用户名: 密码: 验证码:
汉江襄阳段水环境容量及总量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污染物总量控制是保护水体环境质量的重要管理措施。当前我国正处在从“目标总量控制”向“容量总量控制”转变的重要时期,以水环境容量为理论基础的污染物总量控制研究具有重要的理论价值和现实意义。本文以汉江中游襄阳段为研究对象,主要研究内容包括:(1)按照《湖北省水功能区划》的水质目标要求,对汉江襄阳段2004-2010年的水质状况进行评价,确定各类污染源和工业行业的污染物排放贡献度,明确污染源、入河排污口、功能区划水域三者的对应关系及各控制单元的陆上汇流区范围;(2)选择化学需氧量和氨氮作为总量控制因子,采用二维对流扩散水质模型对汉江襄阳段水质进行模拟计算,并通过试错法得到汉江襄阳段各水期的水环境容量;(3)采用零维模型和局部江段二维模型相结合的方法,模拟和预测南水北调中线调水后及崔家营枢纽不同蓄水位条件下汉江襄阳段的水环境容量;(4)以1956~1998年汉江襄阳水文站实测流量数据为基础,采用负荷历时曲线法,分析汉江襄阳段各代表性断面污染物最大日负荷的月变化和季节性变化特征,提出有针对性的动态污染物负荷总量控制目标。
     本文的主要研究结论有:
     (1)通过对汉江襄阳段现有控制单元、污染源类型和排污口的分析,确定了汉江襄阳段2008年化学需氧量的入河总量为32975.64t,氨氮入河总量为4465.31t。汉江襄阳段大部分江段受点源污染影响比较显著。闸口~钱营江段排污口分布较密集,是排污集中区。从污染物入河量来看,化学需氧量和氨氮主要受城市生活排污影响。污染物入河量较大的排污口是鱼梁洲污水厂排污口、南渠、金环排污口和宜岛大沟排污口。
     (2)依据汉江襄阳段各计算单元的水质目标,采用试错法对汉江襄阳段的水环境容量现状进行了模拟计算。汉江襄阳段化学需氧量理想水环境容量为81406.27t/a,氨氮理想水环境容量为7732.14t/a。除了闸口至余家湖江段水体功能定为III类,理想环境容量较大,其余江段各排污口均需要削减污染负荷。
     (3)对汉江襄阳段近期(2015年)和远期(2020年)的化学需氧量和氨氮在丰平枯水期的水环境容量进行了预测。与现状相比,2015年汉江襄阳段的理想环境容量在闸口~钱营、钱营~余家湖、余家湖~郭安江段均呈下降的趋势,其中闸口~钱营江段氨氮理想环境容量减少2875.72t;钱营~余家湖江段化学需氧量理想环境容量减少1066.74t,氨氮理想环境容量减少100.0t;余家湖~郭安江段氨氮理想环境容量减少19.14t。
     (4)通过构建汉江襄阳段各代表性断面不同流量保证率的最大污染物日负荷历时曲线,得到了不同月份和季节的最大日负荷量的时间变化特征。汉江襄阳段在7~9月丰水期具有较高的日纳污能力,日纳污能力最高的是余家湖断面,该断面9月份平均化学需氧量日负荷达到了3858.45t,氨氮日负荷达到了192.9t。纳污能力最强的季节是夏季,其次是秋季。在此基础上,扣除安全余量值,得到汉江襄阳段的负荷年内分配目标,并将可分配负荷分解到各月份和季节。
The total amount control on discharge of water pollutants is an importantmanagement measure to protect the water quality. At present, the water environmentalmanagement in China is being in the course from “target capacity control” to “loadingcapacity control”. Therefore, research on the total amount control for water pollutants is ofgreat value in theory and practical significance. The dissertation regards the XiangyangReach of the Han River as the study area, and the main contents of this thesis include:(1)the water quality of the Xiangyang Reach was evaluated on the basis of the water qualityrequirements of water functional area during2004-2010. The contribution of pollutantsfrom point and non-point sources and drainage areas were confirmed. The relationshipsamong pollution sources, sewage drains and water functional area in the Xiangyang Reachwere established.(2) The chemical oxygen demand (COD) and ammonia nitrogen (NH3-N)were selected as the control factors, and the allowable pollutant loads entering theXiangyang Reach were estimated using two-dimensional steady state water quality modeland trial-and-error method with different data sets.(3) According to the predicted changesof the flow regimes of the Han River considering hydraulic project operation, thezero-dimensional and two-dimensional models were used to work out the waterenvironmental capacity.(4) The monthly characteristics and seasonal variations of totalmaximum daily load were analysed using the load duration curves on the basis of flowdata of the period from1956to1998, and then the dynamic total pollutant loads controlobjectives were put forward.
