用户名: 密码: 验证码:
锰基化合物的形貌调控及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的锂离子电池正极材料中,锰系化合物特别是LiMn2O4具有资源丰富、价格低廉、环境友好等优点,因而在锂离子电池,尤其是在电动汽车(EV)及混合动力汽车(HEV)电源应用方面极具竞争潜力。然而,由于自身结构的原因,容量衰减问题一直制约了LiMn2O4的大规模应用。因此,开发和设计高效、稳定的微结构来提高LiMn2O4的电化学性能已经成了该领域的关键性课题。为此,本论文开展了LiMn2O4和β-MnO2的形貌调控及其电化学性能研究,获得的主要研究内容和结论归纳如下:
     1.以水热合成的β-MnO2单晶纳米棒为前驱物,利用自模板反应法制备了LiMn2O4单晶纳米棒。发现在由四方相β-MnO2向立方相LiMn2O4转变过程中,前驱物β-MnO2的棒状形貌、单晶特性甚至生长取向均能在终产物中被保留下来。与以商品β-MnO2为前驱物合成的不规则的大尺寸LiMn2O4相比,LiMn2O4单晶纳米棒表现出更优异的电化学性能。即在室温下,0.5C的首次放电比容量为125mAhg-17C倍率下具有约95mAh g-1的放电容量,且以3C的倍率循环500周后仍能保持约75%的容量。其优异的性能应归因于材料的单晶特性和棒状形貌。即单晶内部结构的高度有序性使离子的扩散障碍较小,并具有良好的电子传导能力;而其纳米棒形貌为离子提供了较短的扩散路径便于Li+的嵌入和脱出,且其较高的比表面积便于电解液充分渗透提高了材料的利用效率。上述研究结果为一维结构的电极材料在锂离子电池中的应用提供了一些新的思路。
     2.在成功合成上述LiMn2O4单晶纳米棒的基础上,制备了掺杂Al的单晶LiMn2O4纳米棒。发现其尺寸大小与未掺杂的单晶LiMn2O4纳米棒基本类似,且随着Al掺杂量的增加,虽然其放电容量逐渐减小,但循环性能逐渐提高。当Al的掺杂量x=0.1时的产物LiAlxMn2-xO4的材料容量保持率较好,并表现出较好的高温大倍率循环性能。即在50℃高温下,以3C倍率循环500周后仍能保持70%的容量,而未进行掺杂的LiMn2O4纳米棒在同等条件下仅能保持33%。上述掺杂Al的LiMn2O4具备较好的高温循环性能,有望成为一种极有前景的动力型锂离子电池正极材料,推动锂离子电池的发展。
     3.以混合溶剂热法制备的γ-MnO(OH)纳米棒为前驱物合成了LiMn2O4纳米棒,对比研究了不同煅烧温度所得产物的电化学性能。结果表明,600℃煅烧时合成所得产物不仅保持了γ-MnO(OH)的棒状形貌,而且表现出最佳的电化学性能。即在室温下,0.5C的条件下首次放电比容量达125.6mAh g-1,以3C倍率循环100周后容量保持率达95.6%。上述以γ-MnO(OH)纳米棒为模板合成的LiMn2O4纳米棒正极材料具有合成方法简便易行、原料价廉易得、无毒无害以及优良的电化学活性,对高性能锂离子电池的研发具有重要的借鉴意义。
     4.通过调整反应原料中浓盐酸的用量,采用水热法合成了中空双锥状β-MnO2单晶。研究表明,中空双锥状β-MnO2单晶的形成经历了自组装、溶解-重结晶、亚稳面的腐蚀三个主要过程。与商品β-MnO2相比,合成的中空双锥状β-MnO2单晶表现出了更优异的电化学活性。即在1.5~3.8V,10mAg-1的条件下,首次放电比容量达269mAh g-1,相当于每单元β-MnO2可嵌入0.87个Li+,而商品β-MnO2仅能嵌入0.2个Li+。该中空双锥状β-MnO2单晶具有合成方法简便易行、原料价廉易得、无毒无害以及优良的电化学活性,预计将在锂电池领域的应用中发挥重要的作用。
Among various cathode materials for lithium ion battery, Mn-based compounds (especially for spinel LiMn2O4) are considered as one of the most promising candidates due to its advantages such as low-cost, environmental friendliness and high abundance. However, the application of LiMn2O4is confined by the capacity decay and cycling instability caused by manganese dissolution, oxygen vacancy and Jahn-Teller effect. Therefore, it's necessary to explore an efficient system with stable structure to improve the electrochemical property. In present work, the morphology-controlled synthesis and electrochemical performance of LiMn2O4and β-MnO2were studied. The main contents and conclusions are as follows:
     1. Single-crystalline LiMn2O4nanorods with a diameter of-100nm were synthesized via a template-engaged reaction using tetragonal β-MnO2nanorods as starting material. The investigations on the structures and morphologies of both the precursor and the final product reveal that a minimal structure reconstruction can be responsible for the chemical transformation from tetragonal β-MnO2nanorods to cubic LiMn2O4nanorods. The obtained LiMn2O4nanorods as cathode material for Li-ion battery exhibits superior high-rate capability and good cycling stability in a potential range of3.5-4.3V vs. Li+/Li, which can deliver an initial discharge capacity of125mAh g-1(>84%of the theoretical capacity of LiMn2O4) at a current rate of0.5C, and about75%of its initial capacity can be remained after500charge-discharge cycles at a current rate of3C. Importantly, the rod-like nanostructure and single-crystalline nature are also well preserved after prolonged the charge/discharge cycling time at a relatively high current rate, indicating good structural stability of the single-crystalline nanorods during the lithium intercalation/deintercalation processes, and such high-rate capacity and cycling performance can be ascribed to the favorable morphology and the high crystallinity of the obtained LiMn2O4nanorods.
     2. Al-doped LiMn2O4nanorods were synthesized base on the above route, which almost have the same size with the above LiMn2O4nanorods. With the increasing doped amount of Al, the initial discharge capacity of the products decrease, but the cycling performance is gradually improved. It is found that the LiAl0.1Mn1.9O4nanorods has the best capacity retention through the comparison of the rate capability at0.5~5C rate for10cycles successively. The LiAl0.1Mn1.9O4nanorods also have excellent cycling performance at an elevated temperature, which still retain70%of the initial capacity at3C after500cycle at50℃, while the LiMn2O4nanorods has only33%of the initial capacity at the same condition. The Al-doped LiMn2O4nanorods with excellent cycle performance at high temperature will be promising cathode materials for high-power lithium ion batteries to promote the development of lithium ion battery.
     3. LiMn2O4nanorods were synthesized using y-MnO(OH) nanorods as self-template, which was prepared via solvothermal reaction. The electrochemical performance of the products obtained at different calcination temperature was studied. It is found that the LiMn2O4nanorods obtained at600℃has the best electrochemical performance, which delivers the initial capacity of125.6mAh g-1and the capacity retention of95.6%after100cycles at3C. Considering that the low cost of raw materials, simple operation and the low calcination temperature, it is a promising route to synthesize one-dimensional LiMn2O4nanorods with good electrochemical performance using γ-MnO(OH) as precursor.
