用户名: 密码: 验证码:
两个水稻卷叶基因的精细定位和克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶片是植物进行光合作用和呼吸作用的主要器官,对植物的生命活动起着重要的作用,叶片的发育作为植物形态建成的一个重要方面,关系到植物株型和农业产量的形成。水稻是世界上最重要的粮食作物之一,卷叶性状是超高产育种的一项重要形态指标。因此,探明卷叶形成的分子机理,不仅能使我们更多地了解水稻的叶发育机制,而且能帮助我们通过分子设计改良株型。
     利用~(60)Co-γ射线辐射水稻品种中花11,在M_2代获得了三份卷叶突变体:M425、M429和M475,在日本晴的组培后代中得到一份卷叶突变体M7。其中,M425和M7表型相似,叶片都表现筒状卷曲,且籽粒畸形;M429和M475两者表型相似,叶片半卷,籽粒增多呈密穗。本研究对这些卷叶突变体进行了形态观察、突变性状的遗传分析、基因的等位性检测及图位克隆,主要研究结果如下:
     一、水稻卷叶基因RL9的定位和克隆
     1、对叶片细胞结构进行电镜观察,发现rl9-1突变体(M425)叶片小维管束远轴面厚壁细胞缺失,叶肉细胞取而代之,近轴面特有的茸毛在远轴面也有分布,而且叶绿体发育异常,基粒片层排列紊乱。
     2、将rl9-1突变体与中花11配制杂交,F_1植株叶片表现平展,F_2中正常株和突变株的分离比符合3:1,表明突变性状受单隐性基因控制。
     3、利用rl9-1突变体与籼稻品种Dular杂交产生的F_2和F_3群体,运用SSR、STS和CAPS标记,将RL9基因定位在第9染色体PAC克隆AP005904上22kb的区段上;此外,利用图位克隆的方法分离了一个与rl9-1等位的突变基因rl9-2,来自突变体M7。
     4、通过基因预测发现,在RL9基因所在的22kb内,仅有一个候选基因,预测编码类似MYB的蛋白;对该基因的测序结果表明,rl9-1在第一个外显子中发生了5个碱基的缺失,引起移码:rl9-2在第一个内含子和第二个外显子的剪切位点处发生了1个碱基的替换,使内含子不能被正确剪切,引起RL9阅读框改变,导致RL9功能的丧失。
     5、通过RT-PCR的方法确定了RL9基因位于AP005904上103061-108515处,编码区长1134bp,编码377个氨基酸,包含6个外显子和5个内含子。
     6、将来自日本晴BAC克隆的全长RL9基因导入rl9-1突变体后,rl9-1恢复成野生型表型,证实RL9是控制M425卷叶性状的基因。
     7、半定量RT-PCR结果表明,RL9基因在植株所有器官中均有表达,在根、叶片和穗中的表达量较高,在茎和叶鞘中表达量较低。
     8、对RL9所编码的氨基酸序列进行分析发现,RL9含有一个GARP结构域。
     9、将RL9蛋白序列与数据库中已命名的GARP超家族成员进行多序列比对,以邻位相连法构建进化树,发现RL9与拟南芥KANADI同源,根据KANADI在拟南芥中的功能,结合RL9功能丧失突变在水稻中的表现,推测RL9控制叶片的远轴发育。
     10、将RL9与GFP融合在洋葱表皮瞬时表达,融合蛋白定位在细胞核内,表明RL9是一个转录因子。
     二、卷叶基因RL10的定位和克隆
     1、对叶片细胞结构进行电镜观察,发现rl10-1突变体(M429)叶片部分小维管束远轴面的厚壁细胞缺失,并有少量类似C4植物的“花环”结构产生,而且近轴面所属的茸毛在远轴面也有分布。
     2、将rl10-1突变体与中花11配制杂交,F_1植株叶片表现平展,F_2中正常株和突变株的分离比符合3:1,表明突变性状受单隐性基因控制。
     3、利用rl10-1突变体与籼稻品种Dular杂交产生的F_2和F_3群体,将RL10基因定位在STS标记f70和f87之间约38kb的区段内;同样,利用图位克隆的方法分离了一个与rl10-1等位的突变基因rl10-2,来自突变体M475。
     4、通过基因预测发现,在RL10基因定位的38kb内,存在5个基因,对它们进行测序分析发现,第二个基因在两个突变体中发生了序列变化,rl10-1在外显子中发生了单碱基替换(T→C),导致一个丝氨酸突变成脯氨酸,rl10-2在终止密码子前发生了两个碱基的缺失,导致翻译终止滞后。
     5、对野生型品种的候选基因2进行RNA干涉,产生类似突变体的表型,表明该基因是控制rl10突变性状的基因。
     6、半定量RT-PCR结果表明,RL10基因在植株所有器官中均有表达,在叶片、叶鞘和穗中的表达量较高,在根和茎中的表达量稍低。
Leaves play a very important role in plant development for their function of photosynthesis and transpiration.Leaf morphogenesis,as an important part of plant morphogenesis,determines plant type and agricultural yields.Rice is one of the most important crops in the world,and semi-rolled leaf is one of the most important morphological characters in rice breeding.Therefore,to elucidate the mechanisms of leaf development would be critical not only for us to get a deep understanding of leaf morphogenesis but also for plant type improvement via biodesign.
     In this study,3 rolled leaf mutants:M425,M429,M475 were isolated from Zhonghua-11(O.sativa ssp.japonica) induced by ~(60)Co-y ray.The forth rolled leaf mutant,M7,was derived from japonica variety Nipponbare during the tissue culture process.Of the four mutants,M425 and M7 have the similar phenotype,displaying rolled leaves severely like a cylinder and malformed seeds;the other two mutants, M429 and M475,which look similar to each other too,have a performance of semi-rolled leaf and dense panicle.Anatomical analysis,genetic analysis,gene allelic test and map-based cloning were conducted.The main results were as follows:
     Part 1:The mapping and cloning of the rice RL9 gene
     1.Electron microscopic observation revealed that in rl9-1 mutant(M425),the mesophyll cells covered the vascular bundles on the abaxial side of the leaf,where filled with sclerenchyma cells in wild-type;triehoms,which restricted to adaxial domain in wild-type,distributed on both sides in rl9-1;and the arrangement of chloroplast grana lamellae were disordered and irregular in rl9-1.
