用户名: 密码: 验证码:
以Keggin型钼磷酸盐为基本建筑块构筑新型化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐阴离子的配位多样性及其纳米尺度在构建新型纳米孔道结构的配位聚合物中显示出优越的性能。本论文利用Keggin型12-钼磷酸阴离子、过渡金属离子和刚性的联吡啶配体为建筑块,设计、合成了13种未见文献报道的多金属氧酸盐基的有机一无机杂化化合物,通过元素分析、XPRD、IR、TG、XPS和单晶X-射线分析等技术确定了化合物的结构,并对部分化合物的荧光性质和电化学性质进行了初步研究。主要研究结果如下:
     1.以Keggin型12-钼磷酸阴离子为模板,合成了5种含有金属-氧化物的有机-无机杂化框架的化合物。[Mo_2Mn_2~IV(OH)O_8(bpy)_(10)][PMo_(12)O_(40)] (1) [Mo_4~VO_8(bpy)_6][PMo_(11)VO_(40)]·4H_2O (2) [Mn~IVMn~IIMo(bpy)_5O_5][PMo_(11)VO_(40)][bpy]·2H_3O (3) Ca[Mo_5O_(14)(bpy)_5][PMo_(11)VO_(40)][0.5bpy]·4.5H_2O (4) [Mo_9VO_(28)(bpy)_9][PMo_(12)O_(40)] (5)
     它们均是以Keggin型12-钼磷酸阴离子为模板形成的化合物,主体框架分别为:化合物2和4是由纯的钼-氧化物构成,化合物1和3由Mo和Mn的异金属-氧化物构成。化合物1, 2和3分别是有限金属原子组成的有机–无机杂化的链状零维结构。化合物4具有无限的1D的“Z”字形链状结构。化合物5由钼和钒异金属-氧化物构成,它具有2D蜂窝巢状结构,同时具有1D孔道,Keggin阴离子位于孔道中。
     2.以Keggin型12-钼磷酸阴离子为建筑块,合成了2种具有Ag-Ag作用的配位聚合物。[{Ag_3(bpy)_4}{PMo_(12)O_(40)}]·2H_2O (6) [{Ag(bpy)}_2{Ag_4(bpy)_6}{PMo_(11)VO_(40)}][{Ag(bpy)}_2{PMo_(11)VO_(40)}] (7)
     化合物6和7是具有1D链状结构的配位聚合物,它们分别含有{Ag3}3+和{Ag4}4+的高核簇。通过理论计算证明它们均存在Ag-Ag相互作用,荧光光谱说明它们具有光致发光性质。
     3.以Keggin型12-钼磷酸阴离子为建筑块,合成了2种2D网状结构的Cd(II)和Zn(II)的配位聚合物。[{Cd(2, 2′-bpy)_2}_2{PMo_(11)VO_(40)}] (8) [{Zn(2, 2′-bpy)_2}_2{PMo_(11)VO_(40)}] (9)
     化合物8和9具有2D层状结构,它们是异质同构体,均是多金属氧酸盐簇{PMo_(11)VO_(40)}与{M(2, 2′-bpy)2}片段桥连形成的菱形格子网络。多阴离子位于菱形格子的节点上。两个化合物的荧光光谱说明它们具有发光性质。
     4.以同多金属氧酸盐{Mo_6O_(22)}和杂多金属氧酸盐{PMo_(12)O_(40)}簇为建筑块,通过{Cu~II(2, 2′-bpy)}配合物片段桥连形成的一种1D的有机-无机杂化的化合物。[{Cu~II(2, 2′-bpy)}_6(Mo~VMo_5~VIO_(22))][PMo_(12)~VIO_(40)]·H_2O (10)
     在化合物10中,{Mo6O22}是结构比较新颖的同多金属氧酸盐,每个钼原子都有三个末端氧原子,这使得它能与六个{Cu(2, 2′-bpy)}配合物片段配位,形成了稳定结构。
     5.以Keggin型12-钼磷酸阴离子为建筑块,合成了3种Cu(II)/Cu(I)配位化合物。{[Cu(2, 2′-bpy)(4, 4′-bpy)(H_2O)]_2(H_2PMo_(11)VO_(40))_2}(4, 4′-bpy)·H_2O (11) [Cu_3(4, 4′-bpy)_3{PMo_(12)O_(40)}](en)·3H_2O (12) [Cu_2(OH)_2(H_2O)_2(4, 4′-bpy)_3{HPMo_(12)O_(40)}]·4H_2O (13)
     化合物11是以{PMo_(11)VO_(40)}为建筑块,通过[Cu(2, 2′-bpy)(4, 4′-bpy)(H_2O)]2+桥连形成的1D链状的有机–无机杂化的化合物。而化合物12和13是以{PMo_(12)O_(40)}为建筑块,通过Cu(II)和有机配体4, 4′–bipy形成的两种具有分子梯结构的有机-无机杂化的2D层状化合物。
Polyoxometalate anions exhibit the superiority of coordinative diversity and nano-scale size in building new coordination polymers with nano-pore structure. In this paper, using Keggin-Molybdophosphate anions, transition metal ions and rigid bipyridine ligand as building blocks, 13 kinds of unreported polyoxometalate-based organic-inorganic hybrid compounds were designed and synthesized. They are characterized by elemental analysis, XPRD, IR, TG, XPS and single crystal X-ray diffraction analysis and some of them were preliminary studied on fluorescent properties and electrochemical properties. The major results are as follows:
     1. Using Keggin-Molybdophosphate anions as a template, five kinds of organic-inorganic hybrid framework compounds of metal-oxides were synthesized. [Mo_2Mn_2~IV(OH)O_8(bpy)_(10)][PMo_(12)O_(40)] (1) [Mo_4~VO_8(bpy)_6][PMo_(11)VO_(40)]·4H_2O (2) [Mn~IVMn~IIMo(bpy)_5O_5][PMo_(11)VO_(40)][bpy]·2H_3O (3) Ca[Mo_5O_(14)(bpy)_5][PMo_(11)VO_(40)][0.5bpy]·4.5H_2O (4) [Mo_9VO_(28)(bpy)_9][PMo_(12)O_(40)] (5)
     They are all based on Keggin anions as a template compound. The host frames are as follows: Compounds 2 and 4 consist of the pure Mo-oxide. Compounds 1 and 3 consist of the heterometal-oxide of the Mo and Mn. Compounds 1, 2 and 3 consist of finite metal-atoms to form organic-inorganic hybrid 0D chain-shaped structure. Compound 4 exhibits an infinite 1D Z-shaped chain. Compound 5 is formed by heterometal-oxide of the Mo and V and exhibit a 2D honeycomb-like structure with 1D pore, where Keggin anions are located in.
