用户名: 密码: 验证码:
APEX模型在土壤侵蚀模拟中的适用性和不确定性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是全球性的生态环境问题,它对人类的生存和发展构成了严重威胁,对土壤侵蚀规律及其防治措施的研究已经成为国内外学者共同关注的焦点。淮河流域面积269,800 km~2,是中国七大流域之一,该流域22%的面积存在水土流失,平均土壤侵蚀量达到35 t·ha~(-1)·yr~(-1),而该地区可用于水土流失研究的资料比较匮乏。水文/水质模型是定量研究土壤侵蚀过程、指导水土保持措施配置、优化水土资源管理的有效工具。因此,在淮河流域运用有限的水土流失监测资料进行不同土地管理措施下土壤侵蚀规律及预测模型的研究具有很强的现实意义。
     本文以位于淮河流域中上游的河南省鲁山县水土保持科学试验站的三个径流小区为研究区,探讨APEX(Agricultural Policy and Environmental eXtender)模型在该地区点位模拟中的适用性以及模型输出结果的不确定性。首先,在分析模型参数灵敏度的基础上,应用研究区1982~86年日径流和产沙实测数据校正和验证模型,并评价其适用性;然后,把经过校正和验证的模型应用于不同管理措施的长期水土保持效益(1981~2005)评价中;最后,运用蒙特卡罗法对模型进行不确定性分析。主要结论如下:
     1)运用Sobol法和Extended FAST法,分别对APEX模型的13个参数进行灵敏度分析(1982~1986)。Sobol法识别出水文条件Ⅱ下的径流曲线数初始值(CN_2),损耗系数(CNIC),水土保持措施因子(PEC)以及最大径流率——降雨能量调整因子(APM)是对产沙影响较大的四个因子,其中前两个因子对径流影响较大。ExtendedFAST法与Sobol法的结果相似,与Sobol法相比,Extended FAST法的计算成本较低,是一种效率更高的灵敏度分析方法。
     2)分别运用蒙特卡罗模拟结合单目标函数和多目标函数技术的计算机程序自动校正模型,采用R~2≥0.5,EF≥0.4以及APE<25%的标准评价模型的适用性。通过比较两种校正方法发现单目标函数法的校正结果较差,在大多数情况下PE,EF和R~2三个指标未能同时都达到评价标准;而多目标函数法的校正效果较好,在1982年模型校正时期,径流和产沙日平均模拟值的APE分别小于15%和20%,EF从0.48到0.89,R~2从0.56到0.98。在模型验证时期(1983~86),三个小区径流和产沙日平均模拟值的APE分别小于20%和25%,EF从0.41到0.84,R~2从0.55到0.85,校正过的模型可以模拟出径流和产沙的日变异,拟合度结果表明模型能够很好解释实测值的变异,因此,APEX模型适用于淮河流域中上游点位模拟中,能够预测不同土地管理措施下的水土流失,这为资料匮乏区研究土壤侵蚀提供了一种新的思路和工具。
     3)我们把经过校正和验证的APEX模型用于对三种情景进行情景分析,其中对照为休闲地,情景1和2分别为‘林草混交-水平梯田'和‘林地-水平沟'。情景分析结果表明,构建水平梯田和水平沟,退耕还林以及增加地表植被覆盖对控制水土流失效果明显,‘林地-水平沟'的组合方式可减少37%的地表径流和89%的产沙量,构建水平梯田以及采用林草混交能减少35%的地表径流和84%的产沙量。研究结果对于淮河流域中上游选择合适的土地管理措施来控制水土流失有一定启发,同时也说明APEX能用于评价不同情景的长期水土保持效益。
     4)运用蒙特卡罗模拟和统计方法分析了PEC、CN_2、CNIC和APM四个不确定参数引起的径流和产沙输出结果的不确定性,此外还分析了EHC4由PEC和CN_2两个不确定参数导致的不同情景下水土保持效益的不确定性。EHC1、EHC2和EHC4三个小区25年(1981~2005)年均径流预测值的95%置信度的不确定性范围分别为64.5~69.5 mm·yr~(-1),58.0~62.8 mm·yr~(-1)以及103.0~105.9 mm·yr~(-1);三个小区年均产沙量的不确定性范围分别为3.7~4.0 t·ha~(-1)·yr~(-1),2.0~2.2 t·ha~(-1)·yr~(-1)以及25.3~26.2 t·ha~(-1)·yr~(-1)。与对照相比,在95%置信度下情景1的径流量年均减少31.6%~36.2%,产沙量年均减少83.4%~84.4%,情景2的径流量年均减少34.3%~38.7%,产沙量年均减少88.9%~89.6%。
Soil erosion is a global ecological and environmental problem which threatens human survival and progress.Studies of soil erosion processes and preventive measures have become a major focus among researchers worldwide.The Huaihe River Basin,one of the seven major river basins in China,has a catchment area of 269,800 km~2.Soil erosion rate can be as high as 35 t·ha~(-1)·yr~(-1) across nearly 22%of the basin area.Hydrologic/Water quality models are effective tools that can be used to study soil erosion processes quantitatively, design soil and water conservation practices,and optimize soil and water resource management.It is important to study soil erosion under different management practices using simulation models because long-term detailed rainfall,runoff,and erosion data are not available for Huaihe River Basin.
     This study was conducted to evaluate the applicability of the APEX model to Chinese watersheds.Three plots located in the Middle and Upland Huaihe River Basin were selected as study areas.The APEX model was subjected to sensitivity analysis,calibration and validation using daily runoff and sediment yield data collected from the three plots during 1982-1986.Scenario simulations were conducted for 25-year periods using the calibrated and validated model for evaluating soil and water conservation benefits.Moreover, uncertainty analysis was conducted using Monte Carlo method.The main conclusions are as follows:
     1) Sensitivity analysis(SA) was conducted for the surface runoff and soil erosion components using Sobol and Extended Fourier amplitude sensitivity test(Extended FAST). A total of 13 parameters were selected for SA.The SA results of the Sobol method showed that moisture condition 2 curve number(CN_2),curve number index coefficient(CNIC), conservation practice factor(PEC),and peak rate-rainfall energy adjustment factor(APM) were influential for sediment yield,and that CN_2 and CNIC were influential for surface runoff.The Extended FAST method had similar results with Sobol and was more efficient computationally.
