1391-1393.
    163. Giusti B, Camacho-Vanegas O, Attanasio M, et al. Microheterogeneity in the distribution of the 844ins68 in the cystathionineβ-synthase gene in Italy. Thromb Res, 1999; 94 (4): 249-254.
    164. Papa A, De Stefano V, Danese S, et al. Hyperhomocysteinemia and prevalence of polymorphisms of homocysteine metabolism-related enzymes in patients with inflammatory bowel disease. Am J Gastroenterol, 2001; 96 (9): 2677-2682.
    165. De Franchis R, Fermo I, Mazzola G, et al. Contribution of the cystathionineβ-synthase gene (844ins68) polymorphism to the risk of early-onset venous and arterial occlusive disease and of fasting hyperhomocysteinemia. Thromb Haemost, 2000; 84 (4): 576-82.
    166. Olivieri O, Friso S, Trabetti E, et al. Homocysteine and atheromatous renal artery stenosis. Clin Exp Med, 2001; 1 (4): 211-218.
    167. Folsom AR, Nieto FJ, McGovern PG, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins. Circulation, 1998; 98 (3): 204-210.
    168. Tsai MY, Bignell M, Schwichtenberg K, et al. High prevalence of a mutation in the cystathionineβ-synthase gene. Am J Hum Genet, 1996; 59 (6): 1262-1267.
    169. Shannon B, Gnanasampanthan S, Beilby J, et al. A polymorphism in the methylene- tetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut, 2002; 50 (4): 520-534.
    170. Volcik KA, Shaw GM, Zhu H, et al. Associations between polymorphisms within the thymidylate synthase gene and spina bifida. Birth Defects Res A Clin Mol Teratol 2003;67:924-8
    171. Hori T, Ayusawa D, Glover TW, et al. Expression of fragile site on the human X chromosome in somatic cell hybrids between human fragile X cells and thymidylate synthase-negative mouse mutant cells. Jpn J Cancer Res 1985;76:977-83.
    172. Hori T,Ayusawa D, Shimizu K, et al. Chromosome breakage induced by thymidylate stress in thymidylate synthase-negative mutants of mouse FM3A cells. Cancer Res1984;44:703-9.
    173. Liu J, Schmitz JC, Lin X, et al. Thymidylate synthase as a translational regulator of celiular gene expression. Biochim Biophys Acta 2002;1587:174-82.
    174. Horie N, Aiba H, Oguro K, et al. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 1995;20:191-7.
    175. Kawakami K, Omura K, Kanehira E, et al. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res 1999;19:3249-52.
    176. Chen J,Hunter DJ, Stampfer MJ, et al. Polymorphism in the thymidylate synthase promoter enhancer region modifies the risk and survival of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2003;12:958-62
    177. Adleff V, Hitre E, Koves I, et al. Heterozygote deficiency in thymidylate synthase enhancer region polymorphism genotype distribution in Hungarian colorectal cancer patients. Int J Cancer 2004;108:852-6.
    178. Ulrich CM, Bigler J, Bostick R, et al. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res 2002;62:3361-4.
    179. Chen J, Kyte C, Chan W, et al. Polymorphism in the thymidylate synthase promoter enhancer region and risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 2004;13:2247-50.
    180. Le Marchand L, Wilkens LR, Kolonel LN, et al. The MTHFR C677T polymorphism and colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2005;14: I 198-203.
    181. Cumin K, Bigler J, Slattery ML, et al. MTHFR C677T and A1298C polymorphisms: diet, estrogen, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 2004;13:285-92.
    182. Keku T, Millikan R,Worley K, et al. 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and colon cancer in African Americans and whites. Cancer Epidemiol Biomarkers Prev 2002;11:1611-21
    183. Otani T, Iwasaki M, Hanaoka T, et al. Folate, vitamin $6, vitamin B12, and vitamin B2intake, genetic polymorphisms of related enzymes, and risk of colorectal cancer in a hospital-based case-control study in Japan. Nutr Cancer 2005;53:42-50.