     4. Single-crystal β-MnO2hollow bipyramids (HB-β-MnO2) were synthesized via a template-free hydrothermal method. The as-synthesized hollow bipyramids with100-300nm pores along the axis direction of β-MnO2bipyramids are formed through self-assembly and phase transformation processes from α-MnO2nanowires to β-MnO2bipyramids followed by chemical etching of its metastable crystal faces. Compared to the commercial bulk β-MnO2(c-β-MnO2), the as-synthesized HB-β-MnO2exhibits more excellent electrochemical performance with an initial discharge capacity of269mAh g-1, which means up to0.87Li+intercalation per β-MnO2unit, while only0.2Li+intercalation per β-MnO2unit for the commercial c-β-MnO2, The excellent electrochemical activity of the as-synthesized HB-β-MnO2can be attributed to its hollow structure and single crystal nature. The former can provide higher contact area with the electrolyte and buffer ability against volume change during the charge/discharge processes, while the latter contributes to good electronic conductivity and structural integrity stability. Considering the low cost, simple synthesis and the excellent electrochemical activity of the HB-β-MnO2, it will play an important role in the field of lithium battery.
引文
[1]B. Dunn, H. Kamath, J. M. Tarascon. Electrical Energy Storage for the Grid:A Battery of Choices [J]. Science,2011,334 (6058),928-935.
    [2]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough. LixCoO2 (0    [3]G. G. Amatucci, J. M. Tarascon.L. C. Klein. CoO2, The End Member of the LixCoO2 Solid Solution [J]. J. Electrochem. Soc.1996,143 (3),1114-1123.
    [4]K. Ozawa. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes:the LiCoO2/C system [J]. Solid State Ionics,1994,69 (3-4),212-221.
    [5]T. Nagaura, K. Tozawa, Lithium ion rechargeable battery [J]. Prog. Batteries & Solar Cells.1990,9, 209-217.
    [6]L. W. Bedseorth, M. R. Taylor. Learing from California's Zero Emission Vihicle Program [J]. Canifornia Economic Policy,2007,3 (4),1-20.
    [7]T. Iwahori, I. Mitsuishi, S. Shiraga, N. Nakajima, H. Momose, Y. Ozaki, S. Taniguchi, H. Awata, T. Ono, K. Takeuchi. Development of lithium ion and lithium polymer batteries for electric vehicle and home-use load leveling system application [J]. Electrochim. Acta,2000,45 (8-9),1509-1512.
    [8]雷永泉,新能源材料[M].天津大学出版社,天津.2000.
    [9]J. B. Goodenough, Y. Kim. Challenges for Rechargeable Li Batteries [J]. Chem. Mater.,2009,22 (3), 587-603.
    [10]R. M. Dell. Batteries:fifty years of materials development [J]. Solid State Ionics,2000,134 (1-2), 139-158.
    [11]M. Wakihara. Recent developments in lithium ion batteries [J]. Mater. SCi. Eng. R.,2001,33 (4), 109-134.
    [12]郭炳坤,徐徽,王先友,肖立新,锂离子电池[M].中南大学出版社,长沙,2002.
    [13]黄可龙,王兆翔,刘素琴,锂离子电池原理与技术[M].化学工业出版社,北京,2007.
    [14]A. Yoshino. The Birth of the Lithium-Ion Battery [J]. Angew. Chem., Int. Ed.,2012,51 (24). 5798-5800.
    [15]J. Goodenough. Rechargeable batteries:challenges old and new [J]. J. Solid State Electrochem.,2012, 16(6),2019-2029.
    [16]A. Ritchie, W. Howard. Recent developments and likely advances in lithium-ion batteries [J]. J. Power Sources,2006,162 (2),809-812.
    [17]M. M. Thackeray, C. Wolverton, E. D. Isaacs. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Ener. Environ. Sci.,2012,5 (7),7854-7863.
    [18]B. Scrosati. Recent advances in lithium ion battery materials [J]. Electrochim. Acta,2000,45 (15-16), 2461-2466.
    [19]M. S. Whittingham. Chemistry of intercalation compounds:metal guests in chalcogenide hosts [J]. Prog. Solid State Chem.,1978,12 (1),41-99.
    [20]K. T. Lee. L. F. Nazar. Positive Electrode Materials for Li-Ion and Li-Batteries [J]. Chem. Mater., 2010,22(3),691-714.
    [21]G. G. Amatucci, J. M. Tarascon, L. C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J]. Solid State Ionics,1996,83 (1-2),167-173.
    [22]S. S. Zhang, K. Xu, T. R. Jow. Charge and discharge characteristics of a commercial LiCo02-based 18650 Li-ion battery [J]. J. Power Sources,2006,160 (2),1403-1409.
    [23]J. Yu, Z. Han, X. Hu, H. Zhan, Y. Zhou, X. Liu. Solid-state synthesis of LiCoO2/LiCo0.99Ti0.01O2 composite as cathode material for lithium ion batteries [J]. J. Power Sources,2013,225 (0),34-39.
    [24]P. He, H. Wang, L. Qi, T. Osaka. Synthetic optimization of spherical LiCoO2 and precursor via uniform-phase precipitation [J]. J. Power Sources,2006,158 (1),529-534.
    [25]H. Porthault, F. Le Cras, S. Franger. Synthesis of LiCoO2 thin films by sol/gel process [J]. J. Power Sources,2010,195 (19),6262-6267.
    [26]H. Porthault, F. Le Cras, R. Baddour-Hadjean, S. Franger. Electrochemical Synthesis under Hydrothermal Conditions:A Promising One-Step Synthesis Route for LiCoO2 Thin Films for Microbatteries Applications[A].219th ECS Meeting,2011; p1518.
    [27]Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. Nishio-Hamane, K. Oh-ishi, T. Kudo, H. Zhou. Electrospinning Synthesis of Wire-Structured LiCoO2 for Electrode Materials of High-Power Li-Ion Batteries [J]. J. Phys. Chem. C.,2012,116(19),10774-10780.
    [28]F. Jiao, K. M. Shaju, P. G. Bruce. Synthesis of Nanowire and Mesoporous Low-Temperature LiCoO2 by a Post-Templating Reaction [J]. Angew. Chem., Int. Ed.,2005,44 (40),6550-6553.
    [29]L. Daheron, R. Dedryvere, H. Martinez, D. Flahaut, M. Menetrier, C. Delmas, D. Gonbeau. Possible Explanation for the Efficiency of Al-Based Coatings on LiCoO2:Surface Properties of LiCO1-xAlxO2 Solid Solution [J]. Chem. Mater.,2009,21 (23),5607-5616.
    [30]Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, S. H. Lee. Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition [J]. J. Electrochem. Soc.,2010,157 (1), A75-A81.
    [31]I. D. Scott, Y. S. Jung, A. S. Cavanagh, Y. Yan, A. C. Dillon, S. M. George, S. H. Lee. Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications [J]. Nano Lett.,2010,11 (2),414-418.
    [32]H.-M. Cheng, F.-M. Wang, J. P. Chu, R. Santhanam, J. Rick.S, C. Lo. Enhanced Cycleabity in Lithium Ion Batteries:Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes [J]. J. Phys. Chem. C.,2012,116(14),7629-7637.
    [33]M. Zou, M. Yoshio, S. Gopukumar, J.-i. Yamaki. Performance of LiM0.05Co0.95O2 Cathode Materials in Lithium Rechargeable Cells When Cycled up to 4.5 V [J]. Chem. Mater.,2005,17 (6),1284-1286.
    [34]Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, X. Huang. Electrochemical Evaluation and Structural Characterization of Commercial LiCoO2 Surfaces Modified with MgO for Lithium-Ion Batteries [J]. J. Electrochem. Soc.,2002,149 (4), A466-A471.