     2. With Keggin-Molybdophosphate anions as building blocks, two kinds of coordination polymers with the Ag-Ag interactions were synthesized. [{Ag_3(bpy)_4}{PMo_(12)O_(40)}]·2H_2O (6) [{Ag(bpy)}_2{Ag_4(bpy)_6}{PMo_(11)VO_(40)}][{Ag(bpy)}_2{PMo_(11)VO_(40)}] (7)
     Compounds 6 and 7 are coordination polymers with a 1D chain structure, in which two compounds contain (Ag3)3+ and (Ag4)4+ high-nuclear clusters, respectively. Through theoretical calculations it proved that they exist in Ag-Ag interactions. Fluorescence spectroscopy shows that they have photoluminescence properties.
     3. With Keggin-Molybdophosphate anions as building blocks, two kinds of coordination polymers of 2D network structure of the Cd (II) and Zn (II) were synthesized. [{Cd(2, 2′-bpy)_2}_2{PMo_(11)VO_(40)}] (8) [{Zn(2, 2′-bpy)_2}_2{PMo_(11)VO_(40)}] (9)
     Compounds 8 and 9 exhibit a 2D layered structure. They are isomorphic, and are constructed into a diamond-shaped grid network through bridgeding polyoxometalate cluster {PMo_(11)VO_(40)} and {M(2, 2′-bpy)2} fragments. Polyanions are located in the node of the diamond lattice. The fluorescence spectra of two compounds show that they have luminescence properties.
     4. Utilizing isopolyoxometalate anions {Mo6O22} and heteropolyoxometalate anions {PMo_(12)O_(40)} as building blocks, the 1D organic-inorganic hybrid compound is constructed through bridging of the {Cu~II(2, 2′-bpy)} fragments . [{Cu~II(2, 2′-bpy)}_6(Mo~VMo_5~VIO_(22))][PMo_(12)~VIO_(40)]·H_2O (10)
     In compound 10, {Mo6O22} is a relatively new structure. It is coordinated by six {Cu(2, 2′-bpy)} complex fragments to form a stable structure because each molybdenum has three the terminal oxygen atoms.
     5. With Keggin-Molybdophosphate anions as building blocks, three kinds of Cu(II)/Cu(I) coordination compounds were synthesized. {[Cu(2, 2′-bpy)(4, 4′-bpy)(H_2O)]_2(H_2PMo_(11)VO_(40))_2}(4, 4′-bpy)·H_2O (11) [Cu_3(4, 4′-bpy)_3{PMo_(12)O_(40)}](en)·3H_2O (12) [Cu_2(OH)_2(H_2O)_2(4, 4′-bpy)_3{HPMo_(12)O_(40)}]·4H_2O (13)
     Compound 11 is based on {PMo_(11)VO_(40)} as the building blocks, through the [Cu(2, 2′-bpy)(4, 4′-bpy)(H_2O)]2+ fragments, forming 1D chain organic-inorganic hybrid compounds. While the compounds 12 and 13 are organic-inorganic hybrid 2D layered compounds with a molecular ladder structure. They were formed by using {PMo_(12)O_(40)} as the building block brigded the Cu (II) and organic ligands 4, 4′-bpy.
引文
[1] Pope, M. T. Heteropoly and Isopoly Oxometalates[M]. Springer-Verlag: Berlin, 1983,
    [2] Berzelius J. The preparation of the phosphomolybdate ion [PMo12O40]3[J]. Pogg. Ann, 1826, 6: 369–371.
    [3] Krebs B, Paulat-B?schen I. The structure of the potassium isopolymolybdate K8[Mo36O112(H2O)16]·nH2O (n=36-40)[J]. Acta Crystallogr, 1982, B38: 1710–1718.
    [4] Tytko K H, Glemser O. Aberrant phenomenon of Raman spectrum of saturated aqueous solution of ammonium dimolybdate crystal as well as its mechanism[J]. Adv Inorg Chem Radiochem, 1976, 19: 239–315.
    [5] Paulat-B?schen I. X-Ray crystallographic determination of the structure of the sopolyanion [Mo36O112(H2O)16]8- in the compound K8[Mo36O112(H2O)16]·36H2O[J]. J Chem Soc Chem Commun, 1979, 780–782.
    [6] Tytko K H, Sch?nfeld B, Buss B, Glemser O. A macroisopolyanion of molybdenum: Mo36O8-112[J]. Angew Chem Int Ed, 1973, 12: 330–332.
    [7] Pope M T. Molybdenum oxygen chemistry: oxides, oxo complexes, and polyoxoanions[J]. Prog Inorg Chem, 1991, 39: 181.
    [8] Zhang S W, Liao D Q, Shao M C, et al. X-Ray crystal structures of the unusual clathrate compound, [Mo36O11o(NO)4(H2O)14]·52H2O[J]. J Chem Soc Chem Commun, 1986, 835–836.
    [9] Gouzerh P, Che M. I’actualitéchimique[M]. Paris :Sociétéchimique de France, 2006, 298: 1–14.
    [10] Müller A, Serain C. Soluble molybdenum blues–“des Pudels Kern”[J]. Acc Chem Res, 2000, 33: 2–10.
    [11] Cronin L, Beugholt C, Krickemeyer E, et al.“Molecular symmetry breakers”generating metal-oxide-based nanoobject fragments as synthons for complex structures: [{Mo128Eu4O38H10(H2O)81}2]20-, a giant-cluster dimmer[J]. Angew Chem Int Ed, 2002, 41: 2805–2808.
    [12] Jiang C C, Wei Y G, Liu Q, et al. Self-assembly of a novel nanoscale giant cluster: [Mo176O496(OH)32(H2O)80][J]. Chem Commun, 1998, 18: 1937–1938.
    [13] Müller A, Toma L, B?gge H, et al. Synergetic activation of“silent receptor”sites leading to a new type of inclusion complex: integration of a 64-membered ring comprising K+ and SO42- ions into a molybdenum oxide-based nanobject[J]. Chem Commun, 2003, 2000–2001.
    [14] Müller A, Plass W, Krickemeyer E, et al. [Mo57Fe6(NO)6O174(OH)3(H2O)24]15-: a highly symmetrical giant cluster with an unusual cavity and the possibility of positioning paramagnetic centers on extremely large cluster surfaces[J]. Angew Chem Int Ed, 1994, 33: 849–851.
