用户名: 密码: 验证码:
神经肽Y对巨噬细胞肿瘤坏死因子α产生的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经肽Y(Neuropeptide Y NPY)是一种含有36个氨基酸的多肽,广泛分布于中枢和外周神经系统,参与摄食行为、心血管活动、精神活动和痛觉调制等生理功能的调节。除了上述功能以外,NPY还参与了哺乳动物免疫功能的调节,在一些自身免疫性疾病的发生发展中起到了关键的作用。NPY通过六种不同的G蛋白偶联受体亚型来发挥作用,包括Y1、Y2、Y3、Y4、Y5和Y6受体。研究表明,多种免疫细胞,包括T细胞、B细胞、单核巨噬细胞等能够表达NPY及其受体,并且在炎性刺激如脂多糖(Lipopolysaccharide,LPS)的刺激下,巨噬细胞能够分泌NPY。近年来的研究发现,与正常巨噬细胞相比,Y1受体敲除的巨噬细胞给予LPS刺激后,分泌肿瘤坏死因子(Tumer necrosis factorα,TNF-α)的水平下降。正常巨噬细胞应用Y1受体拮抗剂后给予LPS刺激后,TNF-α的分泌水平也出现下降。表明NPY可以通过Y1受体调节巨噬细胞TNF-α的产生。但其分子机制不清。
     本课题以小鼠巨噬细胞株RAW264.7细胞为实验模型,研究NPY对巨噬细胞在LPS刺激下产生促炎细胞因子TNF-α的影响,并且初步探讨其可能的机制。
     本实验通过半定量RT-PCR检测了RAW264.7细胞株的Y1受体的mRNA水平;酶联免疫吸附实验检测细胞培养上清中的TNF-α含量;Western blot检测NPY对RAW264.7细胞内相关信号分子的激活程度。
     研究工作取得的主要结果如下:
     1.RAW264.7细胞的Y1受体的mRNA的表达:通过RT-PCR检测了RAW264.7细胞株的Y1受体的mRNA水平,发现RAW264.7细胞株有Y1受体mRNA表达。
     2.NPY对RAW264.7细胞LPS引起的TNF-α产生的影响:10~(-8)M NPY和100ng/mlLPS共同处理RAW264.7细胞0.5h,4h后收集上清检测TNF-α,发现NPY能够显著提高LPS引起的TNF-α产生;预先加入Y1受体的抑制剂PD160170能够阻断NPY的效应,说明NPY能够通过Y1受体提高RAW264.7细胞在LPS刺激下TNF-α的产生。
     3.NPY对RAW264.7细胞LPS引起的MAPKs激活的影响:10~(-8)M NPY和100ng/mlLPS共同处理RAW264.7细胞0-0.5h,裂解细胞,收集蛋白进行Western blot分析,发现NPY能够增强LPS引起的ERK的激活,而对JNK和p38的激活没有影响,说明NPY可能通过增强LPS引起的ERK的激活来提高TNF-α的产生。
     4.NPY对RAW264.7细胞PI3K和PKC激活的影响:10(-8)M NPY处理RAW264.7细胞0-10min,发现NPY能够显著提高PI3K p85的磷酸化,不能激活PKC,Y1受体拮抗剂可以阻断此效应。推测NPY可能通过激活PI3K通路来增强ERK的激活和TNF-α的产生。
     5.NPY激活的PI3K通路对RAW264.7细胞LPS引起的TNF-α和ERK激活的作用:预先应用1μM的PI3K通路阻滞剂wortmannin孵育细胞30min后,加入10~(-8)M NPY和100ng/ml LPS共同处理RAW264.7细胞0-30min,发现NPY增强LPS引起的ERK的激活的效应没有被阻断,NPY提高RAW264.7细胞在LPS刺激下TNF-α的产生的效应也不能被wortmannin阻断。NPY快速激活的PI3K信号通路并不参与其对ERK的激活和TNF-α产生的正向调节作用,NPY/Y1可能通过其他信号分子来调控LPS引起的ERK激活,进而调节TNF-α的产生。
     总之,NPY通过Y1受体对RAW264.7细胞LPS引起的TNF-α产生存在正向调节作用,该作用可能是通过增强LPS引起的ERK激活实现的。
     以往研究发现,在不同的细胞中NPY能够通过激活PKC或是PI3K通路来激活ERK信号通路。本课题研究发现,NPY能够快速激活PI3K通路,但NPY调节LPS引起的ERK的激活与NPY引起的PI3K通路的激活并不相关,说明有可能存在别的分子参与此过程。我们前期的实验发现10~(-8)M的NPY能够快速激发Y1受体介导的内吞作用。有研究表明Y1受体在NPY的刺激下存在网格蛋白介导型内吞作用,而且快速内吞过程中伴随着β-arrestin 2的结合。β-arrestin 2作为连接分子能够促进Raf依赖的ERK激活,在今后的工作中,我们将研究Y1受体介导内吞中的β-arrestin 2或是NPY/Y1下游的别的信号分子是否参与调节LPS引起的ERK激活过程。