    [35]W. Chang, J.-W. Choi, J.-C. Im, J. K. Lee. Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries [J]. J. Power Sources,2010, 195(1),320-326.
    [36]S. Oh, J. K. Lee, D. Byun, W. I. Cho, B. Won Cho. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries [J]. J. Power Sources, 2004,132(1-2),249-255.
    [37]Y.-K. Sun, C. S. Yoon, S.-T. Myung, I. Belharouak, K. Amine. Role of AIF3 Coating on LiCoO2 Particles during Cycling to Cutoff Voltage above 4.5 V [J]. J. Electrochem. Soc.,2009,156 (12), A1005-A1010.
    [38]J. Cho. Dependence of AlPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates [J]. J. Power Sources,2004,126(1-2),186-189.
    [39]H. Kobayashi, H. Shigemura, M. Tabuchi, H. Sakaebe, K. Ado, H. Kageyama, A. Hirano, R. Kanno. M. Wakita, S. Morimoto.S. Nasu. Electrochemical Properties of Hydrothermally Obtained LiCo1-xFexO2 as a Positive Electrode Material for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc.,2000, 147(3),960-969.
    [40]S. Levasseur, M. Menetrier, C. Delmas. On the Dual Effect of Mg Doping in LiCoO2 and Li1+δCoO2: Structural, Electronic Properties, and 7Li MAS NMR Studies [J]. Chem. Mater.,2002,14 (8), 3584-3590.
    [41]C. Nithya, R. Thirunakaran, A. Sivashanmugam, S. Gopukumar. High-Performing LiMgxCuyCo1-x-yO2 Cathode Material for Lithium Rechargeable Batteries [J]. ACS Appl. Mater. Interfaces,2012,4 (8), 4040-4046.
    [42]S. Valanarasu, R. Chandramohan, J. Thirumalai, T. A. Vijayan. Structural and electrochemical investigation of Zn-doped LiCoO2 powders [J]. Ionics,2012,18 (1-2),39-45.
    [43]S. Laubach, S. Laubach, P. C. Schmidt, D. Ensling, S. Schmid, W. Jaegermann, Thi, K. Nikolowski, H. Ehrenberg. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation [J]. Phys. Chem. Chem. Phys.,2009,11 (17),3278-3289.
    [44]A. R. Armstrong. P. G. Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature,1996,381 (6582),499-500.
    [45]F. Capitaine, P. Gravereau.C. Delmas. A new variety of LiMnO2 with a layered structure [J]. Solid State Ionics,1996,89 (3-4),197-202.
    [46]X. Wu, R. Li, S. Chen, Z. He, M. Xu. Comparative study of Co, Cr and Al-doped LiMnO2 prepared by ion exchange [J]. Bull. Mater. Sci.,2008,31 (2),109-113.
    [47]H. Xu, J. Sun, L. Gao. Hydrothermal synthesis of LiMnO2 microcubes for lithium ion battery application [J]. Ionics,2013,19(1),63-69.
    [48]皮庆立.锂离子电池层状正极材料LiNixCo1-xO2的表面包覆改性[D].硕士学位论文,哈尔滨工程大学,哈尔滨,2009.
    [49]S. Dou. Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries [J]. J. Solid State Electrochem.,2013,17 (4),911-926.
    [50]A. M. Hashem, R. S. El-Taweel, H. M. Abuzeid, A. E. Abdel-Ghany, A. E. Eid, H. Groult, A. Mauger, C. M. Julien. Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 material prepared by a two-step synthesis via oxalate precursor [J]. Ionics,2012,18 (1-2),1-9.
    [51]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J]. J. Electrochem. Soc.,1997,144 (4),1188-1194.
    [52]S.-Y. Chung, J. T. Bloking, Y.-M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat Mater.,2002,1 (2),123-128.
    [53]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001,414 (6861),359-367.
    [54]Z. Chen, Y. Ren, Y. Qin, H. Wu, S. Ma, J. Ren, X. He, Y. K. Sun, K. Amine. Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction [J]. J. Mater. Chem.,2011,21 (15), 5604-5609.
    [55]Y. Lin, J. Wu, W. Chen. Enhanced electrochemical performance of LiFePO4/C prepared by sol-gel synthesis with dry ball-milling [J]. Ionics,2013,19 (2),227-234.
    [56]J. Qian, M. Zhou, Y. Cao, X. Ai, H. Yang. Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries [J]. J. Phys. Chem. C.,2010,114(8),3477-3482.
    [57]I. Bilecka, A. Hintennach, I. Djerdj, P. Novak, M. Niederberger. Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability [J]. J. Mater. Chem.,2009,19 (29), 5125-5128.
    [58]N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand. Electroactivity of natural and synthetic triphylite [J]. J. Power Sources.,2001,97-98 (0),503-507.
    [59]L. N. Wang, X. C. Zhan, Z. G. Zhang, K. L. Zhang. A soft chemistry synthesis routine for LiFePO4/C using a novel carbon source [J]. J. Alloys. Compd.,2008,456 (1-2),461-465.
    [60]Q. Zhang, T. Peng, D. Zhan, X. Hu, G. Zhu. Facile synthesis of carbon coated LiFePO4 nanocomposite with excellent electrochemical performance through in situ formed lithium stearate pyrolysis route [J]. Mater. Chem. Phys.,2013,138 (1),146-153.
    [61]I. Bilecka, A. Hintennach, M. D. Rossell, D. Xie, P. Novak, M. Niederberger. Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance [J]. J. Mater. Chem.,2011,21(16),5881-5890.
    [62]G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn. Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance [J]. Adv. Mater.,2010,22 (44),4944-4948.
    [63]C. Delacourt, P. Poizot, M. Morcrette, J. M. Tarascon, C. Masquelier. One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders [J]. Chem. Mater.,2003,16 (1),93-99.
    [64]B. Ellis, P. Subramanya Herle, Y. H. Rho, L. F. Nazar, R. Dunlap, L. K. Perry, D. H. Ryan. Nanostructured materials for lithium-ion batteries:Surface conductivity vs. bulk ion/electron transport [J]. Faraday Discuss.,2007,134 (0),119-141.
    [65]V. W. J. Verhoeven, I. M. de Schepper, G. Nachtegaal, A. P. M. Kentgens, E. M. Kelder, J. Schoonman, F. M. Mulder. Lithium Dynamics in LiMn2O4 Probed Directly by Two-Dimensional'Li NMR [J]. Phys. Rev. Lett.,2001,86 (19),4314-4317.
    [66]Y. Xia, M. Yoshio. An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds [J]. J. Electrochem. Soc.,1996,143 (3),825-833.
    [67]S. Bach, J. Farcy, J. P. Pereira-Ramos. An electrochemical investigation of Li intercalation in the sol-gel LiMn2O4 spinel oxide [J]. Solid State Ionics,1998,110 (3-4),193-198.
    [68]M. M. Thackeray. A Comment on the Structure of Thin-Film LiMn2O4 Electrodes [J]. J. Electrochem. Soc.,1997,144 (5), L100-L102.
    [69]M. M. Thackeray. Manganese oxides for lithium batteries [J]. Prog. Solid State Chem.,1997,25 (1), 1-71;
    [70]H. Yamaguchi, A. Yamada, H. Uwe. Jahn-Teller transition of LiMn2O4 studied by x-ray-absorption spectroscopy [J]. Phys. Rev. B.,1998,58 (1),8-11.