     The main conclusions of this dissertation are generalized as follows:
     (1) The total annual pollutant loads on the Han River, which came from thewatershed including the point and non-point sources pollution, were32975.64t ofchemical oxygen demand, and4465.31t of ammonia nitrogen in the Xiangyang Reach in2008. Point source pollution produced the most pollutants, with the heaviest pollution loadin Zakou-Qianying. Domestic pollution source has been the main pollution source in thisarea, and the Yuliangzhou wastewater treatment plant outfall, South canal, Jinhuan outfalland Yidao sewage outfall contributed more pollutants load compared with other sewage emissions.
     (2) On the basis of the water quality requirements of water functional area, the waterenvironmental capacity of the Xiangyang Reach was estimated using the trial-and-errormethod. The loading capacities of the Xiangyang Reach were81406.27t of chemicaloxygen demand and7732.14t of ammonia nitrogen in2008. Except for the Zakou-Yujiahusection with Class Ⅲ of SurfaceWater QualityStandard, the rest of the Xiangyang Reachwas required to reduce the pollutant loads.
     (3) The water environmental capacity of short term (to2015) and long term (to2020)in the Xiangyang Reach was predicted, and the results indicated that the loading capacityof chemical oxygen demand and ammonia nitrogen will decline in2015compared withthe current status; the loading capacity of ammonia nitrogen in the Zakou-Qianyingsection will reduce by2875.72t; the loading capacity of chemical oxygen demand andammonia nitrogen in the Qianying-Yujiahu section will reduce by1066.74t and100.06t;the loading capacity of ammonia nitrogen in the Yujiahu-Guo’an section will reduce by19.14t.
     (4) According to the load duration curve of the Xiangyang Reach, the monthly andseasonal variations of total maximum daily load were obtained. The Xiangyang Reach hasmore loading capacity in the wet season from July to September, with the highest loadingcapacity in the Yujiahu section; the maximum daily loads of chemical oxygen demand andammonia nitrogen in this section are3858.45t and192.9t. Summer is the season with thehighest loading capacity, followed by autumn. And then, the targets of loading allocation,assigned to specific month and season within the year, can be confirmed by deduction ofthe Margin of Safety.
引文
[1]徐家良,范笑仙.制度安排,制度变迁与政府管制限度——对排污许可证制度演变过程的分析.上海社会科学院学术季刊,2002(1):13-20
    [2]沈大军,刘昌明.南水北调中线工程不同调水规模对汉江中下游影响分析.地理学报,1998,53(4):341-348
    [3]王婷婷,张万顺,彭虹等.引江济汉工程对汉江中下游生态环境影响.南水北调与水利科技,2008,6(1):70-72
    [4]张永良,洪继华,夏青等.我国水环境容量研究与展望.环境科学研究,1988,1(1):73-81
    [5] Ji, Z.-G. Hydrodynamics and water quality: modeling rivers, lakes, and estuaries.John Wiley&Sons, Inc.,2008
    [6] Rauch, W., Henze, M., Koncsos, L., et al. River water quality modelling: I. Stateof the art. Water Science and Technology,1998,38(11):237-244
    [7]张永良.水环境容量基本概念的发展.环境科学研究,1992(3):59-61
    [8] Campolo, M., Andreussi, P., Soldati, A. Water quality control in the river Arno.Water Research,2002,36(10):2673-2680
    [9] Bauer, D. P., Steele, T. D., Anderson, R. D. Analysis of Waste-Load AssimilativeCapacity of the Yampa River, Steamboat Springs to Hayden, Routt County,Colorado. U.S. Geological Survey, Water Resources Division,1978
    [10] Houck, O. A. The Clean Water Act TMDL program: Law, policy, andimplementation. Environmental Law Institute,2002
    [11] Krenkel, P. A., Novotny, V. Water quality management. Academic Press Inc.,1980
    [12] Tchobanoglous, G., Schroeder, E. Water quality: characteristics, modeling,modification. Addison-Wesley Pub. Co.,1985