Background:Neuropeptide Y(NPY),a peptide that comprises 36 amino acids,is widely distributed in the central and peripheral nervous systems,and functions as a neuromodulator and neurohormone.It plays an important role in the regulation of food intake,memory retention,cardiovascular functions and anxiety.In addition,NPY also appears to be particular important in the pathogenesis of some autoimmune diseases. NPY exerts its pleiotropic functions through the activation of several G-protein coupled NPY receptors,including Y1,Y2,Y3,Y4,Y5 and Y6 receptors.NPY and Y1 receptor are expressed by many hemopoietic and immune cells such as T cells,B cells,monocytes or macrophages.Macrophages can secrect NPY under inflammatory stimulus like LPS. Recent studies indicated that Y1~(-/-) macrophages produced significantly less TNF-αthan Y1~(+/+) peritoneal macrophages in response to LPS;Y1R antagonists can inhibit TNF-αsecretion by normal LPS-activated peritoneal macrophages.These studies demonstrated that NPY could modulate macrophages TNF-αproduction through Y1 receptor,while the exact mechanism is still unknown.
     Objective:This study was to elucidate the role of NPY in macrophage proinflammatory cytokine TNF-αproduction and the possible underlying mechanisms.
     Methods:RT-PCR was used to characterize the mRNA expression of Y1 receptor in RAW264.7 macrophages.TNF-αin supernatants was evaluated by ELISA.Western blotting was used to detect the activity of signaling molecules.
     Results:NPY could promote LPS-indueed TNF-αexpression in RAW264.7 cells via Y1 receptor.RAW cells incubated with 10nM NPY showed no increased production of TNF-αversus control group;cells treated with 10nM NPY and 100ng/ml LPS showed significantly up-regulated TNF-αproduction compared with the LPS group.Addition of the Y1 receptor specific inhibitor PD 160170 before LPS and NPY prevented the up-regulation of TNF production.Stimulation of 100ng/ml LPS rapidly activated ERK1/2, JNK and p38.Addition of 10nM NPY to the cell culture medium did not affect the activation of JNK and p38,but ERK1/2 activation was enhanced;addition of the Y1 receptor inhibitor PD 160170 blocked the increased ERK1/2 activation.PI3K p85 was activated in less than 10 min,while no PKC subtype phosphorylation observed in RAW cells treated with 10nM NPY.We incubated cells with wortmannin before the addition of LPS and NPY.Both ERK activity and TNF-αproduction were detected.Incubating cells with 1μM wortmannin for 30min did not block the effect of NPY on the LPS-induced activation of ERK1/2.There was no significant difference in TNF production between the wortmannin+NPY+LPS group and the NPY+LPS group.