    [71]D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, C. B. Azzoni, M. C. Mozzati, A. Comin. Inhibition of Jahn-Teller cooperative distortion in LiMn2O4 spinel by transition metal ion doping [J]. Phys. Chem. Chem. Phys.,2001,3(11),2162-2166.
    [72]T. Takada, H. Hayakawa, H. Enoki, E. Akiba, H. Slegr, I. Davidson, J. Murray. Structure and electrochemical characterization of Li1-xMn2-xO4 spinels for rechargeable lithium batteries [J]. J. Power Sources,1999,81-82 (0),505-509.
    [73]Y. L. Ding, J. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao. Enhanced Elevated-Temperature Performance of Al-Doped Single-Crystalline LiMn2O4 Nanotubes as Cathodes for Lithium Ion Batteries [J]. J. Phys. Chem. C.,2011,115(19),9821-9825.
    [74]W. Xu, A. Yuan, L. Tian, Y. Wang. Improved high-rate cyclability of sol-gel derived Cr-doped spinel LiCry Mn2-yO4 in an aqueous electrolyte [J]. J. Appl. Electrochem.,2011,41 (4),453-460.
    [75]S. Mandal, R. M. Rojas, J. M. Amarilla, P. Calle, N. V. Kosova, V. F. Anufrienko, J. M. Rojo. High Temperature Co-doped LiMn2O4-Based Spinels. Structural, Electrical, and Electrochemical Characterization [J]. Chem. Mater.,2002,14 (4),1598-1605.
    [76]Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, G. Chen. Effects of Ni Doping on [MnO6] Octahedron in LiMn2O4 [J]. J. Phys. Chem. B.2004,108 (48),18547-18551.
    [77]N. Jayaprakash, N. Kalaiselvi, C. H. Doh, Gangulibabu, D. Bhuvaneswari. A new class of Sol-gel derived LiM1xM2yMn2-x-yO3.8F0.2 (M1=Cr, M2=V; x=y=0.2) cathodes for lithium batteries [J]. J. Appl. Electrochem.,2010,40 (12),2193-2202.
    [78]S. H. Park, K. S. Park, S. S. Moon, Y. K. Sun, K. S. Nahm. Synthesis and electrochemical characterization of Li1.02Mg0.1Mn1.9O3.99S0.01 using sol-gel method [J]. J. Power Sources,2001,92 (1-2),244-249.
    [79]Y. J. Kang, J. H. Kim, Y. K. Sun. Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries [J]. J. Power Sources,2005,146 (1-2),237-240.
    [80]H. Sahan, H. Goktepe, S. Patat. Synthesis and cycling performance of double metal doped LiMn2O4 cathode materials for rechargeable lithium ion batteries [J]. Inorg. Mater.,2008,44 (4),420-425.
    [81]G. A. Nazri, G. Pistoia, Lithium Batteries:Science and Technology [M]. Kluwer Academic Publisher, Boston/Dordrecht/New York/London,2004.
    [82]Y. Xia, Y. Zhou, M. Yoshio. Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells [J]. J. Electrochem. Soc.,1997,144 (8),2593-2600.
    [83]H. Huang, C. A. Vincent, P. G. Bruce. Capacity Loss of Lithium Manganese Oxide Spinel in LiPF6/ Ethylene Carbonate-Dimethyl Carbonate Electrolytes [J]. J. Electrochem. Soc.,1999,146 (2), 481-485.
    [84]J. Cho, T.-J. Kim, Y. J. Kim, B. Park. Complete blocking of Mn ion dissolution from a LiMn2O4 spinel intercalation compound by CoO2 coating [J]. Chem. Commun.,2001,0 (12),1074-1075.
    [85]J. S. Gnanaraj, V. G. Pol, A. Gedanken, D. Aurbach, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method [J]. Electrochem. Commun.,2003,5(11),940-945.
    [86]W.-K. Kim, D.-W. Han, W.-H. Ryu, S.-J. Lim, H.-S. Kwon, Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance [J]. Electrochim. Acta, 2012,71 (0),17-21.
    [87]S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan, D. Gonbeau, XPS Study on Al2O3-and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries [J]. J. Electrochem. Soc.,2007,154(12),A1088-A1099.
    [88]Y.-M. Lin, H.-C. Wu, Y.-C. Yen, Z.-Z. Guo, M.-H. Yang, H.-M. Chen, H.-S. Sheu, N.-L. Wu, Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery [J]. J. Electrochem. Soc.,2005,152 (8), A1526-A1532.
    [89]M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki, R. Kanno. Dynamic Structural Changes at LiMn2O4/Electrolyte Interface during Lithium Battery Reaction [J]. J. Amer. Chem. Soc.,2010,132 (43),15268-15276.
    [90]W. Sun, F. Cao,Y. Liu, X. Zhao, X. Liu, J. Yuan, Nanoporous LiMn2O4 nanosheets with exposed{111} facets as cathods for highly reversible lithiun-ion batteries [J]. J. Mater. Chem.,2012,22, 20952-20957.
    [91]J. S. Kim, K. Kim, W. Cho, W. H. Shin, R. Kanno, J. W. Choi. A Truncated Manganese Spinel Cathode for Excellent Power and Lifetime in Lithium-Ion Batteries [J]. Nano Lett.,2012,12 (12),6358-6365.
    [92]M. Yonemura, A. Yamada, H. Kobayashi, M. Tabuchi, T. Kamiyama, Y. Kawamoto, R. Kanno. Synthesis, structure, and phase relationship in lithium manganese oxide spinel [J]. J. Mater. Chem., 2004,14(13),1948-1958.
    [93]J.-Y. Luo, X.-L. Li, Y.-Y. Xia. Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance [J]. Electrochim. Acta,2007,52 (13),4525-4531.
    [94]E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou. Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density [J]. Nano Lett.,2009,9 (3), 1045-1051.
    [95]M. A. Kiani, M. F. Mousavi, M. S. Rahmanifar, Synthesis of Nano- and Micro-Particles of LiMn2O4: Electrochemical Investigation and Assessment as a Cathode in Li Battery [J]. Int. J. Electrochem. Sci., 2011,6,2581-2595.
    [96]L. J. Xi, H.-E. Wang, Z. G. Lu, S. L. Yang, R. G. Ma, J. Q. Deng, C. Y. Chung. Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries [J]. J. Power Sources,2012,198 (0),251-257.
    [97]C. Wan, Y. Nuli, J. Zhuang, Z. Jiang. Synthesis of spinel LiMn2O4 using direct solid state reaction [J]. Mater. Lett.,2002,56 (3),357-363.
    [98]N. V. Kosova, N. F. Uvarov, E. T. Devyatkina, E. G. Avvakumov. Mechanochemical synthesis of LiMn2O4 cathode material for lithium batteries [J]. Solid State Ionics,2000,135 (1-4),107-114.
    [99]M. Helan, L. J. Berchmans, A. Z. Hussain. Synthesis of LiMn2O4 by molten salt technique [J]. Ionics, 2010,16(3),227-231.
    [100]H. Yan, X. Huang, L. Chen. Microwave synthesis of LiMn2O4 cathode material [J]. J. Power Sources, 1999,81-82(0),647-650.
    [101]X.-M. Liu, Z.-D. Huang, S. Oh, P.-C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, J.-K. Kim. Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries [J]. J. Power Sources,2010,195 (13),4290-4296.
    [102]H. M. Wu, J. P. Tu, Y. F. Yuan, X. T. Chen, J. Y. Xiang, X. B. Zhao, G. S. Cao. One-step synthesis LiMn2O4 cathode by a hydrothermal method [J]. J. Power Sources,2006,161 (2),1260-1263.