    [13] Younos, T. M. Total Maximum Daily Load: Approaches&Challenges. PennWellCorp.,2005
    [14] Novotny, V. Integrating diffuseinonpoint pollution control and water bodyrestoration into watershed management. Journal of the American Water ResourcesAssociation,1999,35(4):717-727
    [15]中国环境保护局,中国环境科学研究院,中国环科院环境标准研究所.总量控制手册.北京:中国环境科学出版社,1990
    [16]刘兰芬,张祥伟,夏军.河流水环境容量预测方法研究.水利学报,1998,7(7):16-20
    [17]梁瑞驹.环境水文学.北京:中国水利水电出版社,1998
    [18] Burn, D. H., McBean, E. A. Optimization modeling of water quality in anuncertain environment. Water Resources Research,1985,21(7):934-940
    [19] McAvoy, D., Masscheleyn, P., Peng, C., et al. Risk assessment approach foruntreated wastewater using the QUAL2E water quality model. Chemosphere,2003,52(1):55-66
    [20]郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展.重庆建筑大学学报,2002,24(2):109-115
    [21]孟伟.流域水污染物总量控制技术与示范.北京:中国环境科学出版社,2008
    [22] Shanahan, P., Henze, M., Koncsos, L., et al. River water quality modelling: II.Problems of the art. Water Science and Technology,1998,38(11):245-252
    [23] Warren, I., Bach, H. MIKE21: a modelling system for estuaries, coastal watersand seas. Environmental Software,1992,7(4):229-240
    [24] Horn, A. L., Rueda, F. J., H rmann, G., et al. Implementing river water qualitymodelling issues in mesoscale watershed models for water policy demands––anoverview on current concepts, deficits, and future tasks. Physics and Chemistry ofthe Earth,2004,29(11):725-737
    [25] Radwan, M., Willems, P., El‐Sadek, A., et al. Modelling of dissolved oxygenand biochemical oxygen demand in river water using a detailed and a simplifiedmodel. International Journal of River Basin Management,2003,1(2):97-103
    [26] Cox, B. A review of currently available in-stream water-quality models and theirapplicability for simulating dissolved oxygen in lowland rivers. Science of theTotal Environment,2003,314:335-377
    [27]文德新.谈谈环境容量.环境导报,1996(3):24-26
    [28]鲍全盛,王华东,曹利军.中国河流水环境容量区划研究.中国环境科学,1996,16(2):87-91
    [29] Ecker, J. A geometric programming model for optimal allocation of streamdissolved oxygen. Management Science,1975,21(6):658-668
    [30] Liebman, J. C., Lynn, W. R. The optimal allocation of stream dissolved oxygen.Water Resources Research,1966,2(3):581-591
    [31] Li, S., Morioka, T. Optimal allocation of waste loads in a river with probabilistictributary flow under transverse mixing. Water Environment Research,1999:156-162
    [32] Revelle, C. S., Loucks, D. P., Lynn, W. R. Linear programming applied to waterquality management. Water Resources Research,1968,4(1):1-9
    [33] Fujiwara, O., Gnanendran, S. K., Ohgaki, S. River quality management understochastic streamflow. Journal of Environmental Engineering,1986,112(2):185-198
    [34] Lohani, B., Thanh, N. Probabilistic water quality control policies. Journal of theEnvironmental Engineering Division,1979,105(4):713-725
    [35] Ellis, J. H. Stochastic water quality optimization using imbedded chanceconstraints. Water Resources Research,1987,23(12):2227-2238
    [36]冯金鹏,吴洪寿,赵帆.水环境污染总量控制回顾,现状及发展探讨.南水北调与水利科技,2004,2(1):45-48
    [37]张修宇,陈海涛.我国水污染物总量控制研究现状.华北水利水电学院学报,2011,32(5):142-145
    [38]冯金鹏,吴洪寿.水环境污染物排放总量控制在南北方实施之异同.节水灌溉,2004(5):15-17
    [39] Imai, I., Yamaguchi, M., Hori, Y. Eutrophication and occurrences of harmful algalblooms in the Seto Inland Sea, Japan. Plankton and Benthos Research,2006,1(2):71-84
    [40] Takahashi, Y. Recent development of water environment policy: Area-wide totalwater pollutant load control scheme for enclosed coastal seas in Japan. Japan TappiJournal,2006,60(11):11-13
    [41] Hisano, T., Hayase, T. Countermeasures against water pollution in enclosedcoastal seas in Japan. Marine Pollution Bulletin,1991,23:479-484