     Conclusion:Our findings indicate NPY can play a proinflammatory role in macrophages TNF-αproduction by promoting LPS-induced ERK activation via Y1 receptor.NPY could promote the ERK activation by LPS.We infer that the elevated ERK activity may partly account for the promotion of TNF production by NPY.
引文
1 Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A, 1982,79:5485-9
    2 Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999,20: 68-100
    3 Renshaw D, Hinson JP. Neuropeptide Y and the adrenal gland: a review. Peptides 2001; 22: 429-38
    4 Kask A, Harro J, von Horsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002,26: 259-83
    5 Sainsbury A, Schwarzer C, Couzens M, Fetissov S, Furtinger S, Jenkins A et al. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci U S A 2002,99: 8938-43
    6 Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T, Nakata A et al. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 1998, 5:9-15
    7 Bedoui S, Miyake S, Lin Y, Miyamoto K, Oki S, Kawamura N et al. Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY1 receptor-specific inhibition of autoreactive Th1 responses in vivo. J Immunol 2003,171: 3451-8
    8 Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system;A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med, 2005,202: 1527-38
    9 Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci US A, 1982,79:5485-9
    10 Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev, 1998, 50: 143-50
    11 Zukowska-Grojec Z, Konarska M, McCarty R. Differential plasma catecholamine and neuropeptide Y responses to acute stress in rats. Life Sci, 1988,42:1615-24
    12 Li L, Jonsson-Rylander AC, Abe K, Zukowska Z. Chronic stress induces rapid occlusion of angioplasty-injured rat carotid artery by activating neuropeptide Y and its Y1 receptors. Arterioscler Thromb Vasc Biol, 2005, 25: 2075-80
    13 Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med, 2007,13:803-11
    14 Straub RH, Schaller T, Miller LE, von Horsten S, Jessop DS, Falk W et al. Neuropeptide Y cotransmission with norepinephrine in the sympathetic nerve-macrophage interplay. J Neurochem, 2000, 75: 2464-71
    15 Castagne V, Corder R, Gaillard R, Mormede P. Stress-induced changes of circulating neuropeptide Y in the rat: comparison with catecholamines. Regul Pept, 1987,19: 55-63
    16 Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev, 2003,16:637-46
    17 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124: 783-801
    18 Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol, 2006, 117: 979-87; quiz 988
    19 O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007, 7: 353-64
    20 Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol, 2003, 21: 335-76
    21 Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol, 2004,4: 499-511
    22 Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinfiammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol, 2002,169:6408-16
    23 Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tp12/ERK-dependent pathway. Cell, 2000, 103:1071-83
    24 Geppert TD, Whitehurst CE, Thompson P, Beutler B. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med, 1994, 1: 93-103
    25 van der Bruggen T, Nijenhuis S, van Raaij E, Verhoef J, van Asbeck BS. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERKl-ERK2 pathway. Infect Immun, 1999, 67: 3824-9
    26 Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K et al. Tp12/cot signals activate ERK, JNK, and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem, 2005, 280: 23748-57
    27 Banerjee A, Gugasyan R, McMahon M, Gerondakis S. Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci U S A, 2006, 103: 3274-9
    28 Robinson MJ, Beinke S, Kouroumalis A, Tsichlis PN, Ley SC. Phosphorylation of TPL-2 on serine 400 is essential for lipopolysaccharide activation of extracellular signal-regulated kinase in macrophages. Mol Cell Biol, 2007,27: 7355-64
