用户名: 密码: 验证码:
慢性HCV感染患者认知功能研究及其机制初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过本研究拟了解: 1.慢性HCV感染患者与慢性HBV病毒感染患者、正常对照间认知功能的差异,明确慢性HCV感染患者认知功能损害的程度和模式;以及与慢性HBV感染患者比较,认知功能损害是否为慢性HCV感染患者的独特特征。2.慢性HCV感染患者的认知功能与抑郁症状的关系。3.设计并建立巢式荧光定量PCR(Nested-qRT-PCR)检测慢性丙型病毒感染患者CSF中HCV 5’NCR基因片段,进一步证实慢性HCV感染患者的CSF中是否存在HCV感染。4.初步探讨HCV对CNS的直接感染是否与慢性HCV感染患者认知功能的损害有关。
     方法:
     1、采用目前较为常用的神经心理测验工具对36例轻度慢性HCV感染患者、32例慢性HBV病毒感染患者及28例对照者进行测验,各组还采用Beck抑郁自评量表(BDI-II)进行抑郁症状的评定。
     2、根据GenBank提供的基因序列,针对HCV基因的保守区域(HCV 5’NCR基因),设计并合成特异性内外引物和荧光标记TaqMan探针。从重庆医科大学病毒性肝炎研究所惠赠的含有目的基因的质粒出发,利用PCR方法扩增获得目的基因,克隆至pGEM-T Easy载体进行体外转录,将得到的RNA纯化并使用RiboGreen方法进行定量后作为阳性标准品。分别建立正链和负链HCV RNA的巢式荧光定量RT-PCR方法并分析敏感性和特异性。
     3、应用Nested-qRT-PCR方法检测12例慢性丙型肝炎病毒感染患者外周血液单个核细胞和脑脊液HCV 5’NCR基因片段,并对脑脊液阳性样本进行分子克隆和测序分析。同时对这12例患者进行神经心理测验,比较脑脊液HCV阳性者与阴性者的测验成绩。
     结果:
     1、HCV感染患者在反映注意、记忆和言语功能的测验如数字符号、延迟逻辑记忆、言语流畅性测试重复数、连线B测验(TMT-B)和Stroop测验上与健康对照组有差异,尤其在数字符号、TMT-B和Stroop-cw测验上差异显著,而HBV患者与健康对照组各项测验值均无差异。
     2、本研究成功建立了正链和负链HCV巢式荧光定量RT-PCR检测方法,其最低检出限即敏感性分别为2.6×102copies/μl、2.6×101 copies/μl,标准曲线的定量范围分别为2.6×102~2.6×107copies/μl、2.6×101~2.6×107copies/μl,相关系数R2分别为0.9883和0.9969,不与其他病毒发生非特异反应。
     3、共对12例慢性丙型肝炎感染患者的PBMCs,脑脊液细胞中的正链和负链HCV RNA (positive-和negative- strands)进行了检测,10例PBMCs检测5’NCR基因片段为阳性,而其中3例CSF正链HCV RNA检测阳性(3/12),2例负链HCV RNA检测阳性(2/12)。
     4、12例慢性丙型肝炎病毒感染患者中脑脊液HCV检测阳性者(3例)与脑脊液HCV检测阴性者(9例)以及健康对照组的神经心理测验成绩比较,脑脊液HCV阳性者在数字符号和TMT-B测验上与脑脊液HCV阴性者以及正常对照组有统计学上的差异。
     结论:
     1、慢性HCV患者在需要持续注意和更复杂的注意力集中测试的视觉扫描,以及知觉运动速度,工作记忆上存在障碍,此认知功能损害与抑郁自评症状之间无显著相关性。在HBV感染患者中没有发现类似的认知损害,提示这种认知功能损害模式是慢性HCV患者所独特的。
     2、本研究构建了HCV 5’NCR基因核酸定量检测用的正链和负链RNA标准品,并建立了正链和负链HCV巢式荧光定量RT-PCR检测方法。该方法具有灵敏性和特异性高、简便快捷等有点,不易出现污染引起假阳性结果,适用于脑脊液等体液细胞相对较少、RNA浓度过低的定量检测。
     3、部分慢性HCV感染患者脑脊液中存在有HCV感染,HCV对CNS的直接感染可能与慢性HCV患者的认知功能损害有关。
Objective: In present research we want to investigate: a) the difference of neuropsychological tests among mild chronic HCV infected patients, mild chronic HBV infected patients, and controls; b) the correlation between the cognitive function deficits and depression in mild chronic HCV infected patients; c) nucleic acid testing techniques for detecting hepatitis c virus (HCV) in cerebrospinal fluid using nested fluorescence quantitative reverse transcriptase polymerase chain reaction (Nested-qRT-PCR); d) cognitive impairment caused by HCV infection in the central nervous system.