     2.rl9-1 mutant was crossed to the wild-type Zhonghua-11,the F_1 plants were of flat leaves and the ratio of normal plants to mutant plants in F_2 population fitted 3:1, suggesting the phenotype of the rolled-leaf mutant was controlled by single recessive gene.
     3.Based on the progenies from F_2 and F_3 populations of rl9-1/Dular(O.sativa ssp. indica),the RL9 gene was restricted to a 22-kb region on AP005904 of the long arm of chromosome 9 by using SSR(Simple Sequence Repeat),STS(Sequenced Tagged Site) and CAPS(Cleaved Amplified Polymorphisms) markers.Moreover,rl9-2,the allelic mutant gene of rl9-1,was isolated from M7 by map-based cloning.
     4.There's only one MYB-like gene located in RL9 anchored region.Sequencing results showed that a 5-bp deletion in exon 1 occurred in rl9-1,which resulted in frame shift;a substitution of A(wild-type) by G at the splice site of intronl/exon2 occurred in rl9-2,which made the intron can not be cleaved accurately and lead to loss-of-function of RL9.
     5.By means of RT-PCR,coding sequences(CDS) of RL9 gene were redefined.The RL9 gene was located at 103061-108515 of AP005904,consisting of 6 exons and 5 introns,totally 1134-bp CDS,encoding 377 amino acids.
     6.RL9,the true gene controlled the rolled-leaf phenotype of M425,was confermed by the result of complementation test,which showed that the rl9-1 phenotype was recovered by introduction of the RL9 gene from Nipponbare.
     7.The results of semi-quantitative RT-PCR showed that the RL9 is expressed in all organs of the wild-type plants,higher in roots,leaves and panicles,and lower in stems and leaf sheathes.
     8.Sequence analysis revealed that RL9 encodes a GARP domain.
     9.Alignment of amino acid sequences of RL9 and GARP super-family members was carried out,and a neighbor-joining tree was generated.The results showed that RL9 is homologous to Arabidopsis KANADIs.Based on the role of KANs in Arabidopsis and the performances of loss-fuction of RL9 in rice,it is suggested that RL9 has a function in specifying the abaxial fate of leaves.
     10.Transient expression analysis using an RL9-GFP fusion protein in onion epidermal cells indicated that the RL9 protein was localized to the nucleus,confirming that the RL9 acts as a transcription factor.
     Part 2:The mapping and cloning of the rice RL10 gene
     1.Electron microscopic observation revealed that in rl10-1 mutant(M429),the mesophyll cells covered some vascular bundles on the abaxial side of the leaf,and interestingly,few garland-structures resembling C4 plants existed,in addition, trichoms distributed on both sides.
     2.rl10-1 mutant was crossed to the wild-type Zhonghua-11,the F_1 plants were of flat leaves and the ratio of normal plants to mutant plants in F_2 population fitted 3:1, suggesting the phenotype of rl10-1 mutant was controlled by single recessive gene.
     3.Using the progenies from F_2 and F_3 populations of rl10-1/Dular,the RL10 gene was restricted to a 38-kb region between markers f70 and f87.Moreover,rl10-2,the allelic mutant gene of rl10-1,was isolated from M475 by map-based cloning.
     4.Five genes located within the RL10 anchored region.Sequencing results of the five genes showed that gene 2 mutated in both two rl10 mutants,i.e.a substitution of T (wild-type) by C occurred in rl10-1,which resulted in a Ser transformed to Pro;a 2-bp deletion occurred ahead of the stop codon in rl10-2,which lead to post-termination of translation.
     5.RNAi aimed at the candidate gene 2 in wild type plants could result in the mutation phenotype of rl10 mutants.
     6.The results of semi-quantitative RT-PCR showed that the RL10 is expressed in all organs of the wild-type plants,higher in leaves,leaf sheathes and panicles,and lower in roots and stems.
引文
[1]Evans MW,Grover FO.Developmental morphology of the growing point of the shoot and the inflorescence in grasses,J.Agric.Res.1940,61:481-520.
    [2]曹慧娟.植物学(第2版).中国林业出版社,1992:116-125.
    [3]李扬汉.植物学(第2版).上海科学技术出版社,2001:139-153.
    [4]王忠.植物生理学.中国农业出版社,2000:149-164.
    [5]Kaplan DR,Hagemann W.The relationship of cell and organism in vascular plants.Bio science,1991,41:693-703.
    [6]Burk DH,Liu B,Zhong R,Morrison WH,Y e ZH.Katanin-like protein regulates normal cell wall biosynthesis and elongation.Plant Cell,2001,13:807-827.
    [7]Tsukaya H.Organ shape and size:a lesson from studies of leaf morphogenesis.Curr Opin Plant Biol,2003,6:57-62.
    [8]Barkoulas M,Galinha C,Grigg SP,Tsiantis M.From genes to shape:regulatory interactions in leaf development.Curr Opin Plant Biol,2007,10:660-666.
    [9]Tsukaya,H.Leaf morphogenesis:genetic regulations for length,width and size of leaves.Tanpakushitsu Kakusan Koso,2002,47:1576-1580.
    [10]Hudson A.Axioms and axes in leaf formation.Curr Opin Plant Biol,1999,2:56-60.
    [11]Scanlon MJ.Developmental complexities of simple leaves.Curr Opin Plant Biol,2000,3:31-36.
    [12]Long JA,Moan EI,Medford JI,Barton MK.A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis.Nature,1996,379:66-69.
    [13]Ori N,Eshed Y,Chuck G,Bowman JL,Hake S.Mechanisms that control knox gene expression in the Arabidopsis shoot.Development,2000,127:5523-5532.
    [14]Byrne ME,Barley R,Curtis M,Arroyo JM,Dunham M,Hudson A,Martienssen RA.Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis.Nature,2000,408:967-971.
    [15]Tsiantis M,Schneeberger R,Golz JF,Freeling M,Langdale JA.The maize rough sheath2 gene and leaf development programs in monocot and dicot plants.Science,1999,284:154-156.
    [16]Timmermans MC,Hudson A,Becraft PW,Nelson T.ROUGH SHEATH2:a Myb protein that represses knox homeobox genes in maize lateral organ primordial.Science,1999,284:151-153.
    [17]Waites R,Selvadurai HR,Oliver IR,Hudson A.The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum.Cell,1998,93:779-789.