    [42] Kallis, G., Butler, D. The EU water framework directive: measures andimplications. Water Policy,2001,3(2):125-142
    [43] Borja, A., Franco, J., Valencia, V., et al. Implementation of the European waterframework directive from the Basque country (northern Spain): a methodologicalapproach. Marine Pollution Bulletin,2004,48(3):209-218
    [44] Hanley, N., Wright, R. E., Alvarez-Farizo, B. Estimating the economic value ofimprovements in river ecology using choice experiments: an application to thewater framework directive. Journal of Environmental Management,2006,78(2):183-193
    [45] Boyd, J. New Face of the Clean Water Act: A Critical Review of the EPA's NewTMDL Rules. Duke Environmental Law&Policy Forum,2000,11:39
    [46] Mu oz-Carpena, R., Vellidis, G., Shirmohammadi, A., et al. Evaluation ofmodeling tools for TMDL development and implementation. Transactions of theASABE,2006,49(4):961-965
    [47] Shoemaker, L., Dai, T., Koenig, J. TMDL model evaluation and research needs.National Risk Management Research Laboratory, US Environmental ProtectionAgency,2005
    [48] Birkeland, S. EPA's TMDL program. Ecology LQ,2001,28:297
    [49] Borsuk, M. E., Stow, C. A., Reckhow, K. H. Predicting the frequency of waterquality standard violations: A probabilistic approach for TMDL development.Environmental Science and Technology,2002,36(10):2109-2115
    [50] Smith, E. P., Ye, K., Hughes, C., et al. Statistical assessment of violations ofwater quality standards under Section303(d) of the Clean Water Act.Environmental Science and Technology,2001,35(3):606-612
    [51] Vergura, J., Jones, R. TMDL Program: Land Use and Other Implications. DrakeJournal of Agricultural Law,2001,6:317
    [52] Havens, K., Schelske, C. The importance of considering biological processeswhen setting total maximum daily loads (TMDL) for phosphorus in shallow lakesand reservoirs. Environmental Pollution,2001,113(1):1-9
    [53] Shirmohammadi, A., Chaubey, I., Harmel, R., et al. Uncertainty in TMDLmodels. Transactions of the ASAE,2006,49(4):1033-1049
    [54] Haire, M., Vega, R., Koenig, J., et al. Handbook for Developing WatershedTMDLs. Proceedings of the Water Environment Federation,2009(6):520-548
    [55] Dilks, D. W., Freedman, P. L. Improved consideration of the margin of safety intotal maximum daily load development. Journal of Environmental Engineering,2004,130(6):690-694
    [56] Caviness, K. S., Fox, G. A., Deliman, P. N. Modeling the Big Black River: Acomparison of water quality models. Journal of the American Water ResourcesAssociation,2006,42(3):617-627
    [57] Elshorbagy, A., Teegavarapu, R. S., Ormsbee, L. Total maximum daily load(TMDL) approach to surface water quality management: concepts, issues, andapplications. Canadian Journal of Civil Engineering,2005,32(2):442-448
    [58] Freedman, P. L., Larson, W. M., Dilks, D. W., et al. Navigating the TMDLprocess: Evaluation and improvements. Proceedings of the Water EnvironmentFederation,2002(8):518-532
    [59] Novotny, V. Integrated water quality management. Water Science and Technology,1996,33(4):1-7
    [60] Ukita, M., Nakanishi, H. Pollutant load analysis for the environmentalmanagement of enclosed sea in Japan. In Proceedings of the Fourth InternationalConference on the Management of Enclosed Coastal Seas,1999:121-130
    [61] Crane, M. Proposed development of sediment quality guidelines under theEuropean Water Framework Directive: a critique. Toxicology Letters,2003,142(3):195-206
    [62] Muxika, I., Borja, A., Bald, J. Using historical data, expert judgement andmultivariate analysis in assessing reference conditions and benthic ecologicalstatus, according to the European Water Framework Directive. Marine PollutionBulletin,2007,55(1):16-29