     Methods
     1. 36 mild chronic HCV infected patients, 32 mild chronic HBV infected patients and 28 controls were assessed by a series of neuropsychological tests. Depression symptoms were also assessed by Beck Depression Inventory (BDI-Ⅱ).
     2. Specific primers and TaqMan probes were designed in the conserved region of virus genome 5’NCR. Conserved region gene contained in plasmids which is offered by Chongqing Medical University hepatitis virus laboratory was inserted into pGEM-T Easy vector and transcribed in vitro to produce RNA, which would be used as standards in PCR quantification. A nested fluorescence quantitative RT-PCR method to detect positive- and negative- strands HCV RNA is established. At the same time, sensitivity and specificity of method were assessed.
     3. The HCV 5’NCR fragment of peripheral blood mononuclear cells (PBMCs) and CSF obtained from 12 patients with chronic HCV infection were examined by Nested-qRT-PCR. Furthermore, molecular cloning and sequence analysis were carried out on positive PCR products. Neuropsychological tests were also performed on 12 patients with chronic HCV infection.
     Results
     1. There is a significant difference between chronic HCV infected patients and controls in neuropsychological tests. The scores of digit-symbol, delayed-logical- memory, TMT-B and Stroop tests in chronic HCV infected patients are significantly lower than those in controls. However, there is no significant difference between chronic HBV infected patients and controls in neuropsychological tests.
     2. The Nested-qRT-PCR methods for the detections of positive- and negative- strands HCV RNA were successfully established. The minimum detection limits of Nested-qRT-PCR for HCV are 2.6×102 copies/μl and 2.6×101 copies/μl respectively, the quantitative range of standard curve is 2.6×102 ~2.6×107 copies/μl (R2 0.9883) for positive-strand HCV RNA, and 2.6×101~2.6×107 copies/μl (R2 0.9969) for negative-strand HCV RNA. Nonspecific PCR reaction with other virus was not discovered.
     3. Nucleic acid detections for positive- and negative- strands HCV RNA were successfully performed on PBMCs and CSF samples from 12 patients with chronic HCV infection using Nested-qRT-PCR. Positive-strand HCV RNA was detected in three out of 12 cases of CSF and negative-strand HCV RNA in two out of 12 cases of CSF.
     4. Neuropsychological tests were further performed on both three HCV detected positive cases and 9 HCV detected negative ones in CSF. Significant difference was found in digit-symbol and TMT-B testing.
     Conclusions
     1. Chronic HCV infected patients perform significantly worse than healthy controls on complex visual scanning, psychomotor speed, attention and working memory. The cognitive deficits are not related to depression symptoms. Hepatitis B patients are not similarly impaired in cognitive function, suggesting that the observed abnormalities are specific.
     2. Nested-qRT-PCR methods for detecting N positive- and negative- strands HCV RNA has been established successfully. The methods are sensitive and reliable and allow rapid detection and quantitation of hepatitis c virus in CSF.
     3. The results have demonstrated that cognitive impairment in chronic HCV infected patients may be caused by the HCV infection in the central nervous system.
引文
[1] Perz JF, Farrington LA, Pecoraro C, et al. Estimated global prevalence of hepatitis C virus infection. 42nd Annual Meeting of the Infectious Diseases Society of America; Boston, MA, USA; Sept 30–Oct 3, 2004.
    [2] Agnelo V, De Rosa FG. Extrahepatic disease manifestations of HCV infection: some current issues. J Hepatol[J], 2004; 40:341-352.
    [3] Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci[J], 2004; 62:2295-2304.
    [4] Ferenci P, Lockwood A, Mullen K, et al. Hepatic encephalopathy - definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology[J], 2002; 35:716-721.
    [5] Dwight MM, Kowdley KV, Russo JE, et al. Depression, fatigue, and functional disability in patients with chronic hepatitis C. J Psychosom Res[J], 2000; 49:311-317
    [6] Golden J, O’Dwyer AM, Conroy RM. Depression and anxiety in patients with hepatitis C: prevalence, detection rates and risk factors. Gen Hosp Psychiatry[J], 2005; 27:431-438
    [7] Yovtcheva SP, Aly Rifai M, Moles JK, et al. Psychiatric comorbidity among hepatitis C-positive patients. Psychosomatics[J], 2001; 42:411-415.
    [8] El-Serag HB, Kunik M, Richardson P, et al. Psychiatric disorders among veterans with hepatitis C infection. Gastroenterology[J], 2002, 123:476-482.