    [15] Müller A, Krickemeyer E, Dillinger S, et al. New perspectives in polyoxometalate chemistry byisolation of compounds containng very large moieties as transferable building blocks: (NMe4)5[As2Mo8V4AsO40]·3H2O, (NH4)21[H3Mo57V6(NO)6O183(H2O)18]·65H2O, (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18]·14H2O, and (NH4)12[Mo36(NO)4O108(H2O) 16]·33H2O[J]. Z Anorg Allg Chem, 1994, 620: 599–619.
    [16] Müller A, Shah S Q N, Bogge H, et al. Molecular growth from a Mo176 to a Mo248 cluster[J]. Nature, 1999, 397: 48–50.
    [17] Xu Z H, Li Y G, Wang E B, et al. Synthesis, characterization, and crystal structures of two new polyoxomolybdate wheel clusters[J]. Inorg Chem Commun, 2006, 9: 1315–1318.
    [18] Müller A, Krickemeyer E, B?gge H, et al. Organizational forms of matter: an inorganic super fullerene and Keplerate based on molybdenum oxide[J]. Angew Chem Int Ed, 1998, 37: 3359–3363.
    [19] Müller A. Chemistry: The beauty of symmetry[J]. Science, 2003, 300: 749–750.
    [20] Botar B, K?gerler P, Hill C L. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: A molecular quantum spin icosidodecahedron[J]. Chem Commun, 2005, 3138–3141.
    [21] Todea A M, Merca A, B?gge H. Extending the {(Mo)Mo5}12M30 capsule Keplerate sequence: a {Cr30} cluster of S=3/2 metal centers with a {Na(H2O)12} encapsulate[J]. Angew Chem Int Ed, 2007, 46: 6106–6110.
    [22] Müller A, Das S K, B?gge H, et al. Generation of cluster capsules (Ih) from decomposition products of a smaller cluster (Keggin-Td) while surviving ones get encapsulated: species with core-shell topology formed by a fundamental symmetry-driven reaction[J]. Chem Commun, 2001, 657–658.
    [23] Müller A, Das S K, K?gerler P, et al. A new type of supramolecular compound: molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network[J]. Angew Chem Int Ed, 2000, 39: 3413–3417.
    [24] Müller A, Todea A M, B?gge H, et al. Formation of a less stable polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth: [{Mo6O19}2-?{MoVI72FeIII30O252(ac)20(H2O)92}]4-[J]. Chem Commun, 2006: 3066–3068.
    [25] Müller A, Beckmann E, Bogge H, et al. Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking[J]. Angew Chem Int Ed Engl, 2002, 41: 1162–1167.
    [26] Müller A, Koop M, B?gge H, et al. Building blocks as disposition in solution: [{MoVIO3(H2O)}10{VIVO(H2O)}20{(MoVI/MoVI5O21)(H2O)3}10({MoVIO2(H2O)2}5/2)2({Na2SO4}5)2]20-, a giant spherical cluster with unusual structural features of interest for supramolecular and magneto chemistry[J]. Chem Commun, 1999: 1885–1886.
    [27] Yang W B, Lu C Z, Lin X, et al. Novel acetate polyoxomolybdate“host”accommodating a zigzag-chainlike“guest”of five edge-shared sodium cations: Na21{[Na5(H2O)14][Mo46O134(OH)10(μ-CH3COO)4]}·CH3COONa·ca.·95H2O[J]. Inorg Chem, 2002, 41: 452–454.
    [28] Wang S, Lin X, Wan Y, et al. A large bowl-shaped {Mo51V9} polyoxometalate[J]. Angew Chem Int Ed, 2007, 46: 3490–3493.
    [29] Bruedgam I, Fuchs J, Hartl H, et al. Two new isopolyoxotungstates (VI) with the empirical composition Cs2[W2O7]·H2O and Na2[W2O7]·H2O: an icosatetratungstate and a polymeric compound[J]. Angew Chem Int Ed, 1998, 37: 2668–2671.
    [30] Long D L, Abbas H, K?gerler P, et al. A high-nuclearity“Celtic-Ring”isopolyoxotungstate, [H12W36O120]12-, that captures trace potassium ions[J]. J Am Chem Soc, 2004, 126: 13880–13881.
    [31] Long D L, Brücher O, Streb C, et al. Inorganic crown: the host-guest chemistry of a high nuclearity‘Celtic-ring’isopolyoxotungstate [H12W36O120]12-[J]. Dalton Trans, 2006: 2852–2860.
    [32] Wassermann K, Dickman M H, Pope M T, et al. Self-assembly of supramolecular polyoxometalates: the compact, water-soluble heteropolytungstate anion [AsIII12CeIII16(H2O)36W148O524]76-[J]. Angew Chem Int Ed, 1997, 36: 1445–1448.
    [33] Klemperer W G, Marquart T A, Yaghi O M. New directions in polyvanadate chemistry: from cages and clusters to baskets, belts, bowls, and barrels[J]. Angew Chem Int Ed, 1992, 31: 49–51.
    [34] Müller A, Rohlfing R, Krickemeyer E, et al. Control of the linkage of inorganic fragments of V-O compounds: from cluster shells as carcerands via cluster aggregaes to solid-state structures[J]. Angew Chem Int Ed, 1993, 32: 909–912.
    [35] Calzado C J, Clemente-Juan J M, Coronado E, et al. Role of the electron transfer and magnetic exchange interactions in the magnetic properties of mixed-valence polyoxovanadate complexes[J]. Inorg Chem, 2008, 47: 5889–5901.
    [36] Ninclaus C, Riou D, Férey G. Hydrothermal synthesis and structural determinations of some new polyoxofluorovanadates [V14O36F4]8- interleaved by water molecules and organic cations NH3(CH2)NH3 (n = 4-6)[J]. Chem Commun, 1997: 851–852.
    [37] Yamase T, Ohtaka K. Photochemistry of polyoxovanadates. part 1. formation of the anion-encapsulated polyoxovanadate [V15O36(CO3)]7- and electron-spin polarization ofα-hydroxyalkyl radicals in the presence of alcohols[J]. J Chem Soc Dalton Trans, 1994: 2599–2608.
