用户名: 密码: 验证码:
新型功能薄膜电极构建与表面增强红外光谱应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米薄膜具有特殊的光学特性,如表面增强红外吸收(SEIRA)。SEIRA与表面增强拉曼(SER)效应相似,主要起源于纳米结构的金属表面等离子共振所产生的局部电磁场增强。除上述特别光学效应外,在电化学环境中纳米金属薄膜还可能具有某些特殊的催化活性以及耐蚀性等。通过合金化、表面修饰或改变纳米颗粒的尺寸可实现纳米薄膜物理和化学功能的调控,尤其是表面修饰双元金属纳米材料是电催化研究的一个热点。衰减全反射(ATR)表面增强红外吸收光谱(SEIRAS)具有表面信号强、表面选律简单和传质不受阻等优点,适合于电化学界面研究。在电化学ATR-SEIRAS中,工作电极是沉积在红外窗口(主要是Si)上具有光学和化学特性的金属纳米薄膜,因此电化学ATR-SEIRAS是研究功能薄膜电催化和电吸附等界面结构和行为的重要方法。而构建新型功能金属纳米薄膜电极是理解、应用与发展现场ATR-SEIRAS方法的基础。
     在本论文中,首先为研究双元双层金属纳米薄膜的SEIRA效应和吸附反应特性,构建了厚度可控的Au基Pt肤纳米薄膜,探讨该类结构薄膜红外增强机理。其次,为研制低铂、高效电催化材料,构建了Ru基Pt肤功能纳米薄膜电极并应用于现场ATR-SEIRAS研究,并且探讨了该特殊双元金属电催化的双功能和电子效应。再次,利用SEIRAS简单表面选律和通用湿法构建金属纳米的便利,研究了吡啶在各种金属电极表面上吸附构型,考察了金属价电子结构对其吸附构型的影响。另外,采用扫描探针显微术表征了具有SEIRA效应金属纳米薄膜的形貌。主要研究内容摘要如下:
     1.厚度可控的Au基/Pt肤纳米薄膜的SEIRA的效应
     采用自发置换法在Au纳米薄膜上制备不同厚度的Pt肤层薄膜,并检测其红外吸收强度的变化。所谓自发置换法即利用欠电位沉积单层Cu原子作为模版,在含Pt的盐溶液中发生置换反应,经多次循坏可得到不同厚度的Pt肤层。这样制备的催化层具有超薄、厚度可控的特点,为研制超低铂含量的催化剂和研究基底金属电子效应提供了可能。基于上述方法,在四层以内Pt肤层表面粗糙度和Pt上吸附的CO峰强几乎不变,表明了Pt肤层近似外延生长的特性。Pt的SEIRA效应取决于Au基/Pt肤复合纳米膜的形状与尺寸及其电子和光学特性。该研究结果首次从实验上揭示了Pt肤层的SEIRA效应与文献中的有关SERS效应有明显不同:Pt层上SERS信号主要源于基底Au的长程电磁场增强效应的诱导,随层厚度增加而急剧下降;而红外光区,各类金属的光学特性差异小,Pt层上SEIRAS信号受基底金属性质影响很小。
     同时研究了不同厚度Pt肤层薄膜上预吸附CO电催化氧化行为,发现其比Pt厚膜电极的氧化电位正移了300 mV以上。根据基底与肤层金属间相互作用的d带中心能级理论,在Au基底上肤层Pt的d-带中心上移,加强了d-π~*之间的反馈,使Pt-C键键能增强,从而导致Pt肤电极上CO的吸附强度变强,氧化电位正移。
     2.Ru基/Pt肤二元金属薄膜的制备及现场ATR-SEIRAS研究
     为研制低Pt载量的电催化材料及其电催化机制,采用白沉积法制备Ru基/Pt肤二元金属薄膜电极,并应用于电化学SEIRAS研究。自沉积法即在不加外界电压的条件下,一种贵金属(Pt)在另一种贵金属(Ru)基底上自发沉积的现象,即发生一个不可逆的氧化还原置换反应。通常通过自沉积法所得到肤层只有亚单层或几个单层的厚度。常规电化学和现场ATR-SEIRAS测试表明,Ru基/Pt肤电极表现出对CO和CH_3OH很强的催化作用。在含饱和CO的0.1 M HClO_4中,Ru基/Pt肤膜电极比Pt膜电极对CO的氧化电位提前140 mV,在红外光谱图上可观察到Pt-CO和Ru-CO的吸收峰;在电催化氧化甲醇的实验中,Ru基/Pt肤膜电极也表现出很强的催化活性,ATR-SEIRAS测到了甲醇解离产物CO和HCOO~-的红外吸收峰。这些表明Ru基/Pt肤薄膜体现了类似传统合金中Pt-Ru的协同效应,提高了抗CO中毒能力,更重要的是显著降低了贵金属Pt的负载量。
     本部分工作还以共沉积法制备的Pt-Ru合金及自发置换法制备的Ru基/Pt肤二元薄膜作为比较,分析三者电化学与催化协同效应的异同。
     3.不同电极表面吡啶吸附的表面增强红外光谱研究