    [103]R. Thirunakaran, R. Ravikumar, S. Gopukumar, A. Sivashanmugam. Electrochemical evaluation of dual-doped LiMn2O4 spinels synthesized via co-precipitation method as cathode material for lithium rechargeable batteries [J]. J. Alloys. Compd.,2013,556 (0),266-273.
    [104]H.-B. Park, J. Kim.C.-W. Lee. Synthesis of LiMn2O4 powder by auto-ignited combustion of poly(acrylic acid)-metal nitrate precursor [J]. J. Power Sources,2001.92 (1-2),124-130.
    [105]K. Du. G. R. Hu, Z. D. Peng, L. Qi. Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method [J]. Electrochim. Acta,2010,55 (5),1733-1739.
    [106]B.-L. He, W.-J. Zhou, S.-J. Bao, Y.-Y. Liang, H.-L. Li. Preparation and electrochemical properties of LiMn2O4 by the microwave-assisted rheological phase method [J]. Electrochim. Acta,2007,52 (9), 3286-3293.
    [107]H. Zheng, F. Tang, Y. Jia, L. Wang, Y. Chen, M. Lim, L. Zhang, G. Lu. Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube [J]. Carbon,2009,47 (6),1534-1542.
    [108]R. Guttel, M. Paul, F. Schuth. Ex-post size control of high-temperature-stable yolk-shell Au@ZrO2 catalysts [J]. Chem. Commun.,2010,46 (6),895-897.
    [109]L. Dai, L.-P. Jiang, E. S. Abdel-Halim, J.-J. Zhu. The fabrication of palladium hollow sphere array and application as highly active electrocatalysts for the direct oxidation of ethanol [J]. Electrochem. Commun.,2011,13 (12),1525-1528.
    [110]F. Su, X. S. Zhao, Y. Wang, L. Wang, J. Y. Lee. Hollow carbon spheres with a controllable shell structure [J]. J. Mater. Chem.,2006,16 (45),4413-4419.
    [111]X. W. Lou, L. A. Archer, Z. Yang. Hollow Micro-/Nanostructures:Synthesis and Applications [J]. Adv. Mater.,2008,20 (21),3987-4019.
    [112]J.-y. Luo, Y.-g. Wang, H.-m. Xiong, Y.-y. Xia. Ordered Mesoporous Spinel LiMn2O4 by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries [J]. Chem. Mater.,2007,19 (19),4791-4795.
    [113]F. Jiao, J. Bao, A. H. Hill, P. G. Bruce. Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries [J]. Angew. Chem., Int. Ed.,2008,47 (50), 9711-9716.
    [114]S. Lim, C. S. Yoon, J. Cho. Synthesis of Nanowire and Hollow LiFePO4 Cathodes for High-Performance Lithium Batteries [J]. Chem. Mater.,2008,20 (14),4560-4564.
    [115]M. Shen, Q. Zhang, H. Chen, T. Peng, Hydrothermal fabrication of PbMoO4 microcrystals with exposed (001) facets and its enhanced photocatalytic properties [J]. CrystEngComm.,2011,13 (7), 2785-2791.
    [116]F. Cheng, H. Wang, Z. Zhu, Y. Wang, T. Zhang, Z. Tao, J. Chen. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J]. Ener. Environ. Sci.,2011,4 (9), 3668-3675.
    [117]L. Zhang, J. C. Yu, A.-W. Xu, Q. Li, K. W. Kwong, L. Wu. A self-seeded, surfactant-directed hydrothermal growth of single crystalline lithium manganese oxide nanobelts from the commercial bulky particles [J]. Chem. Commun.,2003, (23),2910-2911.
    [118]F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen. Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries [J]. Inorg. Chem.,2006,45 (5), 2038-2044.
    [119]L. Zhou, D. Zhao, X. Lou. LiNi0.5Mn1.5O4 Hollow Structures as High-Performance Cathodes for Lithium-Ion Batteries [J]. Angew. Chem.,2012,124 (1),243-245.
    [120]J. M. Kim, G. Lee, B. H. Kim, Y. S. Huh, G.-W. Lee, H. J. Kim, Ultrasound-assisted synthesis of Li-rich mesoporous LiMn2O4 nanospheres for enhancing the electrochemical performance in Li-ion secondary batteries [J]. Ultrason. Sonochem.,2012,19 (3),627-631.
    [121]P. Wu. N. Du, H. Zhang, J. Yu, Y. Qi, D. Yang. Carbon-coated SnO2 nanotubes:template-engaged synthesis and their application in lithium-ion batteries [J]. Nanoscale,2011,3 (2),746-750.
    [122]M. M. Ren, Z. Zhou, X. P. Gao, L. Liu, W. X. Peng. LiVOPO4 Hollow Microspheres:One-Pot Hydrothermal Synthesis with Reactants as Self-Sacrifice Templates and Lithium Intercalation Performances [J]. J. Phys. Chem. C.,2008,112 (33),13043-13046.
    [123]Y. Wang, X. Shao, H. Xu, M. Xie, S. Deng, H. Wang, J. Liu, H. Yan. Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries [J]. J. Power Sources, 2013,226(0),140-148.
    [124]Y. L. Ding, J. A. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao. Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J]. Adv. Funct. Mater.,2011,21 (2),348-355.
    [125]L. Zhou, X. Zhou, X. Huang, Z. Liu, D. Zhao, X. Yao, C. Yu. Designed Synthesis of LiMn2O4 Microspheres with Adjustable Hollow Structures for Lithium-Ion Battery Applications [J]. J. Mater. Chem., A.2013.
    [126]W. Tang, X. J. Wang, Y. Y. Hou, L. L. Li, H. Sun, Y. S. Zhu, Y. Bai, Y. P. Wu, K. Zhu, T. van Ree. Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries [J]. J. Power Sources,2012,198 (0),308-311.
    [127]L. Xiao, Y. Guo, D. Qu, B. Deng, H. Liu, D. Tang. Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials [J]. J. Power Sources,2013, 225 (0),286-292.
    [128]W. Xiao, W. Liu, X. Mao, H. Zhu, D. Wang. Chemical mixing in molten-salt for preparation of high-performance spinel lithium manganese oxides:Duplication of morphology from nanostructured MnO2 precursors to targeting materials [J]. Electrochim. Acta,2013,88 (0),756-765.
    [1]K. T. Lee, L. F. Nazar. Positive Electrode Materials for Li-Ion and Li-Batteries [J]. Chem. Mater.,2010, 22(3),691-714.
    [2]Y. Sun, Z. Wang, L. Chen, X. Huang. Improved Electrochemical Performances of Surface-Modified Spinel LiMn2O4 for Long Cycle Life Lithium-Ion Batteries [J]. J. Electrochem. Soc.,2003,150 (10), A1294-A1298.
    [3]A. Du Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gerand, J. M. Tarascon. Mechanism for Limited 55℃ Storage Performance of Li1.05Mn1.95O4 Electrodes [J]. J. Electrochem. Soc.,1999,146 (2), 428-436.
    [4]J. Choa, M. M. Thackeray. Structural Changes of LiMn2O4 Spinel Electrodes during Electrochemical Cycling [J]. J. Electrochem. Soc.,1999,146 (10),3577-3581.
    [5]D. H. Jang, S. M. Oh. Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells [J]. J. Electrochem. Soc.,1997,144 (10),3342-3348.