    [38] Yamase T, Ohtaka K, Suzuki M. Structural characterization of spherical octadecavanadates encapsulating Cl- and H2O[J]. J Chem Soc Dalton Trans, 1996: 283–289. [46] Müller A, Krickemeyer E, Penk M, et al. Template-controlled formation of cluster shells or a type of molecular recognition: synthesis of [HV22O54(ClO4)]6- and [H2V18O44(N3)]5-[J]. Angew Chem Int. Ed, 1991, 30: 1674–1677.
    [39] Yamase T, Suzuki M, Ohtaka K. Structures of photochemically prepared mixed-valence polyoxovanadate clusters: oblong [V18O44(N3)]14-, superkeggin [V18O42(PO4)]11- and doughnut-shaped [V12B32O84Na4]15- anions[J]. J Chem Soc Dalton Trans, 1997: 2463–2472.
    [40] Müller A, Penk M, Krickemeyer E, et al. [V19O41(OH)9]8- an ellipsoid-shaped cluster anion belonging to the ususual family of VIV/VV oxygen clusters[J]. Angew Chem Int Ed, 1988, 27: 1719–1721.
    [41] Suber L, Bonamico M, Fares V. Synthesis, magnetism, and X-ray molecular structure of themixed-valence vanadium (IV/V)-oxygen cluster [VO4(V18O45)]9-[J]. Inorg Chem, 1997, 36: 2030–2033.
    [42] Müller A, Rohlfing R, D?ring J, et al. Formation of a cluster sheath around a central cluster by a self-organization process: the mixed valence polyoxovanadate [V34O82]10-[J]. Angew Chem Int Ed, 1991, 30: 588–590.
    [43] Müller A, Penk M, D?ring J, et al. Hydrogen potassium vanadoarsenate ([H3KV12AsO39(AsO4)]6-) and related topological and/or structural aspects of polyoxometalate chemistry[J]. Inorg Chem, 1991, 30: 4935–4939.
    [44] Graeber E J, Morosin B. The molecular configuration of the decaniobate ion ([Nb10O28]6-)[J]. Acta Crystallogr Sect B, 1977, 33: 2137–2143.
    [45] Nyman M, Bonhomme F, Alam T M, et al. [SiNb12O40]16- and [GeNb12O40]16-: highly charged Keggin ions with sticky surfaces[J]. Angew. Chem., 2004, 116: 2847–2852. Angew Chem Int Ed, 2004, 43: 2787–2792.
    [46] Bontchev R P, Nyman M. Evolution of polyoxoniobate cluster anions[J]. Angew Chem, 2006, 118: 6822-6824. Angew. Chem. Int. Ed., 2006, 45: 6670–6672.
    [47] Maekawa M, Ozava Y, Yagasaki A. Icosaniobate: a new member of the isoniobate family[J]. Inorg Chem, 2006, 45: 9608–9609.
    [48] Ohlin C A, Villa E M, Fettinger J C, et al. The [Ti12Nb6O44]10- ion: a new type of polyoxometalate structure[J]. Angew Chem Int Ed, 2008, 47: 5634–5636.
    [49] Zhang Z M, Li Y G, Yao S, Wang E B, et al. Enantiomerically pure chiral {Fe28} wheels[J]. Angew Chem Int Ed, 2009, 48: 1581–1584.
    [50] Zhang Z M, Yao S, Li Y G, et al. Protein-sized chiral Fe168 cages with NbO-type topology[J]. J Am Chem Soc, 2009, 131: 14600–14601.
    [51] Xu Y, Zhu D R, Guo Z J, et al. Cation-induced Assembly of the First Mixed Molybdenum–Vanadium Hexadecametal Host Shell Cluster Anions[J]. J Chem Soc Dalton Trans, 2001, 772–773.
    [52] Xu Y, Zhu D R, Cai H, et al. [MoV2MoVI6VIV8O40(PO4)]5-: the First Polyanion with a Tetracapped Keggin structure[J]. Chem Commun, 1999, 787–788.
    [53] Yuan M, Li Y G, Wang E B, et al. Modified polyoxometalates: hydrothermal syntheses and crystal structures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes[J]. Inorg Chem, 2003, 42: 3670–3676.
    [54] Li Y G, Wang E B, Wang S T, et al. A highly reduced polyoxoanion with phosphorus-centered alternate layers of Mo/V oxides, [PMoV2MoVI6VIV4O40(VIVO)2]9-[J]. J Mol Struct, 2002, 611: 185–191.
    [55] Luan G Y, Li Y G, Wang S T, et al. A newα-Keggin type polyoxometalate coordinated to four silver-complex moieties: {PW9V3O40[Ag(2, 2'-bipy)]2 [Ag2(2, 2'-bipy) 3]2}[J]. J Chem Soc, Dalton Trans, 2003, 233–235.
    [56] Xu Y, Xu J Q, Zhang K L, et al. Keggin unit supported transition metal complexes: hydrothermal synthesis and characterization of [Ni(2, 2'-bipy)3]1.5[PW12O40Ni(2, 2'-bipy)2 (H2O)]·0.5H2O and[Co(1,10-phen)3]1.5[PMo12O40Co(1,10-phen)2(H2O)]·0.5H2O[J]. Chem Commun, 2000, 153–154.
    [57] Reinoso S, Vitoria P, Gutiérrez-Zorrilla J M, et al. Inorganic-metalorganic hybrids based on copper(II)-monosubstituted Keggin polyanions and dinuclear copper(II)-oxalate complexes: synthesis, X-ray structural characterization, and magnetic properties[J]. Inorg Chem., 2005, 44: 9731–9742.
    [58] Renoso S, Vitoria P, Felices L S, et al. Analysis of weak interactions in the crystal packing of inorganic metalorganic hybrids based on Keggin polyoxometalates and dinuclear copper(II)-acetate complexes[J]. Inorg Chem, 2006, 45: 108–118.
    [59] Khenkin A M, Shimon L J W, Neumann R. Preparation and characterization of new ruthenium and osmium containing polyoxometalates, [M(DMSO)3Mo7O24]4-(M=Ru(II), Os(II)), and their use as catalysts for the aerobic oxidation of alcohols[J]. Inorg Chem, 2003, 42: 3331–3339.
    [60] Bi L H, Hussain F, Kortz U, et al. A novel isopolytungstate functionalized by ruthenium: [HW9O33RuII2(dmso)6]7-[J]. Chem Commun, 2004: 1420–1421.
    [61] Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from self-assembly to designer materials and devices[J]. Chem Soc Rev, 2007, 36: 105–121.
    [62] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: from“simple”coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed, 1999, 38: 2638–2684.