    [18]Semiarti E,Ueno Y,Tsukaya H,Iwakawa H,Machida C,Machida Y.The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of asymmetric lamina,establishment of venation and repression of meristem-related homeo boxgenes in leaves.Development,2001,128:1771-1783.
    [19]Postma-Haarsma Verwoert IraI GS,Stronk OP,Koster J,Lamers Gerda EM,Hoge JHC,Meijer AH.Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis.Plant Mol Biol,1999,39:257-271.
    [20]Sentoku N,Sato Y,Matsuoka M.Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants.Dev Biol,2000,220:358-364.
    [21]Ito Y,Eiguchi M,Kurata N.KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice.Genesis,2001,30:231-238.
    [22]Sato Y,Hong SK,Tagiri A,Kitano H,Yamamoto N,Nagato Y,Matsuoka M.A rice homeobox gene,OSH1,is expressed before organ differentiation in a specific region during early embryogenesis.Proc Natl Acad Sci USA,1996,93:8117-8122.
    [23]Sato Y,Sentoku N,Nagato Y,Matsuoka M.Two separable functions of a rice homeobox gene,OSH15,in plant development.Plant Mol Bio,1998,38:983-998.
    [24]Park SH,Kim CM,Je BI,Park SH,Park SJ,Piao HL,Xuan Y,Choe MS,Satoh K,Kikuchi S,Lee KH,Cha YS,Ahn BO,Ji HS,Yun DW,Lee MC,Suh S,Eun MY,Han C.A Ds-insertion mutant of OSH6(Oryza sativa Homeobox 6) exhibits outgrowth of vestigial leaf-like structures,bracts,in rice.Planta,2007,227:1432-2048.
    [25]Benkova E,Michniewicz M,.Sauer M,Teichmann T,Seifertova D,Jurgens G,Friml J.Local,efflux-dependent auxin gradients as a common module for plant organ formation.Cell,003,115:591-602.
    [26]Okadala K,Uedal J,Komaki MK,Bell CJ,Shimura Y.Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation.Plant Cell,1991,3:677-684.
    [27]Reinhardt D,Pesce ER,Stieger P,Mandel T,Baltensperger K,Bennett M,Traas J,Friml J,Kuhlemeier C.Regulation of phyllotaxis by polar auxin transport.Nature,2003,426:255-260.
    [28]Vogler H,Kuhlemeier C.Simple hormones but complex signaling.Curr Opin Plant Biol,2003,6:51-56.
    [29]Furutani M,Vernoux T,Traas J,Kato T,Tasakaand M,Aida M.PIN-FORMED1and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis.Development,2004,131:5021-5030.
    [30]Hay A,Barkoulas M,Tsiantis M.ASYMMETRIC LEAVES 1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis.Development,2006,133:3955-3961.
    [31]Zgurski JM,Sharma R,Bolokoski DA,Schultz EA.Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves.Plant Cell,2005,17:77-91.
    [32]Scanlon MJ.The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation,KNOX protein regulation,and formation of leaf margins in maize.Plant Physiol,2003,133:597-605.
    [33]Schubert D,Primavesi L,Bishopp A,Roberts G,Doonan J,Jenuwein T,Goodrich J.Silencing by plant Polyeomb-group genes requires dispersed trimethylation of histone H3 at lysine 27.EMBO J,2006,25:4638-4649.
    [34]Izhaki A,Bowman JL.KANADI and Class Ⅲ HD-Zip gene families regulate embryo patternig and modulate auxin flow during embryogenesis in Arabidopsis.Plant Cell,2007,19:495-508.
    [35]Sylvester,AW,Cande ZW,Freeling M.Division and differentiation during normal and liguleless-1 maize leaf development.Development,1990,110:985-1000.
    [36]Becraft PW,Bongard-Pierce DK,Sylvester AW,Poethig RS,Freeling M.The liguleless-1 gene acts tissue specifically in maize leaf development.Dev Biol,1990,141:220-232.
    [37]Moreno MA,Harper LC,Krueger RW,Dellaporta SL,Freeling,M.Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize organogenesis.Genes Devel,1997,11:616-628.
    [38]Lee J,Park JJ,Kim SL,Yim J,An G.Mutations in the rice liguleless gene result in a complete loss of the auricle,ligule,and laminar Joint.Plant Mol Biol,2007,27:487-499.
    [39]Walsh J,Waters CA,Freeling M.The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary.Genes Devel,1998,12:208-218.
    [40]Harper L,Freeling M.Interactions of liguleless1 and liguleless2 function during ligule induction in maize.Genetics,1996,144:1871-1882.
    [41]Muehlbauer GJ,Fowler JE,Girard L,Tyers R,Harper L,Freeling M.Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf.Plant Physiol,1999,119:651-662.
    [42]Waites R,Hudson A.phantastica:a gene required for dorsoventrality of leaves in Antirrhinum majus.Development,1995,121:2143-2154.
    [43]Zhong R,Ye ZH.IFL,a gene regulating interfascicular fiber differentiation in Arabidopsis,encodes a homeodomain-leucine zipper protein.Plant Cell,1999,11:2139-2152.
    [44]McConnell JR,Emery J,Eshed Y,Bao N,Bowman J,Barton MK.Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots.Nature,2001,411:709-713.
    [45]Juarez MT,Kui JS,Thomas J,Heller BA,Timmermans MC.MicroRNA-mediated repression of rolled leaf1 specifies maize polarity.Nature,2004,428:84-88.
    [46]Reinhart BJ,Weinstein EG,Rhoades MW,Bartel B,Bartel DP.MicroRNAs in plants.Genes and development,2002,16:1616-1626.
    [47]Rhoades MW,Reinhart BJ,Lim LP,Burge CB,Bartel B,Bartel DP.Prediction of plant microRNA targets.Cell,2002,110:513-520.
    [48]Tang G,Reinhart BJ,Bartel DP,Zamore PD.A biochemical framework for RNA silencing in plants.Genes and development,2003,17:49-63.
    [49]Emery JF,Floyd SK,Alvarez J,Eshed Y,Hawker NP,Izhaki A,Baum SF,Bowman JL.Radial patterning of Arabidopsis shoots by class Ⅲ HD-ZIP and KANADI genes.Curr Biol 2003,13:1768-1774.
    [50]McHale NA,Koning RE.MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems.Plant Cell,2004,16:1730-1740.
    [51]Kidner CA,Martienssen RA.Spatially restricted microRNA directs leaf polarity through ARGONAUTE1.Nature,2004,428:81-84.