     2) The Monte Carlo scheme was used for model calibration/optimization in this study. Results from using multi-objective functions were better than those from using single objective function.The criteria of R~2≥0.5,EF≥0.4 and percentage error of mean under 25% were established to assess the model results.The single objective function method failed to meet all the evaluation criteria(PE,EF and R~2) simultaneously in the most cases.Predicted average daily runoff and sediment yield were within 15%and 20%of the corresponding observed values for the 1982 calibration period.The EF values ranged from 0.48 to 0.89, and R~2 from 0.56 to 0.98.The predicted average daily runoff and sediment yield were within 20%and 25%of the corresponding observed values for the validation period of 1983~1986. The calibrated APEX model tracked the variability of daily runoff and sediment yield well for the validation period,with EF values ranging from 0.41 to 0.84 and R~2 from 0.55 to 0.85. The goodness-of-fit measures indicate that the APEX model explained variation in the observed data reasonably well.The results suggested that the APEX model is applicable at the site-scale.It can be a useful tool for simulating runoff and erosion under different management practices in the Middle and Upland Huaihe River Basin.It will be useful in simulating runoff and erosion for ungaged watersheds.
     3) The scenario analyses using calibrated and validated APEX model revealed that the woodland with horizontal-ditch reduced surface runoff by 37%and sediment yield by 89%. The mixed wood-grass with horizontal-terrace reduced surface runoff by 35%and sediment yield by 84%.The results indicated that the construction of horizontal-terrace and horizontal-ditch and reforestation or revegetation are very effective in controlling surface runoff and sediment yield.The results were irradiative for choosing adaptive land management practices in the Middle and Upland Huaihe River Basin to reduce soil and water loss.APEX is a useful tool for evaluating the benefits of long-term soil and water conservation under different scenarios.
     4) Uncertainties of predicted runoff and sediment yield associated with uncertainties in PEC,CN_2,CNIC and APM were analyzed using Monte Carlo and statistical methods.The reduction in confidence intervals of surface runoff and sediment yield resulting from uncertainties of PEC and CN_2 for EHC4 under scenario 1 and 2 were also analyzed.The 95% confidence interval bands of average annual runoff over the 25-year simulation period ranged from 64.5 to 69.5 mm·yr~(-1) for EHC1,from 58.0 to 62.8 mm·yr~(-1) for EHC2,and from 103.0 to 105.9 mm·yr~(-1) for EHC4.The confidence interval bands of average annual sediment yield ranged from 3.7 to 4.0 t·ha~(-1)·yr~(-1) for EHC1,from 2.0 to 2.2 t·ha~(-1)·yr~(-1) for EHC2,and from 25.3 to 26.2 t·ha~(-1)·yr~(-1) for EHC4.The 95%confidence interval for average annual runoff reduction was 31.6%~36.2%for scenario 1 and 34.3%~38.7%for scenario 2.The 95%confidence interval for average sediment yield reduction was 83.4%~84.4%for scenario 1 and 88.9%~89.6%for scenario 2.
引文
[1]卜兆宏,董勤瑞,周伏建,等.降雨侵蚀力因子新算法的初步研究.土壤学报,1992,29(4):408-417
    [2]卜兆宏,宫世俊,阮伏水,等.降雨侵蚀力因子的算法及其在土壤流失量监测中的选用.遥感技术与应用,1992,7(3):1-9
    [3]卜兆宏,刘绍清.土壤流失量及其参数实测的新方法.土壤学报,1995,32(2):210-220
    [4]卜兆宏,孙金庄,董勤瑞,等.应用水土流失定量遥感监测山东全省山丘区的研究.土壤学报,1999,36(1):1-8
    [5]卜兆宏,孙金庄,周伏建,等.水土流失定量遥感方法及其应用的研究.土壤学报,1997,34(3):235-245
    [6]卜兆宏,唐万龙,潘贤章.土壤流失量遥感监测中GIS像元地形因子算法的研究.土壤学报,1994,31(3):322-329
    [7]卜兆宏,席承藩,李士鸿,等.水土流失量遥感监测的研究设想与初步进展.遥感技术动态,1990,(4):31-36
    [8]卜兆宏,赵岩尺,刘绍清,等.用于土壤流失量遥感监测的植被因子算式的初步研究.遥感技术与应用,1993,8(4):16-22
    [9]蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报,1996,51(2):108-117
    [10]曹文志,洪华生,张玉珍,等.AGNPS在我国东南亚热带地区的检验.环境科学学报,2002,22(4):537-540
    [11]陈兵,李军,李小芳.黄土高原南部旱塬地苜蓿水分生产潜力模拟研究.干旱地区农业研究,2006,24(3):31-35
    [12]陈国祥,谢树楠,汤立群.黄土高原地区流域侵蚀产沙模型研究.黄土高原水土保持.郑州:黄河水利出版社,1996
    [13]陈晓燕,何丙辉,缪驰远,等.WEPP模型在紫色土坡面侵蚀预测中的应用研究.水土保持学报,2003,17(3):41-44
    [14]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析.农业工程学报,2000,16(5):44-47
    [15]陈一兵,Trouwborst K O.土壤侵蚀建模中ANSWERS及地理信息系统ARC/IN FOR的应用研究.土壤侵蚀与水土保持学报,1997,3(2):1-13