    [63] Bateman, I. J., Brouwer, R., Davies, H., et al. Analysing the Agricultural Costsand Non-market Benefits of Implementing the Water Framework Directive.Journal of Agricultural Economics,2006,57(2):221-237
    [64] Hughes, S. J., Malmqvist, B. Atlantic Island freshwater ecosystems: challengesand considerations following the EU Water Framework Directive. Hydrobiologia,2005,544(1):289-297
    [65] Chave, P. A. The EU water framework directive: an introduction. InternationalWater Association,2001
    [66] Verhallen, A. J., Leentvaar, J., Broseliske, G. Consequences of the EuropeanUnion water framework directive for information management in its interstateriver basins. International Symposium on Integrated Water Resources Management,2001:31-36
    [67] Henry, L. A., Douhovnikoff, V. Environmental issues in Russia. Annual Review ofEnvironment and Resources,2008:33437-460
    [68] Tkalin, A., Belan, T., Shapovalov, E. The state of the marine environment nearVladivostok, Russia. Marine Pollution Bulletin,1993,26(8):418-422
    [69] Kang, M., Park, S., Lee, J., et al. Applying SWAT for TMDL programs to a smallwatershed containing rice paddy fields. Agricultural Water Management,2006,79(1):72-92
    [70] Ki, S., Lee, Y., Kim, S., et al. Spatial and temporal pollutant budget analysestoward the total maximum daily loads management for the Yeongsan watershed inKorea. Water Science and Technology,2007,55(1-2):367
    [71] Lee, J.-H., Ha, S.-R., Bae, M.-S. Calculation of diffuse pollution loads usinggeographic information. Desalination and Water Treatment,2010,19(1-3):184-190
    [72] Vaze, J., Chiew, F. H. Nutrient loads associated with different sediment sizes inurban stormwater and surface pollutants. Journal of Environmental Engineering,2004,130(4):391-396
    [73]王亮.天津市重点水污染物容量总量控制研究:[博士学位论文].天津:天津大学图书馆,2005
    [74] He, C., Fu, B., Chen, L. Non-point source pollution control and management.Chinese Journal of Enviromental Science,1998:1987-91
    [75] Zhu, Y., Zhang, H., Chen, L., et al. Influence of the South–North WaterDiversion Project and the mitigation projects on the water quality of Han River.Science of the Total Environment,2008,406(1):57-68
    [76]慕金波,甄文栋,王忠训等.山东省河流环境容量及最大允许排污量研究.山东大学学报(工学版),2008,38(5):77-93
    [77]夏青.水环境保护功能区划分.北京:环境科学出版社,1989
    [78]王超,朱党生,程晓冰.地表水功能区划分系统的研究.河海大学学报:自然科学版,2002,30(5):7-11
    [79]中国环境规划院.全国水环境容量核定技术指南.北京,2003
    [80] Parry, R. Agricultural phosphorus and water quality: A US EnvironmentalProtection Agency perspective. Journal of Environmental Quality,1998,27(2):258-261
    [81] Ongley, E. D. Non-point source water pollution in China: Current status and futureprospects. Water International,2004,29(3):299-306
    [82]襄樊市统计局.襄樊统计年鉴2008.北京:中国统计出版社,2008
    [83] Dewi, I. A., Axford, R., Marai, I., et al. Pollution in livestock production systems.Cab International,1994
    [84] Mawdsley, J. L., Bardgett, R. D., Merry, R. J., et al. Pathogens in livestock waste,their potential for movement through soil and environmental pollution. AppliedSoil Ecology,1995,2(1):1-15
    [85] Hooda, P. S., Edwards, A. C., Anderson, H. A., et al. A review of water qualityconcerns in livestock farming areas. Science of the Total Environment,2000,250(1-3):143-167
    [86] Gu, P., Shen, R. F., Chen, Y. D. Diffusion pollution from livestock and poultryrearing in the Yangtze Delta, China. Environmental Science and PollutionResearch,2008,15(3):273-277
    [87]国家环境保护总局自然生态保护司.全国规模化畜禽养殖业污染情况调查及防治对策.北京:中国环境科学出版社,2002