     吡啶(Py)分子在金属表面的吸附构型由于所处环境和研究方法等的不同,一直未达共识。利用表面增强红外光谱法(SEIRAS)灵敏度高、表面选律简单的优点,采用“两步全湿法”制备Cd及Pt、Ru、Rh和Pd膜电极,应用ATR-SEIRAS技术研究了吡啶在上述各电极的吸附构型。结果显示:吡啶在Cd电极上采取end-on构型,在Pt电极上采取α-pyridyl的edge-on构型;在Ru和Rh电极上主要采取end-on构型并混有少量edge-titled构型;在Pd电极上吸附较弱,混合了ct-pridyl-edge-on和edge-titled两种吸附构型。
     同时,系统比较吡啶在Au,Ag,Cu,Ni,Cd和Pt族电极上的红外吸收光谱,得出Py的吸附取向沿着(Cd和Cu)、(Ag和Au)、(Ru和Rh)、Ni、Pd、Pt顺序依次形成end-on Py,edge-titled Py和α-pyridyl吸附构型,估算了Py分子在各电极表面的侧向倾斜角度,初步讨论了金属的价层电子结构对吡啶吸附构型的影响。
     4.SEIRAS用金属纳米薄膜的扫描探针显微表征
     岛状结构的纳米薄膜是产生SEIRA效应的关键,因此对各类纳米金属薄膜的形貌表征必不可少。扫描探针显微技术可以获得表面信息的三维图象,易于纳米级分辨,且是无损分析。作为团队合作内容,该部分主要开展SEIRAS用金属纳米薄膜形貌表征。
     对化学镀金随后电镀铂族金属的镀膜样品STM测量发现,化学镀金薄膜颗粒较大,表面较粗糙,而第二步电镀薄膜则颗粒细小致密,形成无针孔的薄膜,与电化学和红外测量结果一致;金、银纳米溶胶在Si表面的自组装及生长可以实现对SEIRA效应的调控,通过AFM测量了不同大小金、银单层纳米颗粒以及后续化学镀膜的三维图象;通过现场电化学AFM实时监控经电化学粗糙前后的Ag膜电极的形貌比较,虽然粗糙后的Ag膜的表观粗糙度增加,但其SEIRA光谱信号却没发生明显改变,佐证了SEIRA活性基底不需要特别进行粗糙化处理的优点。
Nanofilm electrodes attract considerable attentions in the field of electrochemical surface science because of their unique surface optical and chemical properties. Regarding the optical property, molecules adsorbed on metal island films exhibit 10-1000 times more intense infrared absorption than would be expected from conventional measurements without metals. This effect is called surface-enhanced infrared absorption (SEIRA), the enhancement mechanism of which is similar to that of surface-enhanced Raman scattering (SERS), i.e., mainly originated from the electromagnetic enhancement owing to surface plasmon resonance. In addition to the unique optical functions, nanofilm surfaces have interesting chemical properties, such as enhanced electrocatalytic effect. These properties of metallic nanofilms could be modified through alloying or coating with a second metal, and by decreasing the particle sizes. Owing to high surface sensitivity and simple surface selection rule, ATR-SEIRAS is regarded as an important spectroscopic method for in situ characterization of surface adsorption and reaction at metal-electrolyte as well as metal-ambient interfaces. In ATR-SEIRAS, it is essential to fabricate novel functional nanofilms on the reflecting surface of a Si prism.