    [16]常欣,程序,邱化蛟,等.计算机模拟模型在黄土丘陵区土地可持续利用中的实证研究.农业工程学报,2003,19(4):295-298
    [17]郭生练,李兰,曾光明.气候变化对水文水资源系统影响评价的不确定分析.水文,1995(6):8-14
    [18]洪华生,曹文志,张玉珍,等.九龙江典型流域氮磷流失的模拟研究.厦门大学学报(自然科学版).2004,43卷(增刊):243-248
    [19]胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究.土壤学报,2001,38(2):167-175
    [20]胡远安,程声通,贾海峰.非点源模型中的水文模拟——以SWAT模型在芦溪小流域的应用为例.环境科学研究,2003,16(5):29-32
    [21]黄金良,洪华生,杜鹏飞,等.AnnAGNPS模型在九龙江典型小流域的适用性检验.环境科学学报,2005,25(8):1135-1142
    [22]黄炎,付勤.闽东南降雨侵蚀力指标R值的研究.中国水土保持,1992,6(4):1-5
    [23]贾媛媛,郑粉莉,杨勤科,等.国内坡面土壤侵蚀预报模型评述.水土保持研究,2004,11(4):109-112
    [24]江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算.第一次河流泥沙国际学术讨论会文集.北京:光华出版社.1980.63-72
    [25]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究.土壤侵蚀与水土保持学报,1996,2(1):1-10
    [26]江忠善,李秀英.黄土高原土壤流失预报方程中降雨侵蚀力和地形因子的研究.见:中国科学院西北水土保持研究所集刊第7集.西安:陕西科学技术出版社,1988
    [27]蒋颖,王学军,罗定贵.流域管理模型的参数灵敏度分析——以WARMF在巢湖地区的应用为例.水土保持研究,2006,13(3):165-168
    [28]景卫华,贾忠华,罗纨,等.WEPP模型在黄土地区的适用性分析.水资源与水工程学报,2006,17(2):28-31
    [29]李军,邵明安,张兴昌,等.黄土高原旱塬区高产玉米田土壤干燥化与产量波动趋势模拟研究.中国农业生态学报,2007,15(2):54-58
    [30]李军,邵明安,张兴昌.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究.自然资源学报,2004,19(6):738-746
    [31]李森,陈家军,叶慧海,等.地下水流数值模拟中随机因素的灵敏度分析.水利学报,2006,37(8):977-984
    [32]李硕,孙波,曾志远,等.遥感和GIS辅助下流域养分迁移过程的计算机模拟.应用生态学报,2004,15(2):278-282
    [33]刘秉正.渭北地区R的计算与分布.西北林学院学报,1993,8(2):21-29
    [34]刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展,2003,22(5):437-447
    [35]马志尊.应用卫星影象估算通用土壤流失方程个因子值方法的探讨.中国水土保持,1989,(3):24-27
    [36]梅立永,赵智杰,黄钱,等.小流域非电源污染模拟与仿真研究——以HSPF模型在西丽水水库流域应用为例.农业环境科学学报,2007,26(1):64-70
    [37]缪驰远,何丙辉,陈晓燕,等.USLE与WEPP土壤可蚀性因子的关联性分析.中国水土保持,2004,(6):23-26
    [38]牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算[C].第一次河流泥沙国际学术讨论会文集.北京:光华出版社,1980.63-72
    [39]牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究-中国水土保持,1983,(6):23-27
    [40]倪九派,谢春燕,魏朝富,等.土壤侵蚀预测建模研究进展.中国水土保持科学,2005,3(1):66-71
    [41]牛志明,解明曙,孙阁,等.ANSWER2000在小流域土壤侵蚀过程模拟中的应用研究.水土保持学报,2001,15(3):56-60
    [42]裴洪平,汪勇.杭州西湖富营养化模型的不确定性分析.生物数学学报,2004,19(1):117-122
    [43]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题.水利水电科技进展,2002,22(3):56-70
    [44]芮孝芳.流域水文模型研究中的若干问题.水科学进展,1997,8(1):94-98
    [45]史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究.农业工程学报,2002,18(4):172-175
    [46]孙阁,张志强,周国逸,等.森林流域水文模拟模型的概念、作用及其在中国的应用.北京林业大学学报,2007,29(3):178-184
    [47]汤立群,陈国祥,蔡名扬.黄土丘陵区小流域产沙数学模型.河海大学学报,1990,18(6):10-16
    [48]王尔大,Wyatte Harman,郑大玮,等.旱作农区轮作和留茬处理方式对风蚀的影响——应用EPIC模型进行模拟和分析的武川案例.中国农业科学,2002,35(11):1330-1336
    [49]王飞儿,吕唤春,陈英旭,等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报,2003,19(6):281-284
    [50]王吉苹,曹文志.应用GLEAMS模型评估我国东南地区农业小流域硝态氮的渗漏淋失.生态与农村环境学报,2007,23(1):28-32
    [51]王建勋,郑粉莉,江忠善,等.WEPP模型坡面版在黄土丘陵沟壑区的适用性评价——以坡长因子为例.水土保持通报,2007,27(2):50-55
    [52]王星宇.黄土地区流域产沙数学模型.泥沙研究,1987,(3):41-46
    [53]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究,地理科学进展,2003,22(1):79-86
    [54]王宗明,梁银丽.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试.自然资源学报,2002,17(4):481-487
    [55]王宗明,张柏,宋开山,等.CropSyst作物模型在松嫩平原典型黑土区的校正和验证.农业工程学报,2005,21(5):47-50
    [56]吴素业.安徽大别山区降雨侵蚀力简化算法与时空分布规律.中国水土保持,1994,(4):12-13
    [57]徐爱兰,姚琪,王鹏,等.基于太湖数字流域系统的水质模型参数灵敏度分析.水利科技与经济,2007,13(1):17-19
    [58]许月卿,蔡运龙.贵州省猫跳河流域土壤侵蚀量计算及其背景空间分析.农业工程学报,2006,22(5):50-54
    [59]杨桂莲,郝芳华,刘昌明,等.基于SWAT模型的基流估算及评价——以洛河流域为.地理科学进展,2003,22(5):463-471
    [60]杨子生.滇东北山区坡耕地土壤流失方程研究.水土保持通报,1999,19(1):1-9
    [61]尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式.地理学报,1989,44(1):32-45
    [62]尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与展望.水力发电,2006,32(10):27-31
    [63]曾远,张永春,张龙江,等.GIS支持下AGNPS模型在太湖流域典型圩区的应用.农业环境科学学报,2006,25(3):761-765
    [64]张东,张万昌.SWAT 2000气象模拟器的随机模拟原理、验证及改进.资源科学,2004,26(4):28-36.
    [65]张东,张万昌,朱利,等.SWAT分布式流域水文物理模型的改进及应用研究.地理科学,2005,25(4):434-440
    [66]张东升,史学正,于东升,等.城乡交错区蔬菜生态系统氮循环的数值模拟研究.土壤学报,2007,44(3):484-491
    [67]张宪奎,卢秀琴,唐敏,等.土壤流失预报方程中R指标的研究.水土保持科技情报,1991,(4):47-48
    [68]张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9
    [69]张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究.水土保持研充,2003,10(4):38-42
    [70]周伏建,陈明华,黄炎和,等.福建省土壤流失预报研究.水土保持学报,1995,9(1):25-36
    [71]周佩华.2000年中国水土流失趋势预测与防治对策.中国科学院水土保持研究所集刊,1988,7:572-71.