    [52]Nelson JM,Lane B,Freeling M.Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis.Development,2002,129:4581-4589.
    [53]Grigg SP,Canales C,Hay A,Tsiantis M.SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis.Nature,2005,437:1022-1026.
    [54]Pekker I,Alvarez JP,Eshed Y.Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.Plant Cell,2005,17:2899-2910.
    [55]Garcia D,Collier SA,Byrne ME,Martienssen RA.Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway.Curr Biol,2006,16:933-938.
    [56]Allen E,Xie Z,Gustafson AM,Carrington JC.MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants.Cell,2005,121:207-221.
    [57]Hunter C,Willmann MR,Wu G,Yoshikawa M,de la Luz Gutierrez-Nava M and Poethig SR.trans-Acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis.Development,2006,133:2973-2981.
    [58]Adenot X,Elmayan T,Lauressergues D,Boutet S,Bouche N,Gasciolli V,Vaucheret H.DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7.Curr Biol,2006,16:927-932.
    [59]Timmermans MCP,Juarez MT,Phelps-Durr TL.A conserved microRNA signal specifies leaf polarity.Cold Spring Harb Symp Auant Biol,2004,69:409-417.
    [60]Fahlgren N,Montgomery TA,Howell MD,Allen E,Dvorak SK,Alexander AL,Carrington JC.Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis.Curr Biol,2006,16:939-944.
    [61]Williams L,Carles CC,Osmont KS,Fletcher JC.A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2,ARF3,and ARF4 genes.Proc Natl Aead Sci USA,2005,102:9703-9708.
    [62]Shi ZY,Wang J,Wan XS,Shen GZ,Wang XQ,Zhang JL.Over-expression of rice OsAGO7gene induces upward curling of the leaf blade that enhanced erect-leaf habit.Planta,2007,226:99-108.
    [63]Nogueira FT,Madi S,Chitwood DH,Juarez MT,Timmermans MC.Two small regulatory RNAs establish opposing fates of a developmental axis.Genes Dev,2007,21:750-755.
    [64]Peragine A,Yoshikawa M,Wu G,Albrecht HL,Poethig RS.SGS3 and SGS2/SDEI/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis.Genes Dev,2004,18:2368-2379.
    [65]Siegfried KR,Eshed Y,Baum SF,Otsuga D,Drews GN,Bowman JL.Members of the YABBY gene family specify abaxial cell fate in Arabidopsis.Development,1999,126:4117-4128.
    [66]Eshed Y,Baum SF,Perea JV,Bowman JL.Establishment of polarity in lateral organs of plants.Curr Biol,2001,11:1251-1260.
    [67]Eshed Y,Izhaki A,Baum SF,Floyd SK,Bowman JL.Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities.Development,2004,131:2997-3006.
    [68]Kerstetter RA,Bellman K,Taylor RA,Bomblies K,Poethig RS.KANADI regulates organ polarity in Arabidopsis.Nature,2001,411:706-709.
    [69]Hawker NP,Bowman JL.Roles for Class Ⅲ HD-Zip and KANADI genes in Arabidopsis root development.Plant Physiol,2004,135:1-10.
    [70]Mcabee JM,Hill TA,Skinner DJ,Izhaki A,Hauser BA,Meister RJ,Reddy GV,Meyerowitz EM,Bowman JL,Gasser CS.ABERRANT TESTA SHAPE encodes a KANADI family member,1inking polarity determination to separation and growth of Arabidopsis ovule integuments.Plant J,2006,46:522-531.
    [71]Juarez MT,Twigg RW,Timmermans MC.Specification of adaxial cell fate during maize leaf development.Development,2004,131:4533-4544.
    [72]Yamaguchi T,Nagasawa N,Kawasaki S,Matsuoka M,Nagato Y,Hirano HY.The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.Plant Cell,2004,16:500-509.
    [73]Dai MQ,Zhao Y,Ma Q,Hu YF,Hedden P,Zhang QF,The rice YABBY1 gene is involved in the feedback regulation of Gibberellin metabolism.Plant Physiol,2007,144:121-133.
    [74]Dai MQ,Hu YF,Zhao Y,Liu HF,Zhou DX.A WUSCHEL-LIKE HOMEOBOX gene represse a YABBY gene expression required for rice leaf development.Plant Physiol,2007,144:380-390.
    [75]Liu HL,Xu YY,Xu ZH,Chong K.A rice YABBY gene,OsYABBY4,preferentially expresses in developing vascular tissue.Dev Genes Evol,2007,217:629-637.
    [76]Zhao W,Su HY,Song J,Zhao XY,Zhang XS.Ectopic Expression of TaYAB1,a member of YABBY gene family in wheat,causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis.Plant Sci,2006,170:364-371.
    [77]Li H,Xu L,Wang H,Yuan Z,Cao X,Yang Z,Zhang D,Xu Y,Huang H.The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development.Plant Cell,2005,17:2157-2171.
    [78]Xu L,Yang L,Pi L,Liu Q,Ling Q,Wang H,Poethig RS,Huang H.Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis.Plant Cell Physiol,2006,47:853-863.
    [79]Lin WC,Shuai B,Springer PS.The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning.Plant Cell,2003,15:2241-2252.
    [80]Huang W,Pi L,Liang W,Xu B,Wang H,Cai R,Huang H.The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity.Plant Cell,2006,18:2479-2492.
    [81]Nardmann J,Ji J,Werr W,Scanlon MJ.The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems.Development,2004,131:2827-2839.
    [82]Scanlon MJ,Schneeberger RG,Freeling M.The maize mutant narrow sheathfails to establish leaf margin identity in a meristematie domain.Development,1996,122:1683-1691.
    [83]Scanlon MJ,Freeling M.The narrow sheath leaf domain deletion:a genetic tool used to reveal developmental homologies among modified maize organs.Plant J,1998,13:547-561.
    [84]Scanlon MJ,Chen KD,McKnight CM.The narrow sheath duplicate genes:sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development.Genetics,2000,155:1379-1389.
    [85]Matsumoto N,Okada K.A homeobox gene,PRESSED FLOWER,regulates lateral axis-dependent development of Arabidopsis flowers.Genes Dev,2001,15:3355-3364.
    [86]杨守仁.水稻理性株型育种的理论和方法初论.中国农业科学,1984(1):6-13.