    [88] Nie, J., Gang, D. D., Benson, B. C., et al. Nonpoint Source Pollution. WaterEnvironment Research,2012,84(10):1642-1657
    [89] Xepapadeas, A., Bergh, J. Non-point source pollution control. Handbook ofEnvironmental and Resource Economics,2002:539-550
    [90] Subra, W., Waters, J. Non point source pollution. International Geoscience andRemote Sensing Symposium,1996:2231-2233
    [91] Ribaudo, M. Non-point source pollution control policy in the USA. EnvironmentalPolicies for Agricultural Pollution Control,2001:123-150
    [92] Carpenter, S. R., Caraco, N. F., Correll, D. L., et al. Nonpoint pollution ofsurface waters with phosphorus and nitrogen. Ecological Applications,1998,8(3):559-568
    [93] Chen, M., Chen, J. Phosphorus release from agriculture to surface waters: past,present and future in China. Water Science and Technology,2008,57(9):1355-1361
    [94]张维理,徐爱国,冀宏杰, Kolbe H.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析.中国农业科学,2004,37(7):1026-1033
    [95] ZHANG, T., CHEN, Y., ZHAO, L. Countermeasures on Tianjin Ninghe RuralNPS Pollution Control. International Symposium of HAIHE Basin IntegratedWater and Environment Management,2010:84-87
    [96]襄樊市统计局.襄樊统计年鉴2009.北京:中国统计出版社,2009
    [97]吴丹,李薇,肖锐敏.水环境容量与总量控制在制定排放标准中的应用.环境科学与技术,2005,28(2):48-50
    [98]张永良,刘培哲.水环境容量综合手册.北京:清华大学出版社,1991
    [99]王彦红.水体纳污能力计算中各参数的分析与确定.山西水利科技,2007,2(164):55-57
    [100]王有乐,孙苑菡,周智芳等.黄河兰州段CODCr降解系数的实验研究.甘肃冶金,2006,28(1):27-28
    [101]宋巍巍,刘年丰,谢鸿宇.基于综合生态足迹的项目生态环境影响分析研究.华中科技大学学报(城市科学版),2005,22(1):15-17
    [102] Zhang, Q. The South‐to‐North Water Transfer Project of China: EnvironmentalImplications and Monitoring Strategy. Journal of the American Water ResourcesAssociation,2009,45(5):1238-1247
    [103] Li, S., Li, J., Zhang, Q. Water quality assessment in the rivers along the waterconveyance system of the Middle Route of the South to North Water TransferProject (China) using multivariate statistical techniques and receptor modeling.Journal of Hazardous Materials,2011,195306-317
    [104]蒋固政,韩小波.汉江中下游干流梯级开发的环境影响分析.环境科学与技术,1998(4):14-16
    [105]王锁平,郑永恒,乔秋文.汉江水利水电工程的生态环境影响及流域可持续发展研究.西北水力发电,2006,22(z1):105-107
    [106] Cleland, B. R. TMDL development from the bottom up part III: Duration curvesand wet-weather assessments. Proceedings of the Water Environment Federation,2003(4):1740-1766
    [107] Kim, G., Choi, E., Lee, D. Diffuse and point pollution impacts on the pathogenindicator organism level in the Geum River, Korea. Science of the TotalEnvironment,2005,350(1):94-105
    [108] Cleland, B. TMDL development from the “bottom up”—Part II: Using durationcurves to connect the pieces. America’s Clean Water Foundation, Washington, DC,2002
    [109] Kim, J., Engel, B. A., Park, Y. S., et al. Development of Web-based LoadDuration Curve system for analysis of total maximum daily load and water qualitycharacteristics in a waterbody. Journal of Environmental Management,2012:9746-55
    [110] Barco, J., Hogue, T. S., Curto, V., et al. Linking hydrology and streamgeochemistry in urban fringe watersheds. Journal of Hydrology,2008,360(1):31-47
    [111] Kim, G., Yoon, J. Development and application of Total Coliform load durationcurve for the Geum River, Korea. KSCE Journal of Civil Engineering,2011,15(2):239-244
    [112] Kim, Y., Yoon, K., Son, J., et al. Pollutant Load Delivery Ratio for FlowDuration at the Chooryeong-cheon Watershed. Journal of The Korean Society ofAgricultural Engineers,2010:52-55
    [113] Zhang, H. X., Yu, S. L. Advances in TMDL Allocation Techniques: Importance ofConsidering Critical Condition and Uncertainty. Proceedings of the WaterEnvironment Federation,2004(16):1133-1155