    [9] Kraus MR, Scha¨fer A, Csef H, et al. Emotional state, coping styles, and somatic variables in patients with chronic hepatitis C. Psychosomatics[J], 2000; 41:377-384.
    [10] Fontana RJ, Hussain KB, Schwartz SM, et al. Emotional distress in chronic hepatitis C patients not receiving anti-viral therapy. J Hepatol[J], 2002; 36:401-407.
    [11] Wessely S, Pariante C. Fatigue, depression and chronic hepatitis C infection. Psychol Med[J], 2002; 32:1-10.
    [12] Hilsabeck RC, Perry W, Hassassein TI. Neuropsychological impairment in patients with chronic hepatitis C. Hepatology[J], 2002; 35:440-446.
    [13] Gualtieri CT, Johnson LG, Benedict KB. Neurocognition in depression: patients on and off medication versus healthy comparison subjects. J Neuropsychiatry Clin Neurosci[J], 2006; 18:217-225.
    [14] Hilsabeck RC, Hassanein TI, Carlson MD, et al. Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. J Int Neuropsychol Soc[J], 2003; 9:847-854.
    [15] Cribier B, Schmitt C, Bingen A, et al. In vitro infection of peripheral blood mononuclear cells by hepatitis C virus. J Gen Virol[J], 1995; 76:2485-2491.
    [16] Zheng J, Gendelman HE. The HIV-1 associated dementia complex: a metabolic encephalopathy [15]fueled by viral replication in mononuclear phagocytes. Curr Opin Neurol[J], 1997; 10:319-325.
    [17] Radkowski M, Bednarska A, Horban A, Stanczak J, Wilkinson J, Adair DM, Nowicki M, Rakela J, Laskus T (2004) Infection of primary human macrophages with hepatitis C virus in vitro: induction of tumor necrosis factor-alpha and interleukin 8[J]. J Gen Virol 85:47–59
    [1] Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Beck Depression Inventory-Second Edition: Manual. San Antonio, Texas: The Psychological Corporation.
    [2] Byrne BM, Stewart SM, & Lee PWH. Validating the Beck Depression Inventory-II for Hong Kong Community Adolescents[J]. International Journal of Testing. 2004, 4(3): 199-216
    [3] Lu L, Bigler ED. Performance on original and a Chinese version of Trail Making Test part B: A normative bilingual sample[J]. Applied Neuropsychology, 2000;7(4):243-246.
    [4] Trenerry MR, Cross B, Leber WR. Stroop neuropsychological screening test. Psychological Assessment Resource Inc. 1989.
    [5] Lezak. Neuropsychological Assessment. Second Edition. New York, 1983.
    [6] Nelson HE. A modified card sorting test sensitive to frontal lobe defects[J]. Cortex. 1976, 12(4):313-24
    [7] Hilsabeck RC, Hassanein TI, Carlson MD, et al. Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. J Int Neuropsychol Soc[J], 2003; 9:847-854
    [8] Forton DM, Thomas HC, Murphy CA, et al. Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology[J], 2002; 35:433-439
    [9] Marcotte, T.D., Grant, I., et al. Neurobehavioral complications of HIV infection[M]. New York: Kluwer Academic Plenum Publishers. 2001: 85–105
    [10] Meyerhoff, D.J., Bloomer, C., Cardenas, V., et al. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV1 patients[J]. Neurology, 1999, 52: 995–1003
    [11] Chang, L., Ernst, T., Leonido-Yee, et al. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex[J]. Neurology, 1999, 52: 100–108.
    [12] Forton DM, Allsop JM, Main J, et al. Evidence for a cerebral effect of the hepatitis C virus. Lancet[J], 2001; 358:38-39.
    [13] Weissenborn K, Ennen JC, Schomerus H, Ru¨ckert N, Hecker H. Neuropsychological characterization of hepatic encephalopathy[J]. J Hepatol 2001;34:768–773.
    [14] Morgan MY. Cerebral magnetic resonance imaging in patients with chronic liver disease[J]. Metab Brain Dis 1998;13:273–290.
    [15] Ko¨stler H. Proton magnetic resonance spectroscopy in portal-systemic encephalopathy[J]. Metab Brain Dis 1998;13:291–301.
    [16] Taylor MJ, Letendre SL, Schweinsburg BC, et al. Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamine users[J]. J Int Neuropsychol Soc, 2004; 10:110-113.
    [17] Dwight, M.M., Kowdley, K.V., Russo, J.E., et al. Depression, fatigue, and functional disability in patients with chronic hepatitis C[J]. Journal of Psychosomatic Research, 2000, 49, 311–317.