    [63] Jin H, Qi Y F, Wang E B, et a1. Molecular and multidimensional organic-inorganic hybrids based on polyoxometalates and copper coordination polymer with mixed 4,4′-bipyridine and 2,2'-bipyridine ligands[J]. Cryst Grow Desig, 2006, 6: 2693–2698.
    [64] Shi Z Y, Gu X J, Peng J, et al. From molecular double-ladders to an unprecedented polycatenation: A parallel catenated 3D network containing bicapped Keggin polyoxometalate clusters[J]. Eur. J. Inorg. Chem, 2005, 385–388.
    [65] Wang X L, Qin C,Wang E B, et al. Self-assembly of nanometer-scale [Cu24I10L12]14+ cages and ball-shaped Keggin clusters into a (4, 12)-connected 3D framework with photoluminescent and electrochemical properties[J]. Angew Chem Int Ed, 2006, 45: 7411–7414.
    [66] Qin C, Wang X L, Wang E B, et al. Chiral self-threading frameworks based on polyoxometalate building blocks comprising unprecedented tri-flexure helix[J]. Crystal Growth and Design, 2008, 8: 2093–2095.
    [67] An H Y, Li Y G, Wang E B, et al. Self-assembly of a series of extended architectures based on polyoxometalate clusters and silver coordination complexes[J]. Inorg. Chem., 2005, 44: 6062?6070.
    [68] Tan H Q, Li Y G, Zhang Z.M, et al. Chiral polyoxometalate-induced enantiomerically 3D architectures: a new route for synthesis of high-dimensional chiral compounds[J]. J Am Chem Soc, 2007, 129: 10066–10067.
    [69] Lan Y Q, Li S L, Wang X L, et al. Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from CuII, CuI,II to CuI via changing organic amine[J]. Inorg Chem, 2008, 47: 8179–8187.
    [70] Sha J Q, Peng J, Lan Y Q, et al. pH-dependent assembly of hybrids based on Wells-Dawson POM/Ag chemistry[J]. Inorg Chem, 2008, 47: 5145–5153.
    [71]王恩波,李阳光,鹿颖等.多酸化学概论[M].长春:东北师范大学出版社,2009.
    [72] Tripathi A, Hughbanks T, Clearfield Abraham. The first frameworks solid composed of vanadosilicate cluster[J]. J Am Chem Soc, 2003, 125: 10528–10529.
    [73] Liu S X, Xie L H, Gao B, et al. An organic-inorganic hybrid material constructed from a three-dimensional coordination complex cationic framework and entrapped hexadecavanadate clusters[J]. Chem Commun, 2005, 5023–5025.
    [74] Jiang C J, Lesbani A, Kawamoto R, et al. Channel-selective independent sorption and collection of hydrophilic and hydrophobic molecules by Cs2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] ionic crystal[J]. J Am Chem Soc, 2006, 128: 14240–14241.
    [75] An H Y, Wang E B, Xiao D R, et al. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper–amino acid complexes[J]. Angew Chem, 2006, 118: 918–922.
    [76] Pang H J, Zhang C J, Shi D. M, et al. Synthesis of a purely inorganic three-dimensional porous framework based on polyoxometalates and 4d-4f heterometals [J]. Crystal Growth and Design, 2008, 8: 4476–4480.
    [77] Streb C, Ritchie C, Long D L, et al. Modular assembly of a functional polyoxometalate-based open framework constructed from unsupported AgI···AgI Interactions[J]. Angew Chem Int Ed, 2007, 46: 7579–7582.
    [78] Hagrman D, Hagrman P J, Zubieta J, Solid-state coordination chemistry: the self-assembly of microporous organic-inorganic hybrid frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters[J]. Angew Chem Int Ed, 1999, 38: 3165–3168.
    [79] Yang L, Naruke H, Yamase T. A novel organic/inorganic hybrid nanoporous material incorporating Keggin-type polyoxometalates[J]. Inorg Chem Commun, 2003, 6: 1020–1024.
    [80] Inman C, Knaust J M, Keller S. W. A polyoxometallate-templated coordination polymer: synthesis and crystal structure of [Cu3(4, 4'-bipy)5(MeCN)2]PW12O40·2C6H5CN [J]. Chem Commun, 2002, 156–157.
    [81] Kong X J, Ren Y P, Zheng P Q, et al. Construction of polyoxometalates-based coordination polymers through direct incorporation between polyoxometalates and the voids in a 2D network[J]. Inorg Chem, 2006, 45: 10702–10711.
    [82] Wei M L, He C, Sun Q Z, et al. Zeolite ionic crystals assembled through direct incorporation of polyoxometalate clusters within 3D metal-organic frameworks[J]. Inorg Chem, 2007, 46:5957–5966.
    [83] Zhao X Y, Liang D D, Liu S X, et al. Two dawson–templated three–dimensional metal-organic frameworks based on oxalate-bridged binuclear cobalt(II)/nickel(II)SBUs and bpy linkers[J]. Inorg Chem, 2008, 47: 7133–7138.
    [84] Wang X L, Bi Y F, Chen B K, et al. Self-assembly of organic–inorganic hybrid materials constructed from eight-connected coordination polymer hosts with nanotube channels and polyoxometalate guests astemplates[J]. Inorg Chem, 2008, 47: 2442–2448.
    [85] Sun C Y, Liu S X, Liang D D, et al. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates[J]. J Am Chem Soc, 2009, 131: 1883–1888.
    [86] Li Y G, Dai L M, Wang E B, et al. A new molybdenum-oxide-based organic-inorganic hybrid framework templated by double-Keggin anions[J]. Chem Commun, 2007, 2593–2595.
    [1] Kitagawa S, Kondo M. Functional micropore chemistry of crystalline metal complex-assembled compounds[J]. Bull. Chem. Soc. Jpn., 1998, 71: 1739–1753.
    [2] Yaghi O M, Li H, Davis C, et al. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Acc Chem Res, 1998, 31: 474–484.
    [3] Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813–821.
    [4] Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal organic frameworks constructed from rod-shaped secondary building units[J]. J Am Chem Soc, 2005, 127: 1504–1518.
    [5] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982–986.
    [6] C?téA P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310: 1166–1170.
    [7] Wu C D, Hu A, Zhang L, et al. A homochiral porous metal organic framework for highly enantioselective heterogeneous asymmetric catalysis[J]. J. Am. Chem. Soc., 2005, 127: 8940–8941.