    [114] Dean, K. E., Patek, J. M., Vargas, M. A. Tools to assist identification andquantification of indicator bacterial sources. Proceedings of the WaterEnvironment Federation,2005(8):7179-7189
    [115] Chen, J. C., Chartrand, A. B., Generaux, J. D., et al. Applicability and LessonsLearned from Using the Load Duration Curve Method to Develop TMDLS forHardness-dependent Metals. Proceedings of the Water Environment Federation,2007(5):1296-1310
    [116] Zhang, H. X., Yu, S. L. Defining the critical condition in the TMDL developmentprocess: continuous, statistical or event-based approach. Proceedings of the WaterEnvironment Federation,2006(11):2334-2349
    [117] Maryland Department of the Environment. Total Maximum Daily Load of Sedimentin the Patuxent River Upper Watershed, Anne Arundel, Howard and Prince George’sCounties, Maryland. Maryland Department of the Environment,2010
    [118] Gupta, R., Schneider, J., Martin, C., et al. Bacteria TMDL Development forPiney Run Watershed Virginia. Virginia Water Research Symposium,2004:70-74
    [119] U.S. EPA. An Approach for Using Load Duration Curves in the Development ofTMDLs. US Environmental Protection Agency,2007
    [120] Stiles, T. C. Incorporating hydrology in determining TMDL endpoints andallocations. Proceedings of the Water Environment Federation,2002(8):1637-1649
    [121] Bonta, J. V., Cleland, B. Incorporating natural variability, uncertainty, and riskinto water quality evaluations using duration curves. Journal of the AmericanWater Resources Association,2003,39(6):1481-1496
    [122] Vogel, R. M., Fennessey, N. M. Flow duration curves II: A review of applicationsin water resources planning. Journal of the American Water Resources Association,1995,31(6):1029-1039
    [123] Searcy, J. K. Flow-duration curves. US Government Printing Office,1959
    [124] Hordon, R. M. Water Encyclopedia, John Wiley&Sons, Inc.,2005
    [125] Vogel, R. M., Fennessey, N. M. Flow-duration curves. I: New interpretation andconfidence intervals. Journal of Water Resources Planning and Management,1994,120(4):485-504
    [126] Hughes, D., Smakhtin, V. Daily flow time series patching or extension: a spatialinterpolation approach based on flow duration curves. Hydrological SciencesJournal,1996,41(6):851-871
    [127] Singh, K. P. Model flow duration and streamflow variability. Water ResourcesResearch,1971,7(4):1031-1036
    [128] Smakhtin, V. Estimating daily flow duration curves from monthly streamflow data.Water SA,2000,26(1):13-18
    [129]丁京涛,许其功,席北斗等.历时曲线法在TMDL计划中的应用.环境科学与技术,2009,32(B06):393-396
    [130]程艳,李炳花,和寿芳等.负荷历时曲线在流域水质特征分析中的应用.水资源保护,2009,25(2):33-37
    [131] O’Donnell, K., Tyler, D. F., Wu, T. Fecal and Total Coliform TMDL for NewRiver. Florida Department of Environmental Protection,2004
    [132] Effler, S. W., O'Donnell, S. M., Matthews, D. A., et al. Limnological and loadinginformation and a phosphorus total maximum daily load (TMDL) analysis forOnondaga Lake. Lake and Reservoir Management,2002,18(2):87-108
    [133] Dors, K. M., Tsatsaros, J. Determining margin of safety for TMDLs. Proceedingsof the Water Environment Federation,2002(2):1892-1901
    [134] Zhang, H. X., Yu, S. L. Uncertainty Analysis of Margin of Safety in NutrientTMDL Modeling and Allocation. Proceedings of the Water EnvironmentFederation,2002(2):1841-1864
    [135] Dilks, D. Improved methods for calculating the TMDL margin of safety.Proceedings of the Water Environment Federation,2002(8):659-672
    [136] Walker Jr, W. W. Consideration of variability and uncertainty in phosphorus totalmaximum daily loads for lakes. Journal of Water Resources Planning andManagement,2003,129(4):337-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700