    [18] Hilsabeck, R.C., Perry,W., & Hassanein, T.I. Severity and comorbidity of depression and anxiety in patients with chronic hepatitis C not receiving antiviral therapy[J]. American Journal of Gastroenterology, 2000, 95, A348.
    [19] Gualtieri CT, Johnson LG, Benedict KB. Neurocognition in depression: patients on and off medication versus healthy comparison subjects[J]. J Neuropsychiatry Clin Neurosci, 2006, 18:217-225.
    [20] McAndrews MP, Farcnik K, Carlen P, et al. Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors[J].Hepatology, 2005, 41:801-808.
    [21] K Karaivazoglou, K Assimakopoulos, K Thomopoulos, et al. Neuropsychological function in Greek patients with chronic hepattitis c[J].liver Int. 2007, 27(6):798-805
    [22] Cribier B, Schmitt C, Bingen A, et al. In vitro infection of peripheral blood mononuclear cells by hepatitis C virus[J]. J Gen Virol, 1995; 76:2485-2491.
    [23] Zheng J, Gendelman HE. The HIV-1 associated dementia complex: a metabolic encephalopathy fueled by viral replication in mononuclear phagocytes[J]. Curr Opin Neurol[J], 1997, 10:319-325.
    [24] Letendre S, Paulino AD, Rockenstein E, et al. HIV Neurobehavioral Research Center Group. Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV[J]. J Infect Dis, 2007, 196(3):361-70.
    [25] Radkowski M, Bednarska A, Horban A,et al. Infection of primary human macrophages with hepatitis C virus in vitro: induction of tumor necrosis factor-alpha and interleukin-8[J]. J Gen Virol. 2004, 85:47–59
    [26] Licinio J, Kling MA, Hauser P. Cytokines and brain function: relevance to interferon-a-induced mood and cognitive changes[J]. Semin Oncol. 1998, 25:S30–S38
    [1] Seeff LB. Natural History of Chronic Hepatitis C[J]. Hepatology ,2002 ,36 ( Suppl 1)∶S35-S46.
    [2] Moradpour D, Brass V, Penin F. Function follows form: the structure of the N-terminal domain of HCV NS5A[J].Hepatology. 2005,42(3):732-735.
    [3] Moradpour D, Brass V, Bieck E, et al.Membrane association of the RNAdependent RNA polymerase is essential for hepatitis C virus RNA replication.J Virol. 2004,78 (23):13278-84
    [4]赵树铭,李兵,胡建,等,重庆地区无偿献血人群丙型肝炎病毒流行病学调查[J].重庆医学2006,35(11): 964-967
    [5] Agnelo V, De Rosa FG. Extrahepatic disease manifestations of HCV infection: some current issues. J Hepatol[J], 2004; 40:341-352
    [6] Petty GW, Duffy J, Houston J et al. Cerebral ischemia in patients with hepatitis C virus infection and mixed cryoglobulinemia[J]. Mayo Clin Proc. 1996, 71(7): 671-678.
    [7] Origgi L, Vanoli M, Lunghi G, et al. Hepatitis C virus genotypes and clinical.features in hepatitis C virus-related mixed cryoglobulinemia[J]. Int J Clin Lab Res. 1998,28(2):96-99
    [8] Bolay H, Soylemezoglu F, Nurlu G, et al.PCR detected hepatitis C virus genome in the brain of a case with progressive encephalomyelitis with rigidity.Clin Neurol .eurosurg[J].1996,98(4):305-308
    [9] Laskus T, Wilkinson J, Gallegos-Orozco JF, et al.Analysis of hepatitis C virus quasispecies transmission and evolution in patients infected through blood transfusion[J]. Gastroenterology. 2004, 127(3):764-776.
    [10] Attallah AM, Ibrahim GG..Immunodetection of a hepatitis C virus (HCV) antigen and Thl/Th2 cytokines in cerebrospinal fluid of meningitis patients[J].J Immunoassay Immunochem. 2004;25(4):313-20.