    [8] Matsuda R, Kitaura R, Kitagawa S, et al. Highly controlled acetylene accommodation in a metal–organic microporous material[J]. Nature, 2005, 436: 238–241.
    [9] Pan L, Olson D H, Ciemnolonski L R, et al. Separation of hydrocarbons with a microporous metal-organic framework[J]. Angew Chem Int Ed, 2006, 45: 616–619.
    [10] Pope M T. Isopolyanions and heteropolyanions[M]. In Comprehensive Coordination Chemistry; Wilkinson G, Gillard R D, McCleverty J A. Eds. Pergamon Press: Oxford, 1987, 3: 1023–1058.
    [11] Cronin L, The Potential of Pentagonal Building Blocks in Inorganic Chemistry Highlights[M]. Meyer G, Naumann D, Wesemann L. Eds. Wiley-VCH: Weinheim, Germany, 2002, 113–121.
    [12] Neumann R, Dahan M. Aruthenium-substituted polyoxometalate as an inorganic dioxygenase for activation ofmolecular oxygen[J]. Nature, 1997, 388: 353–355.
    [13] Rhther T, Hultgren V M, Timko B P, et al. Electrochemical investigation of photooxidation processes promoted by sulfo-polyoxometalates: coupling of photochemical and electrochemical processes into an effective catalytic cycle[J]. J. Am. Chem. Soc., 2003, 125: 10133–10143.
    [14] Müller A, Das S K, Talismanov S, et al. Trapping cations in specific positions in tuneable“artificial cell”channels: new nanochemistry perspectives[J]. Angew Chem Int Ed, 2003, 42: 5039–5044.
    [15] Anderson T M, Neiwert W A, Kirk M L, et al. A late-transition metal oxo complex: K7Na9[O=PtIV(H2O)L2], L=[PW9O34]9–[J]. Science, 2004, 306: 2074–2077.
    [16] Ritchie C, Streb C, Thiel J, et al. Reversible redox reactions in an extended polyoxometalate framework solid[J]. Angew Chem Int Ed, 2008, 47: 6881–6884.
    [17] Zheng L M, Whitfield T, Wang X, et al. Hybrid coordination polymers-metal oxide compounds with chiral structures[J]. Angew Chem Int Ed, 2000, 39: 4528–4531.
    [18] Li Y G, De G, Wang E B, et al. A novel 2D arsenic vanadate network grafted with a transition metal complex: [Cu(phen)]2[VIVV4VAs2O19]·0.5H2O[J]. Dalton Trans., 2003, 331–334.
    [19] Müller A, Das S K, K?gerler P, et al. A new type of supramolecular compound: molybdenum-oxide-based composites consisting of magnetic nanocapsules consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network[J]. Angew Chem Int Ed, 2000, 39: 3414–3417.
    [20] Müller A, Todea A M, B?gge H, et al. Formation of a‘‘less stable’’polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth: [{Mo6O19}2-?{MoVI72FeIII30O252(ac)20(H2O)92}]42[J]. Chem. Commun., 2006, 3066–3068.
    [21] Wu H. J Biol Chem, 1920, 43: 189.
    [22] Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts. I. investigation of methods of preparation and characterization[J]. Inorg Chem, 1968, 7: 437–441.
    [23] Brese N, O’Keeffe M. Bond-valence parameters for solids[J]. Acta Crystallogr, Sect B: Struct Sci, 1991, 47: 192–197.
    [24] Dong S J, Xi X D, Tian M. Study of the electrocatalytic reduction of nitrite with silicotungstic heteropolyanion[J]. J Electroanal Chem, 1995, 385: 227–233.
    [25] Wang X L, Kang Z H, Wang E B, et al. Inorganic–organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis[J]. J Electroanal Chem, 2002, 523: 142–149.
    [26] Wu Y, Zheng J W, Xu L, et al. Photo-induced electron transfer and electrocatalytic properties of novel charge-transfer compound (TMB)3HPMo12O40[J]. J Electroanal Chem, 2006, 589: 232–236.
    [27] Unoura K, Tanaka N, Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate[J]. Inorg Chem, 1983, 22: 2963–2964.
    [1] Pope M T. Isopolyanions and Heteropolyanions[M]. In comprehensive coordination chemistry; Wilkinson G, Gillard R D, McCleverty J A. Pergamon Press: Oxford, 1987, 3: 1023–1058.
    [2] Cronin L. The potential of pentagonal building blocks in inorganic chemistry highlights[M]. Meyer G, Naumann D, Wesemann, L. Wiley-VCH: Weinheim, Germany, 2002, 113–121.
    [3] Long D L, Cronin L. Towards polyoxometalate-integrated nanosystems[J].Chem Eur J, 2006, 12: 3698–3706.
    [4] Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices[J]. Chem Soc Rev, 2007, 36: 105–121.
    [5] Neumann R, Dahan M. A ruthenium-substituted polyoxometalate as an inorganic dioxygenase for activation of molecular oxygen[J]. Nature, 1997, 388: 353–355.
    [6] Rüther T, Hultgren V M, Timko B P, et al. Electrochemical investigation of photooxidation processes promoted by sulfo-polyoxometalates: coupling of photochemical and electrochemical processes into an effective catalytic cycle[J]. J Am Chem Soc, 2003, 125: 10133–10143.
    [7] Müller A, Das S K, Talismanov S, et al. Trapping cations in specific positions in tuneable“artificial cell”channels: new nanochemistry perspectives[J]. Angew Chem Int Ed, 2003, 42: 5039–5044.
    [8] Anderson T M, Neiwert W A, Kirk M L, et al. A late-transition metal oxo complex: K7Na9[O=PtIV(H2O)L2], L=[PW9O34]9-[J]. Science, 2004, 306: 2074–2077.
    [9] Nogueira H I S, Almeida P F A, Teixeira P A F, et al. One-dimensional silver(I) chain of lacunaryα-Keggin anions[J]. Chem Commun, 2006, 2953–2955.
    [10] Villanneau R, Proust A, Robert F, et al. Synthesis and characterization of [NBu4]4[Ag2{Mo5O13(OMe)4(NO)}2], a novel polyoxomolybdate complex with a short AgI···AgI distance[J]. Chem Commun, 1998, 1491–1492.
    [11] Rhule J T, Neiwert W A, Hardcastle K I, et al. Ag5PV2Mo10O40, a Heterogeneous catalyst for air-based selective oxidation at ambient temperature[J]. J Am Chem Soc, 2001, 123: 12101–12102.