    [72]朱新军,王中根,李建新,等.SWAT模型在漳卫河流域应用研究.地理科学进展,2006,25(5):105-111
    [73]Abbott M B,Bathurst J C,Cunge J A,et al.An introduction to the European Hydrological System-System Hydrologique European,SHE,2.Structure of a physically-based distributed modelling system.J.Hydrol.,1986,87 :61-77
    [74]Ahsam M,O'Connor K M.A reappraisal of the Kalman filtering technique as applied in river flow forecasting.J.Hydrol,1994,161:197-226
    [75]Apeztegu(?)a H P,Izaurralde R C,Sereno R.Simulation of Soil Organic Matter Dynamics as Affected by Land Use and Agricultural Practices in Semiarid C(?)rdoba,Argentina.Agronomy Abstracts.CD-ROM,2002
    [76]Arnold J G,Srinivasan R,Muttiah R S,et al.Large area hydrologic modeling and assessment part Ⅰ:model development.Journal of the American Water Resources Association,1998,34 (1):73-89
    [77]Beasley D B,Huggins L F.ANSWERS Users Manual.EPA 905982001.Washington,DC:USEPA,1981
    [78]Beasley D B,Huggins L F,Monke E J.ANSWERS:a model for watershed planning.Trans.ASAE,1980,23(4) :938-944
    [79]Beasley D B,Huggins L F,Monke E J.Modeling sediment yield from agricultural watersheds.Journal of Soil and Water Conservation ,1982,37(2):113-117
    [80]Beasley D B,Huggins L F.ANSWERS Users Manual.EPA-905/9-82-001.Washington ,D C:USEPA,1981
    [81]Bernardo D J,Mapp H P,Sabbagh G J,et al.Economic and Environmental Impacts of Water Quality Protection Policies,pt.2,Application to the Central High Plains.Water Resour.Res.1993,29(9):3081-3091
    [82]Bernardos J N,Viglizzo E F,Jouvet V,et al.The Use of EPIC Model to Study the Agroecological Change during 93 Years of Farming Transformation in the Argentine Pampas.Agric.Syst.2001,69:215-234
    [83]Beven K J.Prophecy,reality and uncertainty in distributed hydrological modeling.Advances in Water Resources,1993,16(1):41-51
    [84]Beven K J,Binley A M.The future of distributed models:Model calibration and uncertainty prediction.Hydrological Processes,1992,6 (3):279-298
    [85]Bhuyan S J,Kalita P K,Janssen K A,et al.Soil loss predictions with three erosion simulation models.Environ.Model.Soft.,2002,17:137-146
    [86]Binley A M,Beven K J,Calver A,et al.Changing responses in hydrology:assessing the uncertainty in physically based model predictions.Advances in Water Resources.1991,27 (6) :1253-1261
    [87]Bouniols A,Cabelguenne M,Jones C A,et al.Simulation of soybean nitrogen nutrition for a silty clay soil in Southern France.Field Crops Res.,1991,26(1):19-34
    [88]Brown R A,Rosenberg N J.Climate change impacts on the potential productivity of corn and winter wheat in their primary united states growing regions.Climatic Change,1999,41(1):73-107
    [89]Cabelguenne M,Jones C A,Williams J R.Strategies for limited irrigations of maize in Southwestern France—A Modeling Approach.Trans.ASAE,1995,38(2):507-511
    [90]Cavero J,Plant R E,Shennan C,et al.Modeling nitrogen cycling in tomato-safflower and tomato-wheat rotations.Agric.Syst.,1999,60:123-135
    [91]Chaubey I,Haan C T,Grunwald S,et al.Uncertainty in model parameters due to spatial variation of rainfall.J.Hydrol.,1999,220:48-61
    [92]Chung S W,Gassman P W,Huggins D R,et al.Evaluation of EPIC for tile flow and tile nitrate losses from three minnesota cropping systems.J.Environ.Qual.,2001,30(3):822-830
    [93]Chung S W,Gassman P W,Kramer L A,et al.Validation of EPIC for two watersheds in Southwest Iowa.J.Environ.Qual.,1999,28(3):971-979
    [94]Chung S W,Gassman P W,Gu R,et al.Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems.Trans.ASAE,2002,45(4):1135-1146
    [95]Crosetto M,Tarantola S,Saltelli A.Sensitivity and uncertainty analysis in spatial modeling based on GIS.Agric.Ecosyst.Environ.,2000,81:71-79
    [96]Cukier R I,Fortuin C M,Shuler K E,et al.Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I.Theory.J.Chem Phys,1973,59:3873-3878
    [97]Goodrich D C,Faures J,Woolhiser D A,et al.Measurement and analysis of small-scale convective storm rainfall variability.J.Hydrol.,1995,173:283-308
    [98]de Barros I,Williams J R,Gaiser T.Modeling soil nutrient limitations to crop production in semiarid NE of Brazil with a modified EPIC version I:changes in the source code of the model.Ecol.Model.2004,178:441-56
    [99]Edwards D R,Benson V W,Williams J R,et al.Use of the EPIC model to predict runoff transport of surface-applied inorganic fertilizer and poultry manure constituents.Trans.ASAE,1994,37(2):403-409
    [100]Favis-Mortlock D T,Evans R,Boardman J,et al.Climate change,winter wheat yield and soil erosion on the English South Downs.Agric.Syst.,1991,37:415-433
    [101]Flowers J D,Williams J R,Hauck L M.NPP integrated modeling system:calibration of the APEX model for dairy waste application fields in erath county,Texas.Project Report PR 96-07.Texas Institute for Applied Environmental Research,Tarleton State University,1996
    [102]Foltz J C,Lee J G,Martin M A.Farm-level economic and environmental impacts of eastern corn belt cropping systems.J.Prod.Agric,1993,6:290-296
    [103]Foster G R,Lane L J.User requirements:USDA-Water Erosion Prediction Project (WEPP).NSERL Report No.1.West Lafayette:USDA-ARS,National Soil Erosion Research Laboratory,1987