    [11]王振海、吴庆秋、谢鹏等,病毒性脑炎患者血液和脑脊液HCV RNA的检测[J].中华传染病杂志.2006;24(4):277-280
    [12] Forton D, Thomas H, Murphy C, et al. Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease[J]. Hepatology. 2002, 35: 433–439
    [13] Hilsabeck R, Perry W, Hassanein T. Neuropsychological impairment in patients with chronic hepatitis C[J]. Hepatology. 2002, 35: 440–446
    [14] Kramer L, Bauer E, Funk G, et al. Subclinical impairment of brain function in chronic hepatitis C infection[J]. J Hepatol. 2002, 37: 349–354
    [15] Forton D, Allsop J, Main J, et al. Evidence for a cerebral effect of the hepatitis C virus[J]. Lancet. 2001, 358: 38–39
    [1] Fong TL, Shindo M, Feinstone SM, et al. Detection of replicative intermediates of hepatitis C viral RNA in liver and serum of patients with chronic hepatitis C [J]. J Clin Inv, 1991, 88(3):1058-60
    [2] Houghton M , Weiner A, Han J, et al. Molecular biology of the hepatitis C virus:implications for diagnosis, development and control of virus disease[J]. Hepatology, 1991. 14(2): 381~388
    [3] Forton DM, Karayiannis P, Mahmud N, et al. Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants[J].J Virol. 2004,78(10):5170-83
    [4] Bagaglio S, Cinque P, Racca S, et al. Hepatitis C virus populations in the plasma, peripheral blood mononuclear cells and cerebrospinal fluid of HIV/hepatitis C virus-co-infected patients[J].AIDS. 2005 ,19 ( 3):S151-165
    [5] Gibson UE, Heid CA, Willims PM. A novel method for real time quantitative RT-PCR[J]. Genome Res, 1996, 6(10): 995-1001
    [6] Zerr DM, Huang ML, Corey L, et al. Sensitive method for detection of human herpesviruses 6 and 7 in saliva collected in field studies[J]. J Clin Microbiol, 2000, 38(5): 1981-1983
    [7] Schlaak JF, Trippler M, Ernst I, et al. Chronic hepatitis C: The viral load per liver cell before treatment as a new marker to predict long-term response to IFN-alpha therapy[J]. J Hepatol 27:917–921
    [8] Madejon A, M. L. Manzano, C. Arocena, et al. 2000. Effects of delayed freezing of liver biopsies on the detection of hepatitis C virus RNA strands[J]. J. Hepatol. 2000, 32:1019–1025
    [9] Borg I, Rohde G, Loseke S, et al. Evaluation of a quantitative real-time PCR for the detection of respiratory syncytial virus in pulmonary diseases[J]. Eur Respir J, 2003, 21(6): 944-951
    [10] Perelygina L, Patrusheva I, Manes N, et al. Quantitative real-time PCR for detection of monkey B virus (Cercopithecine herpesvirus 1) in clinical samples[J].J Virol Methods, 2003, 109(2): 245-251
    [11] Carrière M, Pène V, Breiman A, et al. A novel, sensitive, and specific RT-PCR technique for quantitation of hepatitis C virus replication[J]. J Med Virol. 2007, 79(2):155-60
    [12] Komurian-Pradel F, Perret M, Deiman B, et al. Strand specific quantitative real-time PCR to study replication of hepatitis C virus genome[J]. J Virol Methods. 2004, 1;116(1):103-6
    [1] Thomas W. Smalling, Susan E. Sefers, Haijing Li, et al. Molecular approaches to detecting herpes simplex virus and enteroviruses in the central nervous system[J]. Journal of clinical microbiology, 2002, 40(7): 2317–2322
    [2] Sejvar J, Haddad M, Tierney B, et al. Neurologic manifestations and outcome of West Nile Virus infection[J]. JAMA. 2003, 290: 511–515
    [3] Gowans EJ. Distribution of markers of hepatitis C virus infection throughout the body[J]. Semin Liver Dis. 2000, 20:85–102
    [4] Laskus T, Radkowski M, Bednarska A, et al. Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol. 2002, 76: 10064–10068
    [5] Bagaglio S, Cinque P, Racca S, et al. Hepatitis C virus populations in the plasma, peripheral blood mononuclear cells and cerebrospinal fluid of HIV/hepatitis C virus-coinfected patients[J]. AIDS. 2005, 19: S151–S165
    [6] Bolay H, Soylemezoglu F, Nurlu G, et al.PCR detected hepatitis C virus genome in the brain of a case with progressive encephalomyelitis with rigidity.Clin Neurol .eurosurg[J].1996,98(4):305-308
    [7] Murray J, Fishman SL, Ryan E,et al. Clinicopathologic correlates of hepatitis C virus in brain: a pilot study[J]. J Neurovirol. 2008 Jan;14(1):17-27