    [12] Liu F X, Roch C M, Bouchard P, et al. [Ag6(PMo10V2O40)](CH3COO)·8H2O: A 3D macrocationic polyoxometallic Keggin complex[J]. Inorg Chem 2004, 43: 2240–2242.
    [13] Pyykk?, P. Strong closed-shell interactions in inorganic chemistry[J]. Chem Rev, 1997, 97: 597–636.
    [14] Che C M, Tse M C, Chan M C W, et al. Spectroscopic evidence for argentophilicity in structurally characterized luminescent binuclear silver(I) complexes[J]. J Am Chem Soc, 2000, 122: 2464–2468.
    [15] Liu X, Guo G C, Fu M L, et al. Three novel silver complexes with ligand-unsupported argentophilic interactions and their luminescent properties[J]. Inorg Chem, 2006, 45: 3679–3685.
    [16] Dias H V R, Gamage C S P, Keltner J, et al. Trinuclear silver(I) complexes of fluorinatedpyrazolates[J]. Inorg Chem 2007, 46: 2979–2987.
    [17] Wilson E F, Abbas H, Duncombe B J, et al. Probing the self-assembly of inorganic cluster architectures in solution with cryospray mass spectrometry: growth of polyoxomolybdate clusters and polymers mediated by silver(I) ions[J]. J. Am. Chem. Soc. 2008, 130, 13876–13884.
    [18] Wu H. J Biol Chem, 1920, 43: 189.
    [19] Weinstock I A, Cowan J J, Barbuzzi E M G, et al. Equilibria betweenαandβIsomers of Keggin Heteropolytungstates[J]. J Am Chem Soc, 1999, 121: 4608–4617.
    [20] P?ppl A, Manikandan P, K?hler K, et al. Elucidation of structure and location of V(IV) ions in heteropolyacid catalysts H4PVMo11O40 as studied by hyperfine sublevel correlation spectroscopy and pulsed electron nuclear double resonance at W- and X-band frequencies[J]. J Am Chem Soc 2001, 123: 4577–4584.
    [21] Wu Y, Zheng J W, Xu L, et al. Photo-induced electron transfer and electrocatalytic properties of novel charge-transfer compound (TMB)3HPMo12O40[J]. J Electroanal Chem, 2006, 589: 232–236.
    [22] Unoura K, Tanaka N. Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate[J]. Inorg Chem, 1983, 22: 2963–2964.
    [23] (a) Velde G T, Bickelhaupt F M, Baerends E J, et al. J Comput Chem, 2001, 22: 931. (b) Guerra C F, Snijders J G, te Velde G, et al. Theoretical Chemistry Accounts, 1998, 99: 391. (c) ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
    [24] Vosko S H, Wilk L, Nusair M. Can J Phys, 1980, 58: 1200.
    [25] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A, 1988, 38: 3098–3100.
    [26] Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys Rev B, 1986, 33: 8822–8824.
    [27](a) Vanlenthe E, Baerends E J, Snijders J G. J Chem Phys, 1994, 101: 9783. (b) van Lenthe E, Ehlers A, Baerends E J. J Chem Phys, 1999, 110: 8943.
    [28] Chen C, Liu Y L, Wang S H, et al. Hydrothermal syntheses, structural characterizations, and photoluminescence properties of three fluorinated iIndium phosphates with bipyridyl ligands: In3F2(2,2'-bipy)2(HPO4)2(H1.5PO4)2, In2F2(H2O)(2, 2'-bipy)(HPO4)2, and In2F2(H2O)(2, 2'-bipy-5-amine)(HPO4)2[J]. Chem Mater, 2006, 18: 2950–2958.
    [29] Yam V W W, Lo K K W. Luminescent polynuclear d10 metal complexes[J]. Chem Soc Rev, 1999, 28: 323–334.
    [1] Pope M T, Heteropoly and Isopoly Oxometalates[M]. Berlin: Springer-Verlag, 1983.
    [2] Soghomonian V, Chen Q, Haushalter R C, et al. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O[J]. Science, 1993, 259: 1596–1599.
    [3] Müller A, Shah S Q N, B?gge H, Schmidtmann M. Molecular growth from a Mo176 to a Mo248 cluster[J]. Nature, 1999, 397: 48–50.
    [4] Fukaya K, Yamase T. Alkali-metal-controlled self-assembly of crown-shaped ring complexes of lanthanide/[α-AsW9O33]9-:[K{Eu(H2O)2(α-AsW9O33)}6]35- and [Cs{Eu(H2O)2(α-AsW9O33)}4]23-[J]. Angew Chem Int Ed, 2003, 42: 654–658.
    [5] Fang X K, Anderson T M, Hill C L. Enantiomerically pure polytungstates: chirality transfer through zirconium coordination centers to nanosized inorganic clusters[J]. Angew Chem Int Ed, 2005, 44: 3540–3544.
    [6] Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines[J]. Angew Chem Int Ed Engl, 1991, 30: 34–48.
    [7] Pope M T, Müller A. Kluwer: Dordrecht, The Netherlands, 2001.
    [8] Yamase T, Pope M T. Kluwer: Dordrecht, The Netherlands, 2002.
    [9]. Day V W, Klemperer W G. Metal oxide chemistry in solution: the early transition metal polyoxoanions[J]. Science, 1985, 228: 533–541.
    [10] Favette S, Hasenknopf B, Vaissermann J, et al. Assembly of a polyoxometalate into an anisotropic gel [J]. Chem Commun, 2003, 2664–2665.
    [11] Kortz U, Marquer C, Thouvenot R, et al. Polyoxomolybdates functionalized with phosphonocarboxylates[J]. Inorg Chem, 2003, 42: 1158–1162.
    [12] Kortz U, Savelieff M G, Ghali F Y A, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV functionalized by amino acids[J]. Angew Chem Int Ed, 2002, 41: 4070–4073.
    [13] Xu L, Lu M, Xu B B, et al. Towards main-chain-polyoxometalate-containing hybrid polymers: a highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates[J]. Angew Chem Int Ed, 2002, 41: 4129–4132.
    [14] Rickert P G, Antonio M R, Firestone M A, et al. Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic?inorganic hybrid materials[J]. J Phys Chem B, 2007, 111: 4685–4692.
    [15] Sazani G, Dickman M H, Pope M T. Organotin derivatives ofα-[XIIIW9O33]9- (X=As, Sb) heteropolytungstates. solution- and solid-State characterization of [{(C6H5Sn)2O}2H(α-AsW9O33)2]9- and [(C6H5Sn)3Na3(α-SbW9O33)2]6-[J]. Inorg Chem, 2000, 39: 939-943.