    29 Hansel DE, Eipper BA, Ronnett GV. Neuropeptide Y functions as a neuroproliferative factor. Nature, 2001,410: 940-4
    30 Goldberg Y, Taimor G, Piper HM, Schluter KD. Intracellular signaling leads to the hypertrophic effect of neuropeptide Y. Am J Physiol, 1998, 275: C1207-15
    31 Nie M, Selbie LA. Neuropeptide Y Y1 and Y2 receptor-mediated stimulation of mitogen-activated protein kinase activity. Regul Pept, 1998,75-76: 207-13
    32 Keffel S, Schmidt M, Bischoff A, Michel MC. Neuropeptide-Y stimulation of extracellular signal-regulated kinases in human erythroleukemia cells. J Pharmacol Exp Ther, 1999,291: 1172-8
    33 Mannon PJ, Mele JM. Peptide YY Y1 receptor activates mitogen-activated protein kinase and proliferation in gut epithelial cells via the epidermal growth factor receptor. Biochem J, 2000, 350 Pt 3: 655-61
    34 Mullins DE, Zhang X, Hawes BE. Activation of extracellular signal regulated protein kinase by neuropeptide Y and pancreatic polypeptide in CHO cells expressing the NPY Y(1), Y(2), Y(4) and Y(5) receptor subtypes. Regul Pept, 2002,105: 65-73
    35 Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J, 1990,4:2881-9
    36 Palczewski K, Benovic JL. G-protein-coupled receptor kinases. Trends Biochem Sci, 1991,16: 387-91
    37 Lefkowitz RJ. G protein-coupled receptors. Ⅲ. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem, 1998, 273: 18677-80
    38 Marsh M, McMahon HT. The structural era of endocytosis. Science, 1999, 285: 215-20
    39 Parker SL, Kane JK, Parker MS, Berglund MM, Lundell IA, Li MD. Cloned neuropeptide Y (NPY) Y1 and pancreatic polypeptide Y4 receptors expressed in Chinese hamster ovary cells show considerable agonist-driven internalization, in contrast to the NPY Y2 receptor. Eur J Biochem, 2001, 268: 877-86
    40 Parker SL, Parker MS, Lundell I, Balasubramaniam A, Buschauer A, Kane JK et al. Agonist internalization by cloned Y1 neuropeptide Y (NPY) receptor in Chinese hamster ovary cells shows strong preference for NPY, endosome-linked entry and fast receptor recycling. Regul Pept, 2002, 107: 49-62
    41 Pheng LH, Dumont Y, Fournier A, Chabot JG, Beaudet A, Quirion R. Agonist- and antagonist-induced sequestration/intemalization of neuropeptide Y Y1 receptors in HEK293 cells. Br J Pharmacol, 2003,139: 695-704
    42 Gicquiaux H, Lecat S, Gaire M, Dieterlen A, Mely Y, Takeda K et al. Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor. J Biol Chem, 2002, 277: 6645-55
    43 Berglund MM, Schober DA, Statnick MA, McDonald PH, Gehlert DR. The use of bioluminescence resonance energy transfer 2 to study neuropeptide Y receptor agonist-induced beta-arrestin 2 interaction. J Pharmacol Exp Ther, 2003,306:147-56
    44 DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling. Annu Rev Physiol, 2007, 69: 483-510
    45 Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A, 2001,98:2449-54
    46 Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH et al. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem, 2003,278: 6258-67
    1 Tatemoto K.Neuropeptide Y:complete amino acid sequence of the brain peptide.Proc Natl Acad Sci U S A 1982;79:5485-9.
    2 Kalra SP,Dube MG,Pu S,Xu B,Horvath TL,Kalra PS.Interacting appetite-regulating pathways in the hypothalamic regulation of body weight.Endocr Rev 1999;20:68-100.
    3 Renshaw D,Hinson JP.Neuropeptide Y and the adrenal gland:a review.Peptides 2001;22:429-38.
    4 Kask A,Harro J,von Horsten S,Redrobe JP,Dumont Y,Quirion R.The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y.Neurosci Biobehav Rev 2002;26:259-83.
    5 Sainsbury A,Schwarzer C,Couzens M,Fetissov S,Furtinger S,Jenkins A et al.Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice.Proc Natl Acad Sci U S A 2002;99:8938-43.