    [87]Khush GS.Varietal needs for different environments and breeding strategies.Muraliharan KS, Siddiq EA.New frontiers in rice research.Directorate of rice research,Hyderabad,India 1990,68-75.
    [88]袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6.
    [89]周开达,马玉清,刘太清.杂交水稻亚种间重穗型组合选育--杂交水稻高产育种的理论与实践.四川农业大学学报,1995,13(4):403-407.
    [90]周开达,汪旭东,李仁贵,李平.亚种间重穗型杂交稻研究.中国农业科学,1997,30(5):91-93.
    [91]吕川根,宗寿余,邹江石,姚克敏.水稻叶片形态因子及其在F_1代的遗传.2005,31(8):1074-1079.
    [92]邵元健.水稻卷叶性状的遗传分析及卷叶基因的精细定位.博士学位论文,2005.江苏:扬州大学.
    [93]邵元健,陈宗祥,张亚芳,陈恩会,祁顶成,缪进,潘学彪.一个水稻卷叶主效的定位及其物理图谱的构建.遗传学报,2005,32(5):501-506.
    [94]沈福成.水稻卷叶性状遗传初探.贵州农业科学,1983,(3):9-12.
    [95]朱德峰,林贤青,曹卫星.不同叶片卷曲度杂交水稻的光合特性比较.作物学报.2001,27(3):329-333.
    [96]陆江锋.水稻凹叶性状对物质生产和产量形成的影响的研究.硕士学位论文,2002,扬州大学农业部作物栽培与生理重点开放实验室.
    [97]陈宗样,陈刚,胡俊,戴留春,陶国英,潘学彪.RL(t)卷叶基因在杂交稻中的遗传表达及效应研究.作物学报,2002,28(6):847-851.
    [98]陈宗祥,胡俊,陈刚,潘学彪.RL(t)卷叶基因对杂交稻经济性状的影响.作物学报,2004,30(5):465-469.
    [99]吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较分析.中国农业科学,2003,36(6):633-639.
    [100]郎有忠,张祖建,顾兴友,杨建昌,朱庆森.水稻卷叶性状生理生态效应的研究Ⅰ.叶片姿态、群体构成及光分布特征.作物学报,2004,30(8):739-744.
    [101]郎有忠,张祖建,顾兴友,杨建昌,朱庆森.水稻卷叶性状生理生态效应的研究Ⅱ.光合特性、物质生产与产量形成.作物学报.2004,30(9):883-887.
    [102]Hsiao TC,O'Toole JC,Yambao EB,Turner NC.Influence of osmotic adjustment on leaf rolling and tissue death in rice.Plant Physiol,1984,75:338-341.
    [103]Moulia.Biomimeties Biomechanics of leaf rolling.[s.n.],1994:267-281.
    [104]Price AH,Young EM,Tomos AD.Quantitative trait loci associated with stomatal conductance leaf rolling and heading date mapped in upland rice(Oryza sativa L.).New Phytol,1997,137:83-91.
    [105]顾兴友,顾铭洪.一种水稻卷叶性状的遗传分析.遗传,1995,17(5):20-23.
    [106]邵元健,潘存红,陈宗祥,左示敏,张亚芳,潘学彪.水稻不完全隐性卷叶主基因rl_((t))的精细定位.科学通报,2005,50(19):2107-2113.
    [107]李仕贵,马玉清,何平,黎汉云,陈英,周开达,朱立煌.一种未知的卷叶基因的识别和定位.四川农业大学学报,1998,16(4):391-393.
    [108]严长杰,严松,张正球,梁国华,陆驹飞,顾铭洪.一个新的水稻卷叶突变体rl9((t))的遗传分析和基因定位.科学通报,2005,50(24):2757-2762.
    [109]沈革志,王新其,殷丽青,王江,李琳,张景六.T-DNA插入水稻群体中卷叶突变体RL-A2的遗传分析.实验生物学报,2003,36(6):459-464.
    [110]Peters JL,Cnudde F,Gerats T.Forward genetics and map-based cloning approaches,Trends Plant Sci,2003,8:484-491.
    [111]Michaels SD,Amasino RM.A robust method for detecting single-nucleotide changes as polymorphic markers by PCR.1998,Plant J,14:381-385.
    [112]Michelmore RW,Paran I,Kesseli RV.Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA,1991,88(21):9828-9832.
    [113]Churchill GA,Giovannoni JJ,Tanksley SD.Pooled-sampling makes high-resolution mapping practical with DNA markers.Proc Natl Acad Sci USA,1993,90(1):16-20.
    [114]Tanksley SD,Ganal MW,Martin GB.Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes.Trends Genet,1995,11(2):63-68.
    [115]Song WY,Wang GL,Chen LL,Kim HS,Pi LY,Holsten T,Gardner J,Wang B,Zhai WX,Zhu LH,Fauquet C,Ronald P.A receptor kinase-like protein encoded by the rice dis-ease resistance gene,Xa21.Science,1995,270:1804-1816.
    [116]Bohnert HU,Fudal I,Dioh W,Tharreau D,Notteghem JL,Lebrun MH.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice.Plant Cell,2004,16:2499-2513.
    [117]Zhu QH,Ramm K,Shivakkumar R,Dennis ES,Upadhaya NM.The ANTHER INDEHISCENCEI gene encoding a single MYB domain protein is involved in anther development in rice.Plant physiol,2004,135:1514-1525.
    [118]Gao ZY,Zeng DL,Cui X,Zhou YH,Yah MX,Huang DN.Li JY,Qian Q.Map-based cloning of the ALK gene,which controls the gelatinization temperature of rice.Sci China(Ser.C),2003,46:661-668.
    [119]Ikeda K,Ito M,Nagasawa N,Kyozuka J,Nagato Y.Rice ABERRANT PANICLE ORGANIZATION 1,encoding an F-box protein,regulates meristem fate.Plant J.2007,51:1030-1040.
    [120]Liu HJ,Wang SF,Yu XB,Yu J,He XW,Zhang SL.Shou HX,Wu P.ARL1,a LOB-domain protein required for adventitious root formation in rice.Plant J,2005,43:47-56.
    [121]Li YH,Qian Q,Zhou YH,Yah MX,Sun L,Zhang M,Fu ZM,Wang YH,Han B,Pang XM,Chen MS,Li JY.BRITTLE CULM1,which encodes a COBRA-like protein,affects the mechanical properties of rice plants.Plant Cell,2003,15:2020-2031.