    [104]Gassman P W,Osei E,Saleh A.Application of an environmental and economic modeling system for watershed assessments.Journal of the American Water Resources Association,2002,38(2):423-438
    [105]Gassman P W.The national pilot program integrated modeling system:environmental baseline assumptions and results for the APEX model (Livestock Series Report 9).CARD staff report 97-SR 85.Center for agricultural and rural development,Iowa State University,1997
    [106]Gupta V K,Sorooshian S.The relationship between data and the precision of parameter estimates of hydrologic models.J.Hydrol.,1985,81(1-2):55-77
    [107]Harman W L,Wang E,Williams J R.Reducing Atrazine losses:water quality implication of alternative runoff control practices.J.Environ.Qual.,2004,33:7-12
    [108]Hession W C,Storm D E,Haan C T.Two-phase uncertainty analysis:an example using the Universal Soil Loss Equation.Trans.ASAE,1996,.39(4):1309-1319
    [109]Izaurralde R C,Williams J R,McGill W B,et al.Modeling soil organic carbon changes in crp land and a long term crop rotation trial with EPIC.Joint Global Change Research Institute,University of Maryland,2004
    [110]Jain S K,Kumar S.Varghese J.Estimation of soil erosion for a Himalayan watershed using GIS technique.Water Resources Management,2001,15:41-54
    [111]Jones C A,Dyke P T,Williams J R,et al.EPIC:An operational model for evaluation of agricultural sustainability.Agric.Syst.,1991,37:341-50
    [112]Beven K J,Binley A.The future of distributed models:model calibration and uncertainty prediction,Hydrol.Proc,1992,6:279-298
    [113]King K W,Richardson C W,Williams J R.Simulation of sediment and nitrate loss on a vertisol with conservation tillage practices.Trans.ASAE,1996,39(6):2139-2145
    [114]Kiniry J R,Major D J,Izaurralde R C,et al.EPIC Model parameters for cereal,oilseed,and forage crops in the Northern Great Plains Region.Can.J.Plant Sci.,1995,75(3):679-88
    [115]Kiniry J R,Williams J R,Gassman P W,et al.A general,process-oriented model for two competing plant species.Trans.ASAE,1992b,35(3):801-10
    [116]Kiniry J R,Blanchet R,Williams J R,et al.Sunflower Simulation using the EPIC and ALMANAC Models.Field Crops Res.,1992a,30(3-4):403-23
    [117]Knisel W G.CREAMS:A field scale model for chemicals,runoff,and erosion from agricultural management systems.Conservation Research Report NO.26.Washington,D.C.:USDA-ARS,1980
    [118]Kuczera G.Improved parameter inference in catchment models:Evaluating parameter uncertainty.Water Resources Research,1983,19(5):1151-1162
    [119]Laflen J M,Lwonard J L,Foster G R.WEPP a new generation of erosion prediction technology.Journal of Soil and Water Conservation,1991,46(1):34-38
    [120]Lee J J,Phillips D L,Liu R.The effect of trends in tillage practices on erosion and carbon content of soils in the U.S.corn belt.Water Air Soil Poll.,1993,70:389-401
    [121]Leonard R A,Knisel W G,Still D A.GLEAMS:groundwater loading effects of agricultural management systems.Trans.ASAE ,1987,30(5) :1403-1418
    [122]Liu B,Zhang K,Xie Y.An empirical soil loss equation.In:Process of soil erosion and its environment effect volume Ⅱ 12th ISCO.Beijing:Tsinghua Press,2002,21- 25
    [123]Madsen H.Automatic calibration of a conceptual rainfall-runoff model using multiple objectives.J.Hydrol.2000,235,276-288
    [124]McKay M D,Beckman R J,Conover W J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code.Technometrics,1979,21:239-245
    [125]Melching C S,Yoon C G.Key sources of uncertainty in QUAL2E model of Passaic River.ASCE Journal of Water Resources Planning and Management,1996,122(2):105-113
    [126]Meyer L D.Evolution of the universal soil loss equation.Journal of Soil and Water Conservation .1984,39:99-104
    [127]Morgan R P C,Quinton J N,Smith R E,et al.The European soil erosion model (EUROSEM):a dynamic approach for predicting sediment transport from fields and small catchments.Earth Surface Processes and landforms,1998,(23):527-544
    [128]Morris M D.Factorial sampling plans for preliminary computational experiments.Technometrics,1991,33:161-174
    [129]Nandakumar N,Mein R G.Uncertainty in rainfall- runoff model simulations and the implication for predicting the hydrologic effects of land-use change.J.Hydrol.,1997,192:211- 232
    [130]Nearing M A,Deer-Ascough L,Laflen J M.Sensitivity analysis of the WEPP hillslope profile erosion model.Trans.ASAE,1990,33(3):39-849
    [131]Nearing M A,West L T,Brown L C.A consolidation model for estimating changes in rill credibility.Trans.ASAE,1988,31 (3):696-700
    [132]Ogle S M,Breidt F J,Eve M D,et al.Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997.Global Change Biology,2003,9:1521-1542
    [133]Osei E,Gassman P,Saleh A.Livestock and the Environment:A National Pilot Project;Economic and Environmental Modeling Using CEEOT.Project Report PR0002.Texas Institute for Applied Environmental Research,Tarleton State University,2000
    [134]Osei E,Gassman P W,Hauck L M,et al.Environmental benefits and economic costs of manure incorporation on dairy waste application fields.J.Environ.Mgmt.,2003,68:1-11