    [8] Forton D, Thomas H, Taylor-Robinson S. Central nervous system involvement in hepatitis C virus infection[J]. Metab Brain Dis. 2004, 19: 383–391
    [9] Gu, B., Gates, A.T., Isken, O., et al. Replication studies using genotype 1a subgenomic hepatitis C virus replicons[J]. J. Virol. 2003, 77 (9), 5352–5359
    [10] Forton D, Thomas H, Murphy C, et al. Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology. 2002, 35: 433–439
    [11] Hilsabeck R, Perry W, Hassanein T. Neuropsychological impairment in patients with chronic hepatitis C. Hepatology. 2002, 35: 440–446
    [12] Kramer L, Bauer E, Funk G, et al. Subclinical impairment of brain function in chronic hepatitis C infection[J]. J Hepatol. 2002, 37: 349–354
    [13] Forton D, Allsop J, Main J, et al. Evidence for a cerebral effect of the hepatitis C virus[J]. Lancet. 2001, 358: 38–39
    [1] Chua KB, Goh KJ, Wong KT, et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia[J]. Lancet. 1999, 354(9186):1257~1259
    [2] Wang LF, Harcourt BH, Yu M, et al. Molecular biology of Hendra and Nipah viruses[J]. Microbes Infect. 2001, 3(4):279~287
    [3] Chua KB, Bellini WJ, Rota PA, et a1. Nipah virus: a recently emergent deadly paramyxovirus[J]. Science. 2000, 288(5470): l432~l435
    [4] CDC. Outbreak of Hendra-Like Virus--Malaysia and Singapore, 1998-1999[J]. MMWR Morb Mortal Wkly Rep. 1999, 48(13):265~269
    [5] Murray K, Selleck P, Hooper P, et al. A morbillivirus that caused fatal disease in houses and humans[J]. Science. 1995, 268(5207):94~97
    [6] Selvey LA, Wells RM, McCormack JG, et al. Infection of humans and horses by a newly described morbillivirus[J]. Med J Aust. 1995, 162(12):642~645
    [7] Chua KB, Koh CL, Hooi PS, et al. Isolation of Nipah virus from Malaysian Island flying-foxes[J]. Microbes Infect. 2002, 4(2):145~151
    [8] Halpin K, YoungPL, Field HE, et al. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus[J]. J Gen Virol. 2000, 81(Pt8): 1927~1932
    [9] Hsu VP, Hossain MJ, Parashar UD, et al. Nipah virus encephalitis reemergence, Bangladesh[J]. Emerg Infect Dis. 2004, 10(12):2082~2087
    [10] Harcourt BH, Lowe L, Tamin A, et al. Genetic characterization of Nipah virus, Bangladesh, 2004[J]. Emerg Infect Dis. 2005, 11(10):1594~1597
    [11] Wacharapluesadee S, Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats[J]. J Virol Methods. 2007, 141(1): 97~101
    [12] Wacharapluesadee S, Lumlertdacha B, Boongird K, et al. Bat Nipah virus, Thailand[J]. Emerg Infect Dis. 2005, 11(12):1949~1951
    [13] Harit AK, Ichhpujani RL, Gupta S,et al. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001[J]. Indian J Med Res. 2006, 123(4):553~560
    [14] Chadha MS, Comer JA, Lowe L, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India[J]. Emerg Infect Dis. 2006, 12(2):235~240
    [15] Williamson MM, Hooper PT, Selleck PW, et al. A guinea pig model of Hendra virus encephalitis[J]. J Comp Pathol. 2001, 124(4):273~279
    [16] Williamson MM, Hooper PT, Selleck PW, et al. Experimental hendra virus infection in pregnant guinea-pigs and fruit Bats (Pteropus poliocephalus)[J]. J Comp Pathol. 2000, 122(2-3):201~207
    [17] Williamson MM, Hooper PT, Selleck PW, et al. Transmission studies of Hendra virus(equine morbillivirus)in fruit bats, horses and cats[J]. Aust Vet J. 1998, 76(12):813~818
    [18] Halpin K, Young PL, Field HE, et al. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus[J]. J Gen Virol. 2000, 81(Pt 8):1927~1932
    [19] Field HE, Barratt PC, Hughes RJ, et al. A fatal case of Hendra virus infection in a horse in north Queensland: clinical and epidemiological features[J]. Aust Vet J. 2000, 78(4):279~280
    [20] Barker SC. The Australian paralysis tick may be the missing link in the transmission of Hendra virus from bats to horses to humans[J]. Med Hypotheses. 2003, 60(4):481~483
    [21] Chua KB, Chua BH, Wang CW. Anthropogenic deforestation, El Nino and the emergence of Nipah virus in Malaysia[J]. Malays J Pathol. 2002, 24(1): 15~21
    [22] Daniels P, Ksiazek T, Eaton BT. Laboratory diagnosis of Nipah and Hendra virus infections[J]. Microbes Infect. 2001, 3(4): 289~295