    [122]Pan G,Zhang XY,Liu KD,Zhang JW,Wu XZ,Zhu J,Tu JM.Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides.Plant Mol Biol,2006,61:933-943.
    [123]Liu WZ,Fu YP,Hu GC,Si H,Zhu L,Wu C,Sun ZX.Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice(Oryza sativa L.).Planta,2007,226:785-795.
    [124]Zhang H,Li J,Yoo JH,Yoo SC,Cho SH,Koh HJ,Seo HS,Paek NC.Rice Chlorina-1 and Chlorina-9 encode Ch1D and ChlI subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development.Plant Mol Biol.2006,62:325-237.
    [125]Haga K,Takano M,Neumann R,Lino M.The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin.Plant Cell,2005,17:103-115.
    [126]Inukai Y,Sakamoto T,Ueguchi-Tanaka M,Shibata Y,Gomi K,Umemura L,Hasegawa Y,Ashikari M,Kitano H,Matsuoka M.Crown rootless1,which is essential for crown root formation in rice,is a target of an AUXIN RESPONSE FACTOR in auxin signaling.Plant Cell,2005,17:1387-1396.
    [127]Ashikari M,Wu J,Yano M,Sasaki T,Yoshimura A.Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the alpha-subunit of GTP-binding protein.Proc Natl Acad Sci,USA,1999,96:10284-10289.
    [128]Hong Z,Ueguchi-Tanaka M,Umemura K,Uozu S,Fujioka S,Takatsuto S,Yoshida S,Ashikari M,Kitano H,Matsuoka M.A rice brassinosteroid-deficient mutant,ebisu dwarf(d2),is caused by a loss of function of a new member of cytochrome P450.Plant Cell,2003,15:2900-2910.
    [129]Ishikawa S,Maekawa M,Arite T,Onishi K,Takamure I,Kyozuka J.Suppression of tiller bud activity in tillering dwarf mutants of rice.Plant Cell Physiol,2005,46:79-86.
    [130]Arite T,Iwata H,Ohshima K,Maekawa M,Nakajima M,Kojima M,Sakakibara H,Kyozuka J.DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowth in rice.Plant J,2007,51:1019-1029.
    [131]Tanabe S,Ashikari M,Fujioka S,Takatsuto S,Yoshida S,Yano M,Yoshimura A,Kitano H,Matsuoka M,Fujisawa Y,Kato H,Iwasaki Y.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length.Plant Cell,2005,17:776-790.
    [132]Itoh H,Ueguchi-Tanaka M,Sentoku N,Kitano H,Matsuoka M,Kobayashi M.Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice.Proc Natl Acad Sci USA,2001,98:8909-8914.
    [133]Itoh H,Tatsumi T,Sakamoto T,Otomo K,Toyomasu T,Kitano H,Ashikari M,Ichihara S,Matsuoka M.A rice semi-dwarf gene,Tan-Ginbozu(D35),encodes the gibberellin biosynthesis enzyme,ent-kaurene oxidase.Plant Mol Biol,2004,54:533-547.
    [134]Yamamuro C,IharaY,Wu X,Noguchi T,Fujioka S,Takatsuto S,Ashikari M,Kitano H,Matsuoka M.Loss of function of a rice brassinosteroid insensitive1 homolog prevents inteenode elongation and bending of the lamina joint.Plant Cell,2000,12:1591-1606.
    [135]Zeng DL,Yan MX,Wang YH,Liu XF,Qian Q,Li JY.Dul,encoding a novel Prp1 protein,regulates starch biosynthesis through affecting the splicing of Wx~b pre-mRNAs in rice(Oryza sativa L.).Plant Mol Biol,2007,65:501-509.
    [136]Dio K,Izawa T,Fuse T,Yamanouchi U,Kubo T,Zenpei S,Yano M,Yoshimura A.Ehd1,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.Genes dev,2004,18:926-936.
    [137]Zhu YY,Nomura T,Xu YH,Zhang YY,Peng Y,Mao BZ,Hanada A,Zhou HC,Wang RX,Li PJ,Zhu XD,Mander LN,Kamiya YJ,Yamaguchi S,He ZH.ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice.Plant Cell,2006,18:442-456.
    [138]Suzaki T,Sato M,Ashikari M,Miyoshi M,Nagato Y,Hirano HY.The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA I.Development,2004,131:5649-5657.
    [139]Suzaki T,Toriba T,Fujimoto M,Tsutsumi N,Kitano H,Hirano HY.Conservation and diversification of meristem maintenance mechanism in Oryza sativa:Function of the FLORAL ORGAN NUMBER2 gene.Plant Cell Physiol.2006,47:1591-1602.
    [140]Chu HW,Qian Q,Liang WQ,Yin CS,Tan HX,Yao X,Yuan Z,Yang J,Huang H,Luo D,Ma H,Zhang DB.The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical medstem size in rice.Plant Physiol.2006,142:1039-1052.
    [141]Komatsu M,Chujo A,Nagato Y,Shimamoto K,Kyozuka J.FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development,2003,130:3841-3850.
    [142]Zhang KW,Qian Q,Huang ZJ,Wang YQ,Li M,Hong LL,Zeng DL,Gu MH,Chu CC,Cheng ZK.GOLD HULL AND INTERNODE2 encodes a primarily multiftmctional cinnamyl-alcohol dehydrogenase in rice.Plant Physiol,2006,140:972-983.
    [143]Ueguchi-Tanaka M,Ashikari M,Nakajima M,Itoh H,Katoh E,Kobayashi M,Chow T,Hsing YC,Kitano H,Yamaguchi I,Matsuoka M.GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin.Nature,2005,437:693-698.
    [144]Sasaki A,Itoh H,Gomi K,Ueguchi-Tanaka M,Kanako I,Kobayashi M,Jeong DH,An G,Kitano H,Ashikari M,Matsuoka M.Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant.Science,2003,299:1896-1898.
    [145]Ashikari M,Sakakibara H,Lin S,Yamamoto T,Takashi T,Nishimura A,Angeles ER,Qian Q,Kitano H,Matsuoka M.Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745.
    [146]Fan CC,Xing YZ,Mao HL,Lu TT,Han B,Xu CG,Li XH,Zhang QF.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein.Thero Appl Genet,2006,112:1164-1171.
    [147]Song XJ,Huang W,Shi M,Zhu MZ,Lin HX.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet,2007,39:623-630.