    [16] Hayashi Y, Muller F, Lin Y, et al. 2CH3CN (n-Bu4N)2[{Ir(1,5-COD)}6W4O 16]·2CH3CN: A hybrid inorganic?organometallic, flexible cavity host, acetonitrile?guest complex composed of a [W4O4]n+ tetratungstate cube and six polyoxoanion-supported (1,5-COD)Ir+ organometallic groups[J]. J Am Chem Soc, 1997, 119: 11401–11407.
    [17] Weiner H, Aiken J D, Finke R G. Polyoxometalate catalyst precursors. improved synthesis, H+-titration procedure, and evidence for 31P NMR as a highly sensitive support-site indicator for the prototype polyoxoanion?organometallic-support system [(n-C4H9)4N]9P2W15Nb3O62[J]. Inorg Chem, 1996, 35: 7905–7913.
    [18] An H Y, Wang E B, Li Y G, et al. A functionalized polyoxometalate by hexanuclear copper–amino acid coordination complexes[J]. Inorg Chem Commun, 2007, 10: 299–302.
    [19] Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives of polyoxometalates[J]. Chem Rev, 1998, 98: 77–112.
    [20] An H Y, Wang E B, Xiao D R, Li Y G, et.al. Chiral 3D architectures with helical chamiels constructed from polyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem, 2006, 118: 918–922.
    [21] Liu C M, Luo J L, Zhang D Q. Spin Glass Behaviour in a 1D mixed molybdenum-vanadium heteropolyoxometalate-bridged coordination polymer[J]. Eur J Inorg Chem, 2004, 4774–4779.
    [22] Liu C M, Zhang D Q, Xiong M, et al. A novel two-dimensional mixed molybdenum-vanadium polyoxometalate with two types of cobalt(II) complex fragments as bridges[J]. Chem Commun, 2002, 1416–1417.
    [23] Niu J Y, Wei M L, Wang J P, et al. 1D-polyoxometalate-based composite compounds design, synthesis, crystal structures,and properties of [{Ln(NMP)6}(PMo12O40)]n (Ln=La, Ce, Pr; NMP=N-methyl-2-pyrrolidone)[J]. Eur J Inorg Chem, 2004, 160–170.
    [24] Tan H Q, Li Y G, Zhang Z M, et al. Chiral polyoxometalate-induced enantiomerically 3D architectures: a new route for synthesis of high-dimensional chira compounds[J]. J Am Chem Soc, 2007, 129: 10066–10067.
    [25] Alizadeh M H, Holman K T, Mirzaei M, et al. Triprolinium 12-phosphomolybdate: synthesis, crystal structure and properties of [C5H10NO2]3[PMo12O40]·4.5H2O [J]. Polyhedron, 2006, 25: 1567–1570.
    [26] Cao R G, Liu S X, Xie L H, et al. Organic?inorganic hybrids constructed of anderson-type polyoxoanions and oxalato-bridged dinuclear copper complexes[J]. Inorg Chem, 2007,. 46: 3541–3547.
    [27] Reinoso S, Vitoria P, Gutiérrez-Zorrilla J M, et al. Coexistence of five different copper(II)?phenanthroline species in the crystal packing of inorganic?metalorganic hybrids based on Keggin polyoxometalates and copper(II)?phenanthroline?oxalate complexes[J]. Inorg Chem, 2007, 46: 4010–4021.
    [28] (a) Wang J P, Du X D, Niu J Y. A novel 1D organic–inorganic hybrid based on alternating heteropolyanions [GeMo12O40]4? and isopolyanions [Mo6O22]8?[J]. J Solid State Chem, 2006, 179: 3260-3264. (b) Su Z H, Zhou B B, Zhao Z F, et al. A novel 1D chain compound constructed fromcopper-complex fragments-substituted dilacunaryβ-octamolybdate units and saturatedβ-octamolybdate clusters[J]. Inorg Chem Commun, 2008, 11: 334-337.
    [29] Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts. I. investigation of methods of preparation and characterization[J]. Inorg Chem, 1968, 7: 437–441.
    [30] Wu H. J Biol Chem, 1920, 43: 189.
    [31] (a) Sheldrick G M. SHELXL-97, program for crystal structure refinement. University of G?ttingen, Germany, 1997. (b) Sheldrick G M. SHELXL-97, program for crystal struture solution, University of G?ttingen, Germany, 1997.
    [32] Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr, Sect B: Struct Sci, 1985, 41: 244–247.
    [33] Grim S O, Matienzo L J. X-ray photoelectron spectroscopy of inorganic and organometallic compounds of molybdenum[J]. Inorg Chem, 1975, 14: 1014–1018.
    [34] Nefedov V I, Firsov M N, Shplygin I S. Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data[J]. J Electron Spectrosc Relat Phenom, 1982, 26: 65–78.
    [35] Xiao D R, Li Y G, Wang E B, et al. Two novel vanadium tellurites covalently bonded with metal?organic complex moieties: M(phen)V2TeO8 (M = Cu, Ni)[J]. Inorg Chem, 2003, 42: 7652–7657.
    [36] Wu Y, Zheng J W, Xu L, et al. Photo-induced electron transfer and electrocatalytic properties of novel charge-transfer compound (TMB)3HPMo12O40[J]. J Electroanal Chem, 2006, 589: 232–236.
    [37] Han Z G, Zhao Y L, Peng J, et al. Inorganic–organic hybrid polyoxometalate: Preparation, characterization and electrochemistry properties[J]. J Solid State Chem, 2005, 178: 1386–1394.
    [38] Unoura K, Tanaka N. Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate[J]. Inorg Chem, 1983, 22: 2963–2964.
    [39] Wang P, Wang X P, Jing X Y, et al. Sol–gel-derived, polishable, 1:12-phosphomolybdic acid-modified ceramic-carbon electrode and its electrocatalytic oxidation of ascorbic acid[J]. (2000). Anal Chim Acta, 424: 51–56.
    [40] Wang X L, Zhang H, Wang E B, et al. Phosphomolybdate-polypyrrole composite bulk-modified carbon paste electrode for a hydrogen peroxide amperometric sensor[J]. Mater Lett, 2004, 58: 1661–1664.
    [41] Sadakane M, Stechhan E. Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem Rev, 1998, 98: 219–238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700