    [6]H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago. Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode [J]. Solid State Ionics,2011,192 (1),304-307.
    [7]Y. L. Ding, J. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao. Enhanced Elevated-Temperature Performance of Al-Doped Single-Crystalline LiMn2O4 Nanotubes as Cathodes for Lithium Ion Batteries [J]. J. Phys. Chem. C.,2011.115 (19),9821-9825.
    [8]S. Mandal, R. M. Rojas, J. M. Amarilla, P. Calle, N. V. Kosova. V. F. Anufrienko, J. M. Rojo. High Temperature Co-doped LiMn2O4-Based Spinels. Structural, Electrical, and Electrochemical Characterization [J]. Chem. Mater.,2002,14 (4),1598-1605.
    [9]H. M. Wu, J. P. Tu, X. T. Chen, Y. Li, X. B. Zhao, G. S. Cao. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method [J]. J. Solid State Electrochem.,2007,11 (2),173-176.
    [10]R. Rojas, K. Petrov, G. Avdeev, J. M. Amarilla, L. Pascual, J. M. Rojo. High-temperature thermal behaviour of Cr-Doped LiMn2O4 spinels synthesized by the sucrose-aided combustion method [J]. J. Therm. Anal. Calorim.,2007,90 (1),67-72.
    [11]K. R. Murali, T. Saravanan, M. Jayachandran. Synthesis and characterization of copper substituted lithium manganate spinels [J]. J Mater Sci:Mater Electron.,2008,19 (6),533-537.
    [12]Y.-S. Lee, N. Kumada, M. Yoshio. Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery [J]. J. Power Sources,2001,96 (2),376-384.
    [13]W.-J. Zhou, S.-J. Bao, B.-L. He, Y.-Y. Liang, H.-L. Li. Synthesis and electrochemical properties of LiAl0.05Mn1.95O4 by the ultrasonic assisted rheological phase method [J]. Electrochim. Acta,2006,51 (22),4701-4708.
    [14]K. W. Kim, S.-W. Lee, K.-S. Han, H. J. Chung, S. I. Woo. Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by Liquid Source Misted Chemical Deposition (LSMCD) technique [J]. Electrochim. Acta,2003,48 (28),4223-4231.
    [15]L. Xiao, Y. Zhao, Y. Yang, Y. Cao, X. Ai, H. Yang. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method [J]. Electrochim. Acta,2008,54 (2),545-550.
    [16]V. G. Kumar, J. S. Gnanaraj, S. Ben-David, D. M. Pickup, E. R. H. van-Eck, A. Gedanken, D. Aurbach. An Aqueous Reduction Method To Synthesize Spinel-LiMn2O4 Nanoparticles as a Cathode Material for Rechargeable Lithium-Ion Batteries [J]. Chem. Mater.,2003,15 (22),4211-4216.
    [17]E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou. Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density [J]. Nano Lett.2009,9 (3),1045-1051.
    [18]D. K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui. Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes [J]. Nano Lett.,2008,8 (11), 3948-3952.
    [19]Y. L. Ding, J. A. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao. Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J]. Adv. Funct. Mater.,2011,21 (2),348-355.
    [20]W. Tang, X. J. Wang, Y. Y. Hou, L. L. Li, H. Sun, Y. S. Zhu, Y. Bai, Y. P. Wu, K. Zhu, T. van Ree. Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries [J]. J. Power Sources, 2012,198(0),308-311.
    [21]M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "Oriented Attachment" Mechanism [J]. J. Amer. Chem. Soc.,2004,126 (45),14943-14949.
    [22]D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nat. Mater.,2006,5(12),987-994.
    [23]J. Y. Luo, H. M. Xiong, Y. Y. Xia. LiMn2O4 Nanorods, Nanothorn Microspheres, and Hollow Nanospheres as Enhanced Cathode Materials of Lithium Ion Battery [J]. J. Phys. Chem. C.,2008,112 (31),12051-12057.
    [24]Y. Yang, C. Xie, R. Ruffo, H. Peng, D. K. Kim, Y. Cui. Single Nanorod Devices for Battery Diagnostics:A Case Study on LiMn2O4 [J]. Nano Lett.,2009,9(12),4109-4114.
    [25]Y. S. Lee, Y. K. Sun, K. S. Nahm. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics,1998,109 (3-4), 285-294.
    [26]W. Ra, M. Nakayama, Y. Uchimoto, M. Wakihara. Experimental and Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel Compounds upon Electrochemical Li Insertion Reactions [J]. J. Phys. Chem. B.,2004,109(3),1130-1134.
    [27]M. Lanz, C. Kormann, H. Steininger, G. Heil, O. Haas, P. Novak. Large-Agglomerate-Size Lithium Manganese Oxide Spinel with High Rate Capability for Lithium-Ion Batteries [J]. J. Electrochem. Soc., 2000,147(1I),3997-4000.
    [28]X. Wang, Y. Li. Selected-Control Hydrothermal Synthesis of alpha- and β-MnO2 Single Crystal Nanowires [J]. J. Amer. Chem. Soc.,2002,124(12),2880-2881.
    [29]X. Wang, Y. Li. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods [J]. Chem. Eur. J.,2003,9 (1),300-306.
    [30]张梅芳,宋力,刘蒙,袁良杰,张友祥,张克立. LiOH·H2Od空气中的失水力学研究[J].分 析科学学报.2009,25 (6).625-628.
    [31]S. Ma, H. Noguchi. M. Yoshio. Synthesis and electrochemical studies on Li-Mn-O compounds prepared at high temperatures [J]. J. Power Sources,2004,126 (1-2),144-149.
    [32]Y. Chen, K. Xie, Y. Pan, C. Zheng. Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn2O4 prepared by a modified resorcinol-lormaldehyde route [J]. Solid State Ionics.2010,181,1445-1450.
    [33]W. M. Shaheen, M. M. Selim. Thermal Decompositions of Pure and Mixed Manganese Carbonate and Ammonium Molybdate Tetrahydrate [J]. J. Therm. Anal. Calorim.,2000,59 (3),961-970.
    [34]J. P. Zheng, D. J. Crain, D. Roy. Kinetic aspects of Li intercalation in mechano-chemically processed cathode materials for lithium ion batteries:Electrochemical characterization of ball-milled LiMn2O4 [J]. Solid State Ionics,2011,196 (1),48-58.
    [35]M. M. Thackeray. Manganese oxides for lithium batteries [J]. Prog. Solid State Chem.,1997,25 (1), 1-71.
    [36]W. I. F. David, M. M. Thackeray, P. G. Bruce, J. B. Goodenough. Lithium insertion into β-MnO2 and the rutile-spinel transformation [J]. Mater. Res. Bull.,1984,19(1),99-106.
    [37]W. Han, S. Fan, Q. Li, Y. Hu. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction [J]. Science,1997,277 (5330),1287-1289.
    [38]Y. Xia, M. Yoshio. An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds [J]. J. Electrochem. Soc.,1996,143 (3),825-833.
    [39]Y. Uchimoto, K. Amezawa, T. Furushita, M. Wakihara, I. Taniguchi. Charge-transfer reaction rate at the LiMn2O4 spinel oxide cathode/polymer electrolyte interface [J]. Solid State Ionics,2005,176 (31), 2377-2381.
    [40]R. Santhanam. B. Rambabu. High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries [J]. J. Power Sources,2010, 195(13),4313-4317.