    6 Michel MC,Beck-Sickinger A,Cox H,Doods HN,Herzog H,Larhammar D et al.ⅩⅥ.International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y,peptide YY,and pancreatic polypeptide receptors.Pharmacol Rev 1998;50:143-50.
    7 Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T, Nakata A et al. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 1998; 5:9-15.
    8 Dimitrijevic M, Stanojevic S, Vujic V, Kovacevic-Jovanovic V, Beck-Sickinger A, Demuth H et al. Effect of neuropeptide Y on inflammatory paw edema in the rat: involvement of peripheral NPY Y1 and Y5 receptors and interaction with dipeptidyl-peptidase IV (CD26). J Neuroimmunol 2002; 129: 35-42.
    9 von Horsten S, Nave H, Ballof J, Helfritz F, Meyer D, Schmidt RE et al. Centrally applied NPY mimics immunoactivation induced by non-analgesic doses of met-enkephalin. Neuroreport 1998; 9: 3881-5.
    10 Straub RH, Schaller T, Miller LE, von Horsten S, Jessop DS, Falk W et al. Neuropeptide Y cotransmission with norepinephrine in the sympathetic nerve-macrophage interplay. J Neurochem 2000;75:2464-71.
    11 Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system;A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 2005; 202: 1527-38.
    12 Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T, Nakata A et al. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 1998; 5:9-15.
    13 Bedoui S, Miyake S, Lin Y, Miyamoto K, Oki S, Kawamura N et al. Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY1 receptor-specific inhibition of autoreactive Th1 responses in vivo. J Immunol 2003; 171: 3451-8.
    14 De la Fuente M, Bernaez I, Del Rio M, Hernanz A. Stimulation of murine peritoneal macrophage functions by neuropeptide Y and peptide YY. Involvement of protein kinase C. Immunology 1993; 80: 259-65.
    15 Ahmed AA, Wahbi AH, Nordlin K. Neuropeptides modulate a murine monocyte/macrophage cell line capacity for phagocytosis and killing of Leishmania major parasites. Immunopharmacol Immunotoxicol 2001; 23: 397-409.
    16 De la Fuente M, Medina S, Del Rio M, Ferrandez MD, Hernanz A. Effect of aging on the modulation of macrophage functions by neuropeptides. Life Sci 2000; 67:2125-35.
    17 Westermann J, Pabst R. Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system?. Immunol Today 1990; 11:406-10.
    18 von Horsten S, Ballof J, Helfritz F, Nave H, Meyer D, Schmidt RE et al. Modulation of innate immune functions by intracerebroventricularly applied neuropeptide Y: dose and time dependent effects. Life Sci 1998; 63:909-22.
    19 Bedoui S, Kuhlmann S, Nave H, Drube J, Pabst R, von Horsten S. Differential effects of neuropeptide Y (NPY) on leukocyte subsets in the blood: mobilization of B-1-like B-lytnphocytes and activated monocytes. J Neuroimmunol 2001; 117:125-32.
    20 Grau V, Scriba A, Stehling O, Steiniger B. Monocytes in the rat. Immunobiology 2000; 202: 94-103.
    21 Levite M, Cahalon L, Hershkoviz R, Steinman L, Lider O. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin. J Immunol 1998; 160: 993-1000.
    22 Sung CP, Arleth AJ, Feuerstein GZ. Neuropeptide Y upregulates the adhesiveness of human endothelial cells for leukocytes. Circ Res 1991; 68: 314-8.
    23 Straub RH, Mayer M, Kreutz M, Leeb S, Scholmerich J, Falk W. Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes. J Leukoc Biol 2000; 67: 553-8.
    24 Dureus P, Louis D, Grant AV, Bilfinger TV, Stefano GB. Neuropeptide Y inhibits human and invertebrate immunocyte chemotaxis, chemokinesis, and spontaneous activation. Cell Mol Neurobiol 1993; 13: 541-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700