     The first part of this thesis concerns with the application of spontaneous replacement method to the preparation of a Pt skin layer on Au nanofilm electrode, the overlayer thickness-dependent SEIRA effect, and its comparison to that of the corresponding SERS effect. The CO adsorption and oxidation on different Pt coating layers is also investigated spectroscopically. After that, targeting on effective electrocatalyts with low Pt loadings, a new bimetallic structure consisting of Ru nanofilm substrate and Pt overlayer was constructed as the working electrode in ATR-SEIRAS measurements. Thirdly, by taking advantages of the versatile two-step wet process in fabricating nanofilms electrodes, and the straightforward surface selection rule of SEIRAS, pyridine adsorption configuration on various metal electrodes has been systematically reinvestigated, indicating that the valence electronic structures of metals significantly affect the adsorption geometries. The last part is a description of the teamwork involved, in which the morphologies of SEIRA-active nanofilms on Si were characterized with scanning probe microscopy. The main topics and results of the thesis are summarized as follows:
     1. Nanostructured Pt-coated Au Thin Films Exhibit Films-dependent and Tunable SEIRA Effects
     SEIRA-active platinum overlayers can be prepared by the redox replacement of underpotential-deposited Cu on Au film by electroless deposited on silicon. With the numbers of the cycles (upd - redox replacement cycle), the thickness of Pt overlayers increases accordingly. Using CO as a probe adsorbate, the intensity of SEIRAs is somewhat weaker when the films after one cycle have a few exposed Au sites. Whereas after several UPD redox cycles, the pinhole-free Pt overlayer exhibits significantly SEIRA effect. In addition, the SEIRA enhancement factor remains nearly the same up to four Pt monolayers, and decreases as the thickness of the Pt layer increase further. The thickness dependence is quite different from that for surface enhanced Raman scattering (SERS), which may be ascribed to the similarity (large difference) in optical dielectric properties of these two metals in the mid IR (visible) frequencies. The CO adlayer oxidation on a thin Pt overlayer on-Au electrode requires a higher potential as compared to that on a thick Pt overlayer on Au electrode. Based on the d-band center energy, the interaction between Au and Pt induces a stronger CO adsorption on Pt sites. The UPD-redox replacement strategy provides a promising approach to the preparation of efficient film electrocatalysts with ultralow Pt loadings.
     2. Preparation of Pt-on-Ru films with ultra low-Pt loadings for in situ ATR-SEIRAS on electrocatalysis
     A new spontaneous deposition approach was developed to fabricate Pt skin layers on Ru nanoparticle films (simplified hereafter as Ru/Pt films) on a Au-coated Si substrate for in situ ATR-SEIRAS application. In this approach, immersion of a nominally reduced Ru film into a Pt salt solution without external potential control leads to the irreversible redox replacement of a Ru surface layer by a Pt skin layer. This Ru/Pt films structure greatly reduces the Pt loading without sacrificing high electrocatalytic property towards the oxidation of CO and CH3OH. Alternatively, UPD Cu-based redox replacement was used to prepare a Pt-skin layer-coated Ru film electrode. The two Ru/Pt film electrodes were comparable to the codeposited Pt-Ru alloy film electrode in terms of high electrocatalytic behavior, although delicate differences were detected both in electrochemical and spectroscopic responses for these three films. It was assumed that the electronic effect may contribute in an increasing share to the enhanced electrocatalysis of a Ru/Pt bimetallic film in addition to the bifunctional effect, as compared to a Pt-Ru alloy film.