    184. Giovannucci E. Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J Nutr 2004;134:24755-2481S.
    185. Salaspuro M. Bacteriocolonic pathway for ethanol oxidation: characteristics and implications. Ann Med 1996;28:195-200.
    186. Homann N, Tillonen J, Salaspuro M. Microbially produced acetaldehyde from ethanol may increase the risk of colon cancer via folate deficiency. Int J Cancer 2000;86: 169-73.
    187. Shaw S, Jayatilleke E, Herbert V, et al. Cleavage of folates during ethanol metabolism. Role of acetaldehyde/xanthine oxidase-generated superoxide.
    188. Chen J, Giovannucci E, Kelsey K, et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res 1996;56:4862-4.
    189. Matsuo K, Ito H, K, et al. One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. Carcinogenesis 2005;26:2164-71.
    190. Cumin K, Bigler J, Slattery ML, et al. MTHFR C677T and A1298C polymorphisms: diet, estrogen, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 2004;13:285-92.
    1. Globocan 2002. http://www-depdb.iarc.fr/globocan/GLOBOframe.htm
    2. WHO IARC 2002. http://www-depdb.iarc.fr/globocanlGLOBOframe.htm.
    3. Lenz HJ , Danenberg Y, Shirota O , et al . ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patient receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol ,2001 ,19 :429824304.
    4. Kaneda S, Nalbntoglu J, Takeishi K, et al. Thymidylate synthase expression in colorectal cancer:a prognostic and predictive marker of benefit from adjuvant fluorouracil2based chemotherapy.J Biol Chem,1990;265(33):20277-20284
    5. Horie,Keiichi, Takeishi J, Regional assignment of human thymidylate synthase(TS) gene to chromosome band 18P11.32 by nonisotopic in situ hybridization. Biol Chem, 1997; 272(29): 18375一18381
    6. Horie N, Aiba H, Oguro K, et al. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'2terminal regulatoryregion of human gene for thymidlate synthase. Cell Struct Funct, 1995, 20(9):191一197
    7. Marsh S, Mckay JA, Cassidy J, et al. Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Oncol, 2001, 19(15):383-386
    8. Hori T, Takahashi E, Ayusawa D, et al. Regional assignment of the human thymidylate synthase gene to chromosome band 18p11.32 by nomistotopic in situ hybridiation. Hum Genet, 1990, 85(3); 576-580
    9. Chu E, Koeller DM, Casey JL,et al. Autoregualtrion of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA, 1991, 88(8):8977-8981
    10. Peters GJ, Wilt CL, Groenigen CJ, et al. Thymidylate synthase inhibition after administration of fluorouracil with or without leucovorin in colon cancer patients: implication for treatment with fluorouracil. J Clin Oncol,1994,12(9):2035-2042
    11. Leichman L, Lenz J. Quantntation of intratumoral thymidylate synthase expression predicts for resistance to protracted infusion of 5-fluorouracil and weekly leucovorin in disseminted colorectal cancer; preliminary report from an ongoing trial.Eur J Cancer,1995, 31(8):1306-1310
    12. Beck A, Etienne M. A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumours sensitivity to fluorouracil. Eur J Cancer,1994, A(1):1517-1522
    13. Johnston PQ Fisher ER, Rockett HE, et al. The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol ,1994, 12(6):2640-2647
    14. Lenz HJ, Leichman Cq Donenberg KD, et al. Thymidylate synthase Mrna level in adenocrcinoma of the stomach: a predictor for primary tumor response and overall survival. J Clin Oncol ,1996,14 (3) :176-182
    15. Lenz HJ , Danenberg Y, Shirota O , et al . ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patient receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol ,2001 ,19 :429824304.
    16. 4 Wang W, Cassidy J , O′Brien V , et al . Mechanistic and predictive profiling of 5-Fluorouracil resistance in human cancer cells. Cancer Res ,2004 , 64 :816728176.
    17. 5 Copur S , Aiba K, Drake JC , et al . Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil .Biochem Pharmacol ,1995 , 49 :141921426.