    [41]K. Kanamura, K. Dokko, T. Kaizawa. Synthesis of Spinel LiMn2O4 by a Hydrothermal Process in Supercritical Water with Heat-Treatment [J]. J. Electrochem. Soc.,2005,152 (2), A391-A395.
    [42]M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki, R. Kanno. Dynamic Structural Changes at LiMn2O4/Electrolyte Interface during Lithium Battery Reaction [J]. J. Amer. Chem. Soc.,2010,132 (43),15268-15276.
    [43]B. Zhang, C. Lai, Z. Zhou, X. P. Gao. Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials [J]. Electrochim. Acta,2009,54 (14),3708-3713.
    [1]P. G. Bruce, B. Scrosati, J.-M. Tarascon. Nanomaterials for Rechargeable Lithium Batteries [J]. Angew. Chem., Int. Ed.,2008,47 (16),2930-2946.
    [2]M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO? Nanowires Made by the "Oriented Attachment" Mechanism [J]. J. Amer. Chem. Soc.,2004,126 (45), 14943-14949.
    [3]D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nat Mater.,2006,5(12),987-994.
    [4]D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui. Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes [J]. Nano Lett.,2008,8 (11),3948-3952.
    [5]P. Li, C. Nan, Z. Wei, J. Lu, Q. Peng, Y. Li. Mn3O4 Nanocrystals:Facile Synthesis, Controlled Assembly, and Application [J]. Chem. Mater.,2010,22 (14),4232-4236.
    [6]W. Tang, X. J. Wang, Y. Y. Hou, L. L. Li, H. Sun, Y. S. Zhu, Y. Bai, Y. P. Wu, K. Zhu, T. van Ree. Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries [J]. J. Power Sources,2012, 198(0),308-311.
    [7]S. J. Bao, C. M. Li, H. L. Li, JH. T. Luong. Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources [J]. J. Power Sources.2007,164 (2),885-889.
    [8]Y. S. Lee, C. S. Yoon,Y. K. Sun.M. Yoshio, Structural Characterization of Mn-Based Materials Using y-MnOOH Source [J]. Electrochem. Solid-State Lett.,2002,5 (1), A1-A4.
    [9]Z. Bai, N. Fan, Z. Ju, C. Sun, Y. Qian. LiMn2O4 nanorods synthesized by MnOOH template for lithium-ion batteries with good performance [J]. Mater. Lett.,2012,76,124-126.
    [10]L. He, S. Zhang, X. Wei, Z. Du, G. Liu, Y. Xing. Synthesis and electrochemical performance of spinel-type LiMn2O4 using y-MnOOH rods as self-template for lithium ion battery [J]. J. Power Sources, 2012,220,228-235.
    [11]X. Lou, X. Wu, Y. Zhang. A study about y-MnOOH nanowires as anode materials for rechargeable Li-ion batteries [J]. J. Alloys. Compd.,2013,550(15),185-189.
    [12]Z. C. Li, H. L. Bao, X. Y. Miao, X. H. Chen. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties [J]. J. Colloid Interface Sci.,2011,357 (2),286-291.
    [13]J. Lim, D. Kim, V. Mathew, D. Ahn, J. Kang, S.-W. Kang, J. Kim. Plate-type LiFePO4 nanocrystals by low temperature polyol-assisted solvothermal reaction and its electrochemical properties [J]. J. Alloys. Compd.,2011,509 (31),8130-8135.
    [14]M. Ocana. Uniform particles of manganese compounds obtained by forced hydrolysis of manganese(II) acetate [J]. Colloid Polym. Sci.,2000,278 (5),443-449.
    [15]P. K. Sharma, M. S. Whittingham. The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of y-MnOOH synthesized by hydrothermal [J]. Mater. Lett., 2001,48(6),319-323.
    [16]T. Kohler, T. Armbruster, E. Libowitzky. Hydrogen Bonding and Jahn-Teller Distortion in Groutite,α-MnOOH, and Manganite,γ-MnOOH, and Their Relations to the Manganese Dioxides Ramsdellite and Pyrolusite [J]. J. Solid State Chem.,1997,133 (2),486-500.
    [17]R. Yang, Z. Wang, L. Dai, L. Chen. Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH [J]. Mater. Chem. Phys.,2005,93 (1),149-153.
    [18]X. Zhang, W. Yang, J. Yang, D. G. Evans. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals [J]. J. Cryst. Growth.,2008,310 (3), 716-722.
    [19]Y. Li, H. Tan, O. Lebedev, J. Verbeeck, E. Biermans, G. Van Tendeloo, B.-L. Su. Insight into the Growth of Multiple Branched MnOOH Nanorods [J]. Cryst. Grow. Des.,2010,10 (7),2969-2976.
    [20]L. Wang, F. Tang, K. Ozawa, Z.-G. Chen, A. Mukherj, Y. Zhu, J. Zou, H.-M. Cheng, G. Q. Lu. A General Single-Source Route for the Preparation of Hollow Nanoporous Metal Oxide Structures [J]. Angew. Chem.,2009,121 (38),7182-7185.
    [21]张梅芳,宋力,刘蒙,袁良杰,张友祥,张克立.LiOH-H2O在空气中的失水动力学研究[J].分析科学学报,2009,25(6),625-628.
    [22]J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G. Amatucci, D. Guyomard. Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4 [J]. J. Electrochem. Soc.,1994,141 (6),1421-1431.
    [23]Y. Gao, J. N. Reimers, J. R. Dahn. Changes in the voltage profile of Li/Li1-xMn2-xO4 cells as a function of x [J]. Phys. Rev. B.,1996,54 (6),3878-3883.
    [24]V. Manev, J. Engel. In Proceedings of the HBC98[A], The first Hawaii Battery Conference,1998, p 228.
    [25]Y. S. Lee, N. Kumada, M. Yoshio. Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery [J]. J. Power Sources,2001,96 (2),376-384.
    [26]L. Xiao, Y. Zhao, Y. Yang, Y. Cao, X. Ai, H. Yang. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method [J]. Electrochim. Acta,2008,54 (2),545-550.
    [27]Y. L. Ding, J. A. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao. Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J]. Adv. Funct. Mater.,2011,21 (2),348-355.
    [28]P. M. Ajayan, O. Stephan, P. Redlich, C. Colliex. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures [J]. Nature,1995,375 (6532),564-567.
    [29]Y. Xia, M. Yoshio, Studies on Li-Mn-0 spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part Ⅱ. Optimum spinel from γ-MnOOH [J]. J. Power Sources,1995, 57(1-2),125-131.
    [30]Y. Xia, M. Yoshio. An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds [J]. J. Electrochem. Soc.,1996,143 (3),825-833.
    [31]S. W. Oh, Y. C. Bae, Y. K. Sun. Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides(Co3O4,CuO, and NiO)prepared via ultrsonic spray pyrolysis [J]. J. Power Sources,2007,173,502-509.
    [32]Y. Liu, X. Zhang, Effect of calcination temperature on the morphology and electrochemical properties of CO3O4 for lithium-ion battery [J]. Electrochim. Acta,2009,54,4180-4185.
    [33]Y. Chen, K. Xie, Y. Pan, C. Zheng. Effect of calcination temperature on the electrochemical performance of nanocrystalline LiMn2O4 prepared by a modified resorcinol-lormaldehyde route [J]. Solid State Ionics.2010.181.1445-1450.
    [34]Y. Uchimoto, K. Amezawa, T. Furushita, M. Wakihara, I. Taniguchi. Charge-transfer reaction rate at the LiMn2O4 spinel oxide cathode/polymer electrolyte interface [J]. Solid State Ionics,2005,176 (31), 2377-2381.