    [135]Osei E,Gassman P W,Jones R,et al.Economic and Environmental Impacts of Alternative Practices on Dairy Farms in an Agricultural Watershed.J.Soil Water Cons.,2000,55(4):466-472
    [136]Peter S M.Stochastic models,estimation,and control 1.New York,N.Y.:Academic Press,1979
    [137]Philip W G,Williams J R,Benson V W,et al.Historical development and applications of the EPIC and APEX models.Working Paper 05-WP 397.Iowa State University,2005
    [138]Phillips D L,Hardin P D,Benson V W,et al.Nonpoint source pollution impacts of alternative agricultural management practices in Illinois:a simulation study.J.Soil Water Cons.,1993,48(5):449-457
    [139]Pierson S T,Cabrera M L,Evanylo G K,et al.Phosphorus losses from grasslands fertilized with broiler litter:epic simulations.J.Environ.Qual.,2001,30:1790-1795
    [140]Potter K N,Williams J R.Predicting daily mean temperatures in the epic simulation model.Agron.J.,1994,86(6):1006-1011
    [141]Potter K N,Williams J R,Lamey F J,et al.Evaluation of EPIC's wind erosion submodel using data from Southern Alberta.Can.J.Soil Sci.,1998,78:485-492
    [142]Poudel D D,Midmore D J,West L T.Farmer participatory research to minimize soil erosion on steepland vegetable systems in the Philippines.Agric.Ecosyst.Environ.,2000,79:113-127
    [143]Purveen H,Izaurralde R C,Chanasyk D S,et al.Evaluation of EPIC's snowmelt and water erosion submodels using data from the Peace River Region of Alberta.Can.J.Soil Sci.,1997,77:41-50
    [144]Renard K G,Foster G R,Weesies G A,et al.Predicting soil erosion by water:a guide to conservation planning with the revised universal soil loss equation (RUSLE).Agricultural Handbook NO.703.Washington,D.C.:USDA,ARS,1997
    [145]Rinaldi M.Application of EPIC model for irrigation scheduling of sunflower in Southern Italy.Agric.Water Manage.2001,49:185-196
    [146]Roloff G,de Jong R,Nolin M C.Crop yield,soil temperature and sensitivity of EPIC under Central-Eastern Canadian conditions.Can.J.Plant Sci.,1998a,78(3):431-439
    [147]Roloff G,de Jong R,Zentner R P,et al.Estimating spring wheat yield variability with EPIC.Can.J.Plant Sci.,1998b,78(3):541-549
    [148]Sabbagh G J,Norris P E,Geleta S,et al.Environmental and economic impacts of pesticide and irrigation practices:EPIC-PST simulation.J.Prod.Agric,1992,5:312-317
    [149]Sabbagh G J,Bengston R L,Fouss J L.Modification of EPIC to incorporate drainage systems.Trans.ASAE,1991,34(2):467-471
    [150]Saleh A,Williams J R,Wood J C,et al.Application of APEX for forestry.Trans.ASAE,2004,47(3):751-765
    [151]Saltelli A,Tarantola S,Chan K P-S.A quantitative model-independent method for global sensitivity analysis of model output.Technometrics,1999,41(1):39-56
    [152]Sharpley A N,Williams J R.EPIC—erosion/ productivity impact calculator: 11 Model documentation .U.S.Dept.Agric.Tech.Bull.No.1768,1990
    [153]Sobol I M.Sensitivity estimates for nonlinear mathematical models.Mathematical Modelling Computational Experiment,1993,1:407-414
    [154]Stockle C O,Dyke P T,Williams J R,et al.A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops:part Ⅱ - sensitivity analysis at three sites in the Midwestern USA.Agric.Syst.,1992a,38(3):239-256
    [155]Taylor M L,Adams R M,Miller S F.Farm-level response to agricultural effluent control strategies:The Case of the Willamette Valley.J.Agric.Resour.Econ.,1992,17(1):173-183
    [156]Thorsen M,Refsgaard J C,Hansen S,et al.Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale.J.Hydrol.,2001,242:210-227
    [157]Vicens G J,Rodriguez-Iturbe I,Shaake J C.Bayesian framework for the use of regional information in hydrology.Water Resources Research,1975,11(3):405-414
    [158]Wang E,Chang X,Williams J R,et al.Predicting soil erosion for alternative land uses.J.Environ.Qual.,2006,35:459-467
    [159]Wang X,Frankenberger J R,Kladivko E J.Uncertainties in DRAINMOD predictions of subsurface drain flow for Indiana silt loam using the GLUE methodology.Hydrological Processes,2006a,20:3069-384
    [160]Wang X,Youssef M A,Skaggs R W,et al.Sensitivity analyses of the nitrogen simulation model,DRAINMOD-NⅡ.Trans.ASAE,2005,48(6):2205-2212
    [161]Wang X,Potter S R,Williams J R,et al.Sensitivity analysis of APEX for national assessment. Trans.ASABE,2006b,49(3):679-688
    [162]Williams J R.Sediment yield prediction based on watershed hydrology.Trans.ASAE,1977,20:1100-1104
    [163]Williams J R,Jones C A,Dyke P T.A modeling approach to determining the relationship between erosion and soil productivity.Trans.ASAE,1984,27 :129-144
    [164]Williams J R.The EPIC model.In Computer Models of Watershed Hydrology.Singh V P,ed.Highlands Ranch,Colo.:Water Resources Publication,1995,909-1000
    [165]Williams J R,Izaurralde R C.Chapter 18:The APEX model.In Watershed Models.Singh V P and Frevert D K,eds.Boca Raton,Fla.:CRC Press,Taylor and Francis Group,2006,437-482
    [166]Williams J R,Harman W L,Magre M,et al.APEX feedlot water quality simulation.Trans.ASAE,2006,49(1):61-73
    [167]Williams J,Nearing M,Nicks A,et al.Using soil erosion models for global change studies.J.Soil and Water Cons.,1996,51(5):381-385
    [168]Williams J R.The EPIC Model.In computer models of watershed hydrology,edited by Singh V P.Highlands Ranch,CO:Water Resources Publications,1995,909-1000