    18. 6 Bertino JR , Banerjee D. Is the measurement of thymidylate synthase to determine suitability for treatment with 5-fluoropyrimidines ready for prime time ? Clin Cancer Res , 2003 , 9 :123521239.
    19. 7 Ren G, Cai R , Chen Q. The update advance in chemotherapy of gastric cancer. Shijie Huaren Xiaohua Zazhi ,2002 , 10 : 83285.
    20. 8 Etienne MC , Ilc K, Formento JL , et al . Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms : relationships with 5-fluorouracil sensitivity. Br J Cancer ,2004 ,90 :5262534.
    21. Marsh S , McKay JA , Cassidy J , et al . Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Oncol ,2001 ,19 :3832386.
    22. Kitchens ME , Forsthoefel AM, Barbour KW, et al . Mechanisms of acquired resistance to thymidylate synthase inhibitors : the role of enzyme stability. Mol Pharmacol ,1999 ,56 :106321070.
    23. 11 Tsuji T , Hidaka S , Sawai T , et al . Polymorphism in the thymidylate synthase promoter enhancer region is not an efficacious marker for tumor sensitivity to 5-fluorouracil-based oral adjuvant chemotherapy in colorectal cancer. Clin Cancer Res , 2003 , 9 : 370023704.
    24. Kasahara M, Takahashi Y, Nagata T, et al. Thymidylate synthase expression correlate closely with E expression in colon cancer. Clin Cancer Res, 2000, 6(3):2707-2711
    25. Gribaodo GS Riera L, Rudge TL, et al. Humancy to meglvirus infection induces cellular thymidylatesynthase gene expression in quiescent ibroblasts.J Gen Virol, 2002, 83(12):2983-2993
    26. Longley B, Boyer J, Allen W, et al. The role of thymidylate synthase gene expression response to 5-fluorouracil and antifolates. Cancer Res, 2002, 62:(16) 2644-2649
    27. Chu E, Koeller DM, Casey JL, et al. Autoregualtrion of human thymidylate synthase messenger RNA translation by thymidylate synthase .Proc Natl Acad Sci USA, 1991, 88 ( 20 ):8977-8981
    28. Estlin EJ, Balmanno K, Calvert AH, et al. 'The relationship between intrinstic thymidylate synthase expression and sensitivity to THYMITAQ in human leukaemia and colorectal carcinoma cell lines. Br J Cancer, 1997, 76(12):1579-1585
    29. Shaw D, Berger F Retroviral expression of escherichiacoli thymidylate synthase cDNA confers high-level antifolate resistance to hemtopoietic cells.Hum gene ther, 2001,12 ( 7 ):51-59
    30. Triest V, Pinedo HM, Hensbergen YV, et al. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil rouracil, but for folate-based thymidylate synthase inhibitor, in 13 nonselected colon cancer cell lines. Clin Cancer Res, 1999, 5 ( 2 ) :643-654
    31. DiPaolo A , Chu E. The role of thymidylate synthase as a molecular biomarker. Clin Cancer Res ,2004 ,10 :4112412.
    32. Li Q , Boyer C , Jean YL , et al . A novel approach to thymidylate synthase as a target for cancer chemotherapy. Mol Pharmacol , 2001 , 59 :4462452.
    33. Etienne MC , Ilc K, Formento JL , et al . Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms : relationships with5-fluorouracil sensitivity. Br J Cancer ,2004 ,90 :5262534.
    34. Pietruczuk M, Dabrowska M, Osada J , et al . CD34 , FasR , Bcl-2 ,apoptotic index and DNA index in acute lymphoblastic leukaemia inadults. Leukemia Lymphoma , 2003 , 44 :5532556.
    35. Backus HH , Van Groeningen CJ , Vos W, et al . Differential expression of cell cycle and apoptosis related proteins in colorectal mucosa ,primary colon tumors and liver metastases. J Clin Pathol ,2002 ,55 :2062211.
    36. Kasahara M, Takahashi Y, Nagata T , et al . Thymidylate synthase expression correlates closely with E2F1 expression in colon cancer. Clin Cancer Res , 2000 , 6 : 270722711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700