    [23] Guillaume V, Lefeuvre A, Faure C, et al. Specific detection of Nipah virus using real-time RT-PCR (TaqMan) [J]. J Virol Methods, 2004, 120(2): 229~237
    [24] Chang LY, Ali AR, Hassan SS, et al. Quantitative estimation of Nipah virus replication kinetics in vitro[J]. Virol J. 2006, 3:47
    [25] Smith IL, Halpin K, Warrilow D, et al. Development of a fluorogenic RT-PCR assay(TaqMan) for the detection of Hendra virus[J]. J Virol Methods. 2001, 98(1): 33~40
    [1] Smith EE.Jonides J.Neuroimaging analyses of human working memory[J]. Proc Natl Acad Sci USA,1998;95(20):12061-12068
    [2] Ungerleider L G.Courtney S M,Haxby J V.A neural system for human visual working memory[J]. Proc Nat1 Acad Sci USA ,1998,95(3):883-890
    [3] Prabhakaran V ,Narayanan K,Zhao Z,et al .Integration of diverse information in working memory within the frontal lobe[J]. Nature Neuroscience,2000,3(1):85-90
    [4] Hartley AA.Speer NK.Locating and fractionating working memory using functional neuroimaging : storage, maintenance, and executive functions[J]. Microsc Res Tech,2000,51(1):43-53
    [5] Sakai K.Passingham RE. Prefrontal interactions reflect future task operations[J]. Nat Neurosc. 2003,6(1):75-81
    [6] Karlsgodt KH,Shirinyan D, et al. Hippocampus activations during encoding and retrieval in a verbal working memory paradigm[J]. Neuroimage. 2005 May 1; 25(4):1224-31
    [7] Campo P,Maestu F, et al. Is medial temporal lobe activation specific for encoding long-term memories?[J]. Neuroimage. 2005.25(1):34-42. Epub 2005 Jan 20
    [8] Maguire EA.Frackowiak RS.Frirth CD.Learning to find your way:a role for human hippocampal formation[J]. Proceedings of the Royal Society of London-Series B:Biological Sciences,l996,263(1377):l745-l750
    [9] Rosen AC, Gabrieli JD, Stoub T, et al. Relating medial temporal lobe volume to frontal fMRI activation for memory encoding in older adults[J]. Cortex. 2005 ,41(4):595-602
    [10] Graaf VD,Jong D,Maguire R,et a1.Cerebral activation related to skills practice in a double serial reaction time task:striatal involvement in random—order sequence learning[J]. Cogn Brain Res,2004,20 (2):120-131
    [11] Daniel H. O'Connor, Miki M, et al. Attention modulates responses in the human lateral geniculate nucleus[J]. Nature Neuroscience, 2002 ,5(11):1203-9
    [12] Kastner S,Pinsk MA. Visual attention as a multilevel selection process[J]. Cogn Affect Behav Neurosci. 2004,4(4):483-500
    [13] Yantis S,Schwarzbach J, et al. Transient neural activity in human parietal cortex during spatial attention shifts[J]. Nature Neurosci. 2002,5(10):995-1002
    [14] Hao J,Li K,Zhang D, et al. Visual attention deficits in Alzheimer's disease: an fMRI study.[J]. Neurosci Lett. 2005 ,385(1):18-23
    [15] Szaflarski JP, Holland SK, Schmithorst VJ, et al. fMRI study of language lateralization in children and adults[J]. Hum Brain Mapp. 2006,27(3):202-12.
    [16] kim KH , Relkin NR , et al . Distinct cortical areas associated with native and second language[J ].J Nature ,1997 ,388(6638) :171 - 174
    [17] Perani D , Paulesu E , Galles NS ,et al . The bilingual brain. Proficiency and age of acquisition of the second language[J ] .Brain , 1998 ,121 (Pt 10):1841 - 1852.
    [18] Hernandez AE ,Martinez A , Kohnert K. In search of the language switch : an fMRI study of picture naming in Spanish - English bilinguals [J ] . Brain and Language , 2000,73 (3):421 - 431
    [19] Nakada T,Fujii Y,Kwee IL. Brain strategies for reading in the second language are determined by the first language [J ]. Neurosci Research ,2001 ,40(4) :351 - 358.
    [20] Ding G,Perry C, Peng D, et a1.Neural mechanisms underlying semantic and orthographic processing in Chinese—English bilinguals[J].Neuroreport,2003,14(12):l557-1562
    [1] Agnelo V, De Rosa FG. Extrahepatic disease manifestations of HCV infection: some current issues. J Hepatol[J], 2004; 40:341-352.
    [2] Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci[J], 2004; 62:2295-2304.
    [3] Ferenci P, Lockwood A, Mullen K, et al. Hepatic encephalopathy - definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology[J], 2002; 35:716-721.