    [169]Williams J R,Jones C A,Dyke P T.A modeling approach to determining the relationship between erosion and soil productivity.Trans.ASAE,1984,27(1):129-144
    [170]Williams J R,Jones C A,Kiniry J R,et al.The EPIC crop growth model.TransASAE,1989,32(2):497-511
    [171]Williams J R,Richardson C W,Griggs R H.The weather factor:incorporating weather variance into computer simulation.Weed Technol.,1992.6:731-35
    [172]Williams J R,Arnold J G,Srinivasan R.The APEX model.BRC Report No.00-06.Texas Agric.Expt.Station,Texas Agric.Exten.Service,Texas A&M University,2000
    [173]Wischmeier W H,Mannering J V.Relation of soil properties to its erodibility.Soil Science Society of American Proceedings,1969,33:131-137
    [174]Wischmeier W H,Smith D D.Predicting rainfall erosion losses-a guide to conservation planning.Agricultural Handbook NO.537.Washington,D.C.:USDA,1978
    [175]Young R A,Onstad C A,Bosch D D,et al.AGNPS:A nonpoint source pollution model for evaluating agricultural watersheds.Journal of Soil and Water Conservation,1989,44(2):168-173
    [176]Young R A,Onstad C A,Bosh D D,et al.AGNPS:Agricultural nonpoint source pollution model:A watershed analysis tool.USDA ARS,Conservation Research Report,Washington D C,1987,35-80
    [177]Young R D,Westfal D G,Colliver G W.Production,marketing ,and use of phosphorus fertilizer. In:Fertilizer Technology and Use,Third Edition.Soil Science Society of America,1985,324-376
    [178]Zhang H,Haan C T,Nofziger D L.An approach to estimating uncertainties in modeling transport of solutes through soils.J.of Contaminant Hydrol.,1993,12:35-50
    [1]黄金良,洪华生,杜鹏飞,等.AnnAGNPS模型在九龙江典型小流域的适用性检验.环境科学学报,2005,25(8):1135-1142
    [2]梅立永,赵智杰,黄钱,等.小流域非点源污染模拟与仿真研究——以HSPF模型在西丽水水库流域应用为例.农业环境科学学报,2007,26(1):64-70
    [3]唐克丽,史立人,史德明,等.中国水土保持.北京:科学出版社,2004,294-299
    [4]王宗明,张柏,宋开山,等.CropSyst作物模型在松嫩平原典型黑土区的校正和验证.农业工程学报,2005,21(5):47-50
    [5]徐崇刚,胡远漫,常禹,等.生态模型的灵敏度分析.应用生态学报,2004,15(6):1056-1062
    [6]Duan Q,Sorooshian S,Gupta V.Effective and efficient global optimisation for conceptual rainfallrunoff models.Water Resour.Res.1992,28(4):1015-1031
    [7]Melching C S,Yoon C G.Key sources of uncertainty in QUAL2E model of Passaic river.ASCE J.Water Res.Planning and Mgmt.1996,122(2):105-113
    [8]Nash J E,Sutcliffe J V.River flow forecasting through conceptual models:Part Ⅰ-A discussion of principles.J.Hydrol.,1970,10(3):282-290
    [9]Onstad C A,Foster G R.Erosion modeling on a watershed.Trans.ASAE,1975,18(2):288-292
    [10]Refsgaard J C.Parameterisation,calibration and validation of distributed hydrological models.J.Hydrol.,1997,198:69-97
    [11]Renard K G,Foster G R,Weesies G A,et al.Predicting soil erosion by water:A guide to conservation planning with the revised universal soil loss equation(RUSLE).Washington,D.C.:USDA-ARS,1997
    [12]Saltelli A,Tarantola S,Chan K P-S.A quantitative model-independent method for global sensitivity analysis of model output.Technometrics,1999,41(1):39-56
    [13]Schwieger V.Variance-based sensitivity analysis for model evaluation in engineering surveys.Presented at the INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying,Bratislava,Slovakia,2004
    [14]Sobol I M.Sensitivity Estimates for nonlinear mathematical models.Math Model Comput.Exp.,1993,1:407-414
    [15]USDA.Hydrology.In National Engineering Handbook.Washington,D.C.:USDA Soil Conservation Service,1972,Chapters 4 to 10.
    [16]Williams J R.Sediment yield prediction based on watershed hydrology.Trans.ASAE,1977,20:1100-1104
    [17]Wischmeier W H,Smith D D.Predicting rainfall erosion losses,a guide to conservation planning.Washington,D.C.:USDA,1978
    [1]USDA.Hydrology.In National Engineering Handbook.Washington,D.C.:USDA Soil Conservation Service,1972
    [2]Williams J R,Wang E,Meinardus A,et al.APEX users guide V.2110,2004
    [1]Arnold J G,Muttiah R S,Srinivasan R,et al.Regional estimation of base flow and groundwater recharge in the Upper Mississippi River basin.J.Hydrol,2000,227:21-40
    [2]Campolongo F,Cariboni J,Saltelli A,et al.Enhancing the Morris method.In Proc.4th International Conference on Sensitivity Analysis of Model Output (SAMO 2004),2005,369-379
    [3]Carlson D H,Thruow T L.Comprehensive evaluation of improved SPUR model(SPUR-91).Ecol.Model.,1996,85:229-240
    [4]Cryer S A,Havens P L.Regional sensitivity analysis using a fractional factorial method for the USDA model GLEAMS.Environ.Model.Soft.,1999,14:613-624
    [5]Henderson-Sellers B,Henderson-sellers A Sensitivity evaluation of environmental models using fractional factorial experimentation.Ecol.Model.,1996,86:291-295
    [6]Holvoet K,van Griensven A,Seuntjens P,et al.Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT.Physics and Chem.of the Earth,2005,30:518-526
    [7]McCuen R H,Snyder W M.Hydrologic Modeling:Statistical Methods and Application.Prentice-Hall,Englewood Cliffs,NJ,1983
    [8]Melching C S,Yoon C G.Key sources of uncertainty in QUAL2E model of Passaic River.ASCE.J.Water Res.Planning and Mgmt.1996,122(2):105-113
    [9]PEST.Manual of PEST.Ver.10.1.5th ed.Portland,Ore.:S.S.Papadopulos & Associates,Inc.Available at:http://www.sspa.com/pest/,2004.