    [35]B. Zhang, C. Lai, Z. Zhou, X. P. Gao. Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials [J]. Electrochim. Acta,2009,54 (14),3708-3713.
    [1]M. Voinov. MnO2:structure and activity [J]. Electrochim. Acta,1982,27 (7),833-835.
    [2]Y. Wu, Z. Wen, H. Feng, J. Li. Hollow Porous LiMn2O4 Microcubes as Rechargeable Lithium Battery Cathode with High Electrochemical Performance [J]. Small,2012,8(6):858-862.
    [3]Y. L. Ding, J. A. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao. Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J]. Adv. Funct. Mater.,2011,21 (2),348-355.
    [4]M. R. Bailey, S. W. Donne. Electrochemical Impedance Spectroscopy Study into the Effect of Titanium Dioxide Added to the Alkaline Manganese Dioxide Cathode [J]. J. Electrochem. Soc.,2011,158 (7), A802-A808.
    [5]M. M. Thachery. Manganese oxides for lithium batteries [J]. Prog. Solid State Chem.,1997,25 (1), 1-71.
    [6]P. G. Bruce, B. Scrosati, J.-M. Tarascon. Nanomaterials for Rechargeable Lithium Batteries [J]. Angew. Chem., Int. Ed.,2008,47 (16),2930-2946.
    [7]X. W. Lou, L. A. Archer, Z. Yang. Hollow Micro-/Nanostructures:Synthesis and Applications [J]. Adv. Mater.,2008,20 (21),3987-4019.
    [8]X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee. L. A. Archer. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater.,2006,18(17),2325-2329.
    [9]F. Jiao, P. G. Bruce. Mesoporous Crystalline β-MnO2-a Reversible Positive Electrode for Rechargeable Lithium Batteries [J]. Adv. Mater.,2007,19 (5),657-660.
    [10]X. Huang, D. Lv, Q. Zhang, H. Chang, J. Gan, Y. Yang. Highly crystalline macroporous β-MnO2: Hydrothermal synthesis and application in lithium battery [J]. Electrochim. Acta,2010,55 (17), 4915-4920.
    [11]Z. Wei, M. Wan. Hollow Microspheres of Polyaniline Synthesized with an Aniline Emulsion Template [J].Adv. Mater.,2002,14(18),1314-1317.
    [12]Y. Cheng, W. Huang, Y. Zhang, L. Zhu, Y. Liu, X. Fan, X. Cao. Preparation of TiO2 hollow nanofibers by electrospining combined with sol-gel process [J]. CrystEngComm.,2010,12 (7),2256-2260.
    [13]Z. Yang, J. Wei, H. Yang, L. Liu, H. Liang, Y. Yang. Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications [J]. Eur. J. Inorg. Chem.,2010,2010 (21), 3354-3359.
    [14]L. Zhou, D. Zhao, X. Lou. LiNi0.5Mn1.5O4 Hollow Structures as High-Performance Cathodes for Lithium-Ion Batteries [J]. Angew. Chem.,2012,124 (1),243-245.
    [15]J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, Z. X. Shen. Synthesis of Single-Crystal Tetragonal α-MnO2 Nanotubes [J]. J. Phys. Chem. C.,2008,112 (33), 12594-12598.
    [16]Y. Zhang, L. Chen, Z. Zheng, F. Yang. A redox-hydrothermal route to β-MnO2 hollow octahedra [J]. Solid State Sci.2009,11 (7),1265-1269.
    [17]B. Li, G. Rong, Y. Xie, L. Huang, C. Feng. Low-Temperature Synthesis of α-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries [J]. Inorg. Chem.,2006,45 (16),6404-6410.
    [18]L. Wang, F. Tang, K. Ozawa, Z. G. Chen, A. Mukherj, Y. Zhu, J. Zou, H. M. Cheng, G. Q. Lu. A General Single-Source Route for the Preparation of Hollow Nanoporous Metal Oxide Structures [J]. Angew. Chem.,2009,121 (38),7182-7185.
    [19]W. Xiao, H. Xia, J. Y. H. Fuh, L. Lu. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties [J]. J. Power Sources,2009,193 (2),935-938.
    [20]H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang, Single-crystal α-MnO2 nanorods:synthesis and electrochemical properties [J]. Nanotechnology,2007,18(11),115616.
    [21]X. Huang, D. Lv, H. Yue, A. Adel, Y. Yan. Controllable synthesis of α-and β-MnO2:cationic effect on hydrothermal crystallization [J]. Nanotechnology,2008,19 (22),225606.
    [22]W. Xiao, D. Wang, X. W. Lou. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction [J]. J. Phys. Chem. C.,2010,114 (3),1694-1700.
    [23]X. Wang, Y. Li. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods [J]. Chem. Eur. J.,2003,9(1),300-306.
    [24]X. Zhang, W. Yang, J. Yang, D. G. Evans. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals [J]. J. Cryst. Growth.,2008,310 (3), 716-722.
    [25]E. Horvath, A. Kukovecz, Z. Konya, I. Kiricsi. Hydrothermal Conversion of Self-Assembled Titanate Nanotubes into Nanowires in a Revolving Autoclave [J]. Chem. Mater.,2007,19 (4),927-931.
    [26]L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang. The{001} facets-dependent high photoactivity of BiOCl nanosheets [J]. Chem. Commun.,2011,47,6951-6953.
    [27]D. W. Murphy, F. J. Di Salvo, J. N. Carides, J. V. Waszczak. Topochemical reactions of rutile related structures with lithium [J]. Mater. Res. Bull.,1978,13(12),1395-1402.
    [28]R. Santhanam, B. Rambabu. High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries [J]. J. Power Sources,2010, 195(13),4313-4317.
    [29]J. H. Zeng, Y. F. Wang, Y. Yang, J. Zhang. Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries [J]. J. Mater. Chem.,2010,20 (48),10915-10918.
    [30]W. I. F. David, M. M. Thackeray, P. G. Bruce, J. B. Goodenough. Lithium insertion into β-MnO2 and the rutile-spinel transformation [J]. Mater. Res. Bull.,1984,19(1).99-106.
    [31]X.-D. Li, W.-S. Yang, S.-C. Zhang. D. G. Evans, X. Duan. The synthesis and characterization of nanosized orthorhombic LiMnO2 by in situ oxidation-ion exchange [J]. Solid State Ionics,2005,176 (7-8),803-811.
    [32]W.-M. Chen, L. Qie, Q.-G. Shao, L.-X. Yuan, W.-X. Zhang, Y.-H. Huang. Controllable Synthesis of Hollow Bipyramid β-MnO2 and Its High Electrochemical Performance for Lithium Storage [J]. ACS Appl. Mater. Interfaces,2012,4 (6),3047-3053.
    [33]W. Tang, X. Yang, Z. Liu, K. Ooi. Preparation of β-MnO2 nanocrystal/acetylene black composites for lithium batteries [J]. J. Mater. Chem.,2003,13 (12),2989-2995.
    [34]T. X. T. Sayle, R. R. Maphanga, P. E. Ngoepe, D. C. Sayle. Predicting the Electrochemical Properties of MnO2 Nanomaterials Used in Rechargeable Li Batteries:Simulating Nanostructure at the Atomistic Level [J]. J. Amer. Chem. Soc.,2009,131 (17),6161-6173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700