    [4] Dwight MM, Kowdley KV, Russo JE, et al. Depression, fatigue, and functional disability in patients with chronic hepatitis C. J Psychosom Res[J], 2000; 49:311-317
    [5] Golden J, O’Dwyer AM, Conroy RM. Depression and anxiety in patients with hepatitis C: prevalence, detection rates and risk factors. Gen Hosp Psychiatry[J], 2005; 27:431-438
    [6] Yovtcheva SP, Aly Rifai M, Moles JK, et al. Psychiatric comorbidity amonghepatitis C-positive patients. Psychosomatics[J], 2001; 42:411-415.
    [7] El-Serag HB, Kunik M, Richardson P, et al. Psychiatric disorders among veterans with hepatitis C infection. Gastroenterology[J], 2002, 123:476-482.
    [8] Kraus MR, Scha¨fer A, Csef H, et al. Emotional state, coping styles, and somatic variables in patients with chronic hepatitis C. Psychosomatics[J], 2000; 41:377-384.
    [9] Fontana RJ, Hussain KB, Schwartz SM, et al. Emotional distress in chronic hepatitis C patients not receiving anti-viral therapy. J Hepatol[J], 2002; 36:401-407.
    [10] Wessely S, Pariante C. Fatigue, depression and chronic hepatitis C infection. Psychol Med[J], 2002; 32:1-10.
    [11] Hilsabeck RC, Perry W, Hassassein TI. Neuropsychological impairment in patients with chronic hepatitis C. Hepatology[J], 2002; 35:440-446.
    [12] Gualtieri CT, Johnson LG, Benedict KB. Neurocognition in depression: patients on and off medication versus healthy comparison subjects. J Neuropsychiatry Clin Neurosci[J], 2006; 18:217-225.
    [13] Hilsabeck RC, Hassanein TI, Carlson MD, et al. Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. J Int Neuropsychol Soc[J], 2003; 9:847-854.
    [14] McAndrews MP, Farcnik K, Carlen P, et al. Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors. Hepatology[J], 2005; 41:801-808.
    [15] Kramer L, Bauer E, Funk G, Hofer H, Jessner W, Steindl-Munda P, et al. Subclinical impairment of brain function in chronic hepatitis C infection. J Hepatol[J], 2002; 37:349-354.
    [16] Forton DM, Thomas HC, Murphy CA, et al. Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology[J], 2002; 35:433-439.
    [17] Forton DM, Allsop JM, Main J, et al. Evidence for a cerebral effect of the hepatitis C virus. Lancet[J], 2001; 358:38-39.
    [18] Taylor MJ, Letendre SL, Schweinsburg BC, et al. Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamineusers. J Int Neuropsychol Soc[J], 2004; 10:110-113.
    [19] Adair DM, Radkowski M, Jablonska J, et al. Differential display analysis of gene expression in brains from hepatitis C-infected patients. AIDS[J], 2005; 19 Suppl 3:S145-50.
    [20] Meyerhoff DJ, Bloomer C, Cardenas V, et al. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIVR patients. Neurology[J], 1999; 52:995-1003.
    [21] Letendre SL, Cherner M, Ellis R, et al. Individuals coinfected with hepatitis C (HCV) and HIV are more cognitively impaired than those infected with either virus alone [Abstract]. J Neurovirol[J], 2002; 8:27-28.
    [22] Ryan EL, Morgello S, Isaacs K, et al. Neuropsychiatric impact of hepatitis C on advanced HIV. Neurology[J], 2004; 62:957-962.
    [23] Thein HH, Maruff P, Krahn MD, et al. Improved cognitive function as a consequence of hepatitis C virus treatment. HIV Med[J], 2007 Nov;8(8):520-8.
    [24] Cribier B, Schmitt C, Bingen A, et al. In vitro infection of peripheral blood mononuclear cells by hepatitis C virus. J Gen Virol[J], 1995; 76:2485-2491.
    [25] Zheng J, Gendelman HE. The HIV-1 associated dementia complex: a metabolic encephalopathy fueled by viral replication in mononuclear phagocytes. Curr Opin Neurol[J], 1997; 10:319-325.
    [26] Radkowski M, Wilkinson J, Nowicki M, et al. Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: evidence of replication. J Virol[J], 2002; 76:600-608.
    [27] Laskus T, Radkowski M, Bednarska A, et al. Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol[J], 2002; 76:10064-10068.
    [28] Letendre S, Paulino AD, Rockenstein E,et al. HIV Neurobehavioral Research Center Group. Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. J Infect Dis[J], 2007; 196(3):361-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700