    [10]Ratto M,Tarantola S,Saltelli A.Sensitivity analysis in model calibration:GSA-GLUE approach.Comput.Phys.Commun.,2001,136:212-224
    [11]Saltelli A,Tarantola S,Chan K P-S.A quantitative model-independent method for global sensitivity analysis of model output.Technometrics,1999,41(1):39-56
    [12]SIMLAB.Manual of SIMLAB.Ver.2.2.Joint Research Centre of the European Commission.Available at:http://simlab.jrc.cec.eu.int/,2004
    [13]van Griensven A,Meixner T,Grunwald S,et al.A global sensitivity analysis tool for the parameters of multi-variable catchment models.J.Hydrol.,2006,324:10-23
    [14]Wang X,Youssef M A,Skaggs R W,et al.Sensitivity analysis of the nitrogen simulation model,DRAINMOD-NⅡ.Trans.ASAE,2005,48(6):2205-2212
    [15]Wang X,Potter S R,Williams J R,et al.Sensitivity analysis of APEX for national assessment. Trans.ASABE,2006b,49(3):679-688
    [16]Wang X,H X e,Williams J R,et al.Sensitivity and uncertainty analyses of crop yields and soil organic carbon simulated with EPIC.Trans.ASAE,2005,48(3):1041-1054
    [1]贾俊平.统计学.北京:清华大学出版社,2004
    [2]蒋定生,范兴科,黄国俊.黄土高原坡耕地水土保持措施效益评价试验研究.水土保持学报,1990,4(2):1-10
    [3]王昭艳,李亚光,李湛,等.水土流失防治措施在非点源污染控制中的应用.水土保持学报,2003,17(6):92-94,109
    [4]王兴鹏,马轶,张维江,等.SCS模型在黄土丘陵因子径流场中的应用.宁夏工程技术,2005,4(2):157-159
    [5]朱远达,蔡强国,张光远,等.GIS支持下对不同水土保持措施的评估与比较.水土保持学报,2003,17(6):5-8
    [6]Chung S W,Gassman P W,Huggins D R,et al.EPIC tile flow and nitrate loss predictions for three Minnesota cropping systems.J.Environ.Qual.,2001,30(3):822-830
    [7]Chang S W,Gassman P W,Kramer L A,et al.Validation of EPIC for two watersheds in southwest Iowa.J.Environ.Qual.,1999,28(3):971-979
    [8]Chang S W,Gassman P W,Gu R,et al.Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems.Trans.ASAE.,2002,45(4):1135-1146
    [9]Gassman P W,Osei E,Saleh A,et al.Alternative practices for sediment and nutrient loss control on livestock farms.Agric.,Ecosys.& Environ.2006,17(2-3):135-144
    [10]Gupta H V,Sorooshian S,Yapo P O.Toward improved calibration of hydrological models:multiple and noncommensurable measures of information.Water Resour.Res.,1998,34(4),751-763
    [11]Madsen H.Automatic calibration of a conceptual rainfall-runoff model using multiple objectives.J.Hydrol.2000,235:276-288
    [12]Madsen H,Kristensen M.A multi-objective calibration framework for parameter estimation in the MIKE SHE integrated hydrological modelling system.Acta Universitatis Carolinae Geologica,2002,46(2/3):270-273
    [13]Rawls W J,Onstad C A,Richardson H H.Residue and tillage effects on SCS runoff curve numbers.Trans.ASAE,1980,23(2):357-361
    [14]Refsgaard J C.Parametedsation,calibration and validation of distributed hydrological models.J.Hydrol.,1997,198:69-97
    [15]Singh J,Hudson R,Cooke R,et al.Automatic calibration of a subsurface drainage model.ASAE meeting paper no.022101.ASAE,St.Joseph,MI,2002
    [16]Saleh A,Williams J R,Wood J C,et al.Application of APEX for forestry.Trans.ASAE,2004, 47(3):751-765
    [17]USDA.1972.Section 4,Chapters 4 to 10:Hydrology.In National Engineering Handbook.Washington,D.C.:USDA Soil Conservation Service
    [18]Wang E,Chang X,Williams J R,et al.Predicting soil erosion for alternative land uses.J.Environ.Qual.,2006,35:459-467
    [19]Wang X,Mosley C T,Frankenberger J R,et al.Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD.Agric.Water Mgmt.,2006a,79:113-136
    [20]Wang X,Saleh A,McBroom M W,et al.Test of APEX for nine forested watersheds in east Texas.J.Environ.Qual.2007,36:983-995.
    [21]Williams J R,Wang E,Meinardus A,et al.APEX user's guide.Temple,Texas:Blackland Research and Extension Center,2003.
    [22]Williams J R,Harman W L,Magre M,et al.APEX feedlot water quality simulation.Trans.ASABE 2006,49(1):61-73
    [23]Williams J R,Izaurralde R C.The APEX model.In Watershed Models.V.P.Singh and D.K.Frevert,eds.Boca Raton,Fla.:CRC Press,Taylor and Francis Group,2006,437-482
    [24]Yapo P O,Gupta H V,Sorooshian S.Automatic calibration of conceptual rainfall-runoff models:sensitivity to calibration data.J.Hydrol.,1996,181:23-48
    [1]李向阳.水文模型参数优选及不确定性分析方法研究[学位论文].大连:大连理工大学,2005
    [2]Ahsam M,O'Connor K M.A reappraisal of the Kalman filtering technique,as applied in fiver flow forecasting.J.Hydrol.,1994,161:197-226
    [3]Beven K J.Prophecy,reality,and uncertainty,in distributed hydrological modeling.Advances in Water Resources,1993,16(1):41-51
    [4]Beven K J.How far can we go in distributed hydrological modeling.Hydrol.Earth System Science,2001a,5:1-12
    [5]Beven K J,Freer J.Equifinality,data assimilation,and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology.J.Hydrol.,2001b,249:11-29
    [6]Beven K J.Towards an alternative blueprint for a physically based digitally simulated hydrologic response modeling System.Hydrological processes,2002,16:189-206
    [7]Chaubey I,Haan C T,Gnmwald S,et al.Uncertainty in model parameters due to spatial variation of rainfall.J.Hydrol.,1999,1220(1-2):48-61
    [8]Haan C T.Statistical Methods in Hydrology.2~(nd) ed.Ames,Iowa:Iowa State University Press,2002.
    [9]Haan C T,Storm D E,Al-Issa T,et al.Effect of parameter distributions on uncertainty analysis of hydrologic models.Trans.ASAE,1998,41(1):65-70
    [10]Haan P K,Skaggs R W.Effect of parameter uncertainty on DRAINMOD predictions:Ⅰ.Hydrology and yield.Trans.ASAE,2003a,46(4):1061-1067
    [11]Haan P K,Skaggs R W.Effect of parameter uncertainty on DRAINMOD predictions:Ⅱ.Nitrogen loss.Trans.ASAE,2003b,46(4):1069-1075
    [12]Hession W C,Storm D E,Haan C T.Two-phase uncertainty analysis:An example using the Universal Soil Loss Equation.Trans.ASAE,1996,39(4):1309-1319
    [13]Ogle S M,Breidt F J,Eve M D,et al.Uncertainty in estimating land use and management impacts on soil organic carbon storage for U.S.agricultural lands between 1982 and 1997.Global Change Biology,2003,9(11):1521-1542
    [14]Peter S M.Stochastic Models,Estimation,and Control.Vol.1.New York,N.Y.:Academic Press,1979
    [15]Reckhow K H.Water quality simulation modeling and uncertainty analysis for risk assessment and decision making.Ecological Modelling,1994,72:1-20
    [16]Thorsen M,Refsgaard J C,Hansen S,et al.Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale.J.Hydrol.,2001,242(3-4):210-227
    [17]Wang X,Frankenberger J R,Kladivko E J.Uncertainties in DRAINMOD predictions of subsurface drain flow for an Indiana silt loam using the GLUE methodology.Hydrological Processes,2006,20:3069-3084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700