     3. ATR-SEIRAS Investigation of Pyridine Adsorption on Different Electrodes
     Surface-enhanced IR absorption spectroscopy in attenuated-total reflection (ATR-SEIRAS) configuration has been extended for the first time to a cadmium electrode with the adsorption of pyridine as the model system. In the potential range of-1.2 to -0.8 V (vs. SCE), only in-plane vibrations belonging to the A_1 mode were detected whereas those to the B_1 mode virtually were not, suggesting that pyridine coordinates vertically or at a titling angle to the Cd electrode surface via its nitrogen end without edge-tilted rotation of its ring plane.
     ATR-SEIRAS was also applied to investigate adsorption configurations of pyridine (Py) on platinum, palladium, ruthenium, and rhodium nanofilm electrodes. The results reveal that a-pyridyl species predominantly form on Pt electrodes by assuming an edge-on configuration with its ring N and a-C atoms bonding to the Pt surface, while on Ru and Rh electrodes pyridine molecules essentially remain intact by adopting end-on (a slightly edge-tilted) configuration through bonding with its N lone pair electrons. Py adsorption on a Pd electrode may lie in between the above two cases; both a-pyridyl species and edge-tilted intact pyridine could be significantly present.
     Further comparison of the typical adsorption configurations of Py on the transitional metal electrodes, such as Pt, Ru, Rh, Pd, Ag, Au, Cu, Cd, and Ni film electrodes, a rough trend of forming end-on Py, edge-tilted Py, and edge-on a-pyridyl was suggested in a sequence from (Cd and Cu), (Ag and Au), (Ru and Rh), and Ni, Pd, and Pt. The valence electron structures of metals may affect substantially the adsorption configuration.
     4. Morphological Characterization of Metallic Nanofilms on Si Using Scanning Probing Microscopy (SPM)
     SEIRA-activity greatly depends on the morphology of a metallic nanofilm. As nondestructive methods, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) can easily provide the nanostructure informations for SEIRA-active metal films on Si. As part of a teamwork, it is my duty to carry out SPM characterization of surface morphologies. STM reveals that the Au underfilm from chemical deposition on Si was rougher and the particle size was larger, and further growth of a second transition metal overfilm via electrodeposition results in densely packed smaller particles, in accordance with the pinhole-free nature of the overfilm as indicated further by electrochemical and spectroscopic measurements. Self-assembled monolayers of Au and Ag colloid particles on Si wafer can be clearly observed by using AFM, as well as their subsequent chemical growth. Larger particles and increasing coalescence result in larger and finally distorted SEIRA effect. In-situ AFM was applied to characterize the morphology of a Ag nanofilm before and after it was subjected to electrochemical annealing. The electrochemical annealing leads to the dissolution of very small particles, but the SEIRA effect didn't change significantly, indicating that the electrochemical roughening has virtually no effect on SEIRA, unlike on SERS.
引文
[1]J.C.Love,L.A.Estroff,J.K.Kriebek,R.G.Nuzzo,G.M.Whitesides,Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J].Chem.Rev.,2005,105:1103-1169.
    [2]G.L.Gaines.Insoluble monolayers at liquid-gas Interfaces[M].New York:Interscience publishers,1966
    [3]A.W.Adamson,A.P.Gast.Physical chemistry of surfaces[M].New York:Wiley-Interscience,6~(th) ed.;1997
    [4]程传煊,表面电化学[M].科学技术文献出版社,1995.
    [5]D.M.Kolb.An atomistic view of electrochemistry[J].Surf Sci.,2002,500:722-740.
    [6]Z.Q.Tian,B.Ren,D.Y.Wu.Surface-enhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures[J].J.Phys.Chem.B,2002,106:9463-9483.
    [7]S.G.Sun,In Catalysis and Electrocatalysis at Nanoparticle Surfaces[M].Wieckowski,A.,Savinova,E.R.,Vayenas,C.G.,Eds.;Marcel Dekker:New York,2003;Chapter 21.
    [8]M.Osawa,In Handbook of Vibrational Spectroscopy[M].Chalmers J.M.,Griffiths,P.R.,Eds.;John Wiley & Sons:Chichester,UK,2002;Vol.1,p.785.
    [9]K.Sasaki,Y.