    [148]Yano M,Katayose Y,Ashikari M,Yamanouchi U,Monna L,Fuse T,Baba T,Yamamoto K,Umehara Y,Nagamura Y,Sasaki T.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,2000,12:2473-2484.
    [149]Kojima S,Takahashi Y,Monna L,Araki T,Yano M.Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hdl under short-day condition.Plant Cell Physiol,2002,43:1096-1105.
    [150]Takahashi Y,Shomura A,Sasaki T,Yano M.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the alpha subunit of protein kinase CK2.Proc Natl Acad Sci USA,2001,98:7922-7927.
    [151]Zou JH,Zhang SY,Zhang WP,Li G,Chen ZX,Zhai WX,Zhao XF,Pan XB,Zhu LH.The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds.Plant J,2006,48:687-696.
    [152]Li P,Wang Y,Qian Q,Fu Z,Wang M,Zeng D,Li B,Wang XJ,Li JY.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.Cell Res.2007,17:402-410.
    [153]Komatsu K,Maekawa M,Ujiie S,Satake Y,Furutani I,Okamoto H,Shimamoto K,Kyozuka J.LAX and SPA:major regulators of shoot branching in rice.Proc Natl Acad Sci USA,2003,100:11765-11770.
    [154]Xiong GS,Hu XM,Jiao YQ,Yu YC,Chu CC,Li JY,Qian Q,Wang YH.LEAFY HEAD2,which encodes a putative RNA-binding protein,regulates shoot development of rice.Cell Res,2006,16:267-276.
    [155Jeon JS,Jang S,Lee S,Nam J,Kim C,Lee SH,Chung YY,Kim SR,Lee YH,Cho YG,An G.Leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development.Plant Cell,2000,12:871-884.
    [156]Ma JF,Tamai K,Yamaji N,Mitani N,Konishi S,Katsuhara M,Ishiguro M,Murata Y,Yano M.A silicon transporter in rice.Nature,2006,440:688-691.
    [157]Li XY,Qian Q,Fu ZM,Wang YH,Xiong GS,Zeng DL,Wang XQ,Liu XF,Teng S,Hiroshi F,Yuan M,Luo D,Han B,Li JY.Control of tillering in rice.Nature,2003,422:618-621.
    [158]Asai K,Satoh N,Sasaki H,Satoh H,Nagato Y.A rice heterochronic mutant,moril,is defective in the juvenile-adult phase change.Development,2002,129:265-273.
    [159]Nishimura A,Ashikari M,Lin S,Takashi T,Angekes ER,Yamamoto T,Matsuoka M.Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems.Proc Natl Acad Sci USA,2005,102:11940-11944.
    [160]Kusaba M,Ito H,Morita R,Iida S,Sato Y,Fujimoto M,Kawasaki S,Tanaka R,Hirochika H,Nishimura M,Tanaka A.Rice NON-YELLOW COLORINGI is involved in light-harvesting complex II and grana degradation during leaf senescence.Plant Cell,2007,19:1362-1375.
    [161]Liu XQ,Lin F,Wang L,Pan QH.The in silico map-based cloning of Pi36,a dee coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus.Genetics.2007,176:2541-2549.
    [162]Lin F,Chen S,Que ZQ,Wang L,Liu XQ,Pan QH.The blast resistance gene pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene duster on rice chromosome 1.Genetics,2007,177:1871-1880.
    [163]Wang ZX,Yano M,Yamanouchi U,Iwamoto M,Monna L,Hayasaka H,Katayose Y,Sasaki T.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes.Plant J,1999,19:55-64.
    [164]Chen XW,Shang JJ,Chen DX,Lei CL,Zou Y,Zhai WX,Liu GZ,Xu JC,Ling ZZ,Cao G,Ma BT,Wang YP,Zhao XF,Li SG,Zhu LH.A B-lectin receptor kinase gene conferring rice blast.Plant J,2006,46:794-804.
    [165]Bryan GT,Wu KS,Farrall L,Farrall L,Jia Y,Hershey HP,MaAdams SA,Faulk KN,Donaldson GK,Tarchini R,Vanent B.A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.Plant Cell,2000,12:2033-2046.
    [166]Miyoshi K,Ahn BO,Kawakatsu T,Ito Y,Itoh JI,Nagato Y,Kurata N.PLASTOCHRON1,a timekeeper of leaf initiation in rice,encodes cytochrome P450.Proc Natl Acad Sci USA,2004,101:875-880.
    [167]Kawakatsu T,Itoh JI,Miyoshi K,Kurata N,Alvarez N,Veit B,Nagato Y.PLASTOCHRON2regulates leaf initiation and maturation in rice.Plant Cell,2006,18:612 - 625.
    [168]Sweeney MT,Thomson MJ,Pfeil BE,McCouch S.Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice.Plant Cell,2006,18:283-294.
    [169]Komori T,Ohta S,Mural N,Takakura Y,Kuraya Y,Suzuki S,Hiei Y,Imaseki H,Nitta N.Map-based cloning of a fertility restorer gene,Rf-1,in rice(Oryza sativa L.).Plant J,2004,37:315-325.
    [170]Sasaki A,Ashikari M,Ueguchi-Tanaka M,Itoh H,Nishimura A,Swapan D,Ishiyama K,Saito T,Kobayashi M,Khush GS,Kitano H,Matsuoka M.Green revolution:A mutant gibberellin-synthesis gene in rice.Nature,2002,416:701-712.
    [171]Jiang HW,Li M,Liang N,Yah H,Wei Y,Xu XL,Liu J,Xu ZF,Chen F,Wu GJ.Molecular cloning and function analysis of the staygreen gene in rice.Plant J,2007,52:197-209.
    [172]Konishi S,Izawa T,Lin SY,Ebana K,Fukuta Y,Sasaki T,Yano M.An SNP caused loss of seed shattering during rice domestication.Science,2006,312:1392-1396.
    [173]Li CB,Zhou A,Sang T.Rice domestication by reducing shattering.Science,2006,311:1936-1939.
    [174]Ren ZH,Gao JP,Li LG,Cai XL,Huang W,Chao DY,Zhu MZ,Wang ZY,Luan S,Lin H X.A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat genet,2005,37:1141-1146.
    [175]Ikeda A,Ueguchi-Tanaka M,Sonoda Y,Kitano H,Koshioka M,Futsuhara Y,Matsuoka M,Yamaguchi J.slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8.Plant Cell,2001,13:999-1010.
    [176]Yamanouchi U,Yano M,Lin H,Ashikari M,Yamada K.A rice spotted leaf gene,Sp17,encodes a heat stress transcription factor protein.Proc Natl Acad Sci USA,2002,99:7530-7535.
    [177]Zeng LR,Qu S,Bordeos A,Yang C,Baraoidan M,Yah H,Xie Q,Nahm BH,Leung H,Wang GL.Spotted leaf11,a negative regulator of plant cell death and defense,encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity.Plant Cell,2004,16:2795-2808.
    [178]Yu BS,Lin ZW,Li HX,Li XJ,Li JY,Wang YH,Zhang X,Zhu ZF,Zhai WX,Wang XK,Xie DX,Sun CQ.TAC1,a major quantitative trait locus controlling tiller angle in rice.Plant J,2007,52:891-898.
    [179]Li N,Zhang DS,Liu HS,Yin CS,Li XX,Liang WQ,Yuan Z,Xu B,Chu HW,Wang J,Wen TQ,Huang H,Luo D,Ma H,Zhang DB.The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development.Plant Cell,2006,18:2999-3014.
    [180]Yang QK,Liang CY,Zhuang W,Li J,Deng HB,Deng QY,Wang B.Characterization and identification of the candidate gene rice thermo-sensitive genic male sterile gene tms5 by mapping.Planta,2007,225,2:321-330.
    [181]Sugimoto H,Kusumi K,Noguchi K,Yano M,Yoshimura A,Iba K.The rice nuclear gene,VIRESCENT 2,is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria.Plant J,2007,52:512-527.
    [182]Yoshimura S,Yamanouchi U,Katayose Y,Toki S,Wang ZX,Kono I,Kurata N,Yano M,Iwata N,Sasaki T.Expression of Xal,a bacterial blight-resistance gene in rice,is induced by bacterial inoculation.Proc Natl Acad Sci USA,1998,95:1663-1668.
    [183]Iyer AS,McCouch S R.The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance.Mol Plant Mic Int,2004,17:1348- 1354.
    [184]Chu ZH,Yuan M,Yao JL,Ge XJ,Yuan B,Xu CG,Li XH,Fu BY,Li ZK,Bennetzen JL,Zhang QF,Wang SP.Promoter mutations of an essential gene for pollen development result in disease resistance in rice.Genes Dev,2006,20:1250-1255.
    [185]Song WY,Wang GL,Chen LL,Kin HS,Pi LY,Holsten T,Gardner J,Wang B,Zhai WX,Zhu LH,Fauquet C,Ronald P.A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21.Science,1995,270:1804-1806.
    [186]Sun X,Cao Y,Yang Z,Xu C,Li X,Wang S,Zhang Q.Xa26,a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice,encodes an LRR receptor kinase-like protein.Plant J,2004,37(4):517-527.
    [187]Gu K,Yang B,Tian D,Wu L,Wang D,Sreekala C,Yang F,Chu Z,Wang GL,White FF,Yin Z.R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice.Nature,2005,435:1122-1125.
    [188]Wu ZM,Zhang X,He B,Diao LP,Sheng SL,Wang JL,Guo XP,Su N,Wang LF,Jiang L,Wang CM,Zhai HQ,Wan JM.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol,2007,145(1):29-40.
    [189]Scotto OR,Bendch AJ.Extraction of DNA from plant tissues.Plant Mol Biol Manual,1988.
    [190]Lander ES,Green P,Abrahamson J,Barlow A,Daly MJ,Lincoln SE,Newburg L.Mapmaker:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics,1987,1:174-181.
    [191]刘巧泉,张景六.根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报,1998,24(3):259-271.
    [192]Jeanmougin F,Thompson JD,Gouy M,Higgins DG,Gibson TJ.Multiple sequence alignment with Clustal X.Trends Biochem Sci,1998,23:403-405.
    [193]Tamura K,Dudley J,Nei M,Kumar S.MEGA4:Molecular Evolutionary Genetics Analysis(MEGA) software version 4.0.Mol Biol Evol,2007,24(8):1596-1599.
    [194]严长杰,梁国华,顾世梁,裔传灯,陆驹飞,李欣.汤述翥,顾铭洪.典型籼粳杂种不育性的分子标记分析及其遗传基础.遗传学报,2003,30(3):267-276.
    [195]Riechmann JL,Heard J,Martin G,Reuber L,Jiang CZ,Keddie J,Adam L,Pineda O,Ratcliffe OJ,Samaha RR,Creelman R,Pilgrim M,Broun P,Zhang JZ,Ghandehari D,Sherman BK,Yu GL.Arabidopsis transcription factors:Genome-wide comparative analysis among eukaryotes.Science,2000,290:2105-2110.
    [196]Fitter DW,Martin DJ,Copley MJ,Scotland RW,Langdale JA.GLK gene pairs regulate chloroplast development in diverse plant species.Plant J,2002,31:713-727.
    [197]Wykoff DD,Grossman AR,Weeks DP,Usuda H,Shimogawara K.Psr1,a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas.Proc Natl Acad Sci USA,1999,96:15336-15341.
    [198]Sakamoto A,Tanaka A,Watanabe H,Tano S.Molecular cloning of Arabidopsis photolyase gene(PHR1) and characterization of its promoter region.DNA Seq,1998,9:335-340.
    [199]Hwang I,Sheen J.Two-component circuitry in Arabidopsis cytokinin signal transduetion.Nature,2001,413:383-389.
    [200]Sakai H,Honma T,Aoyama T,Sato S,Kato T,Tabata S,Oka A.ARR1,a transcription factor for genes immediately responsive to cytokinins.Science,2001,294:1519-1521.
    [201]Hosoda K,Imamura A,Katoh E,Hatta T,Tachiki M,YamadaH,MizunoT,YamazakiT.Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators.Plant Cell,2002,14:2015-2029.
    [202]International Rice Genome Sequencing Project.The map-based sequence of the rice genome.Nature,2005,436:793-800.
    [203]Gaut BS,Doebley JF.DNA sequence evidence for the segmental allotetrapioid origin of maize.Proc Natl Acad Sci USA,1997,94:6809-6814.
    [204]Devos KM,Gale MD.Genome relationships:the grass model in current research.Plant Cell,2000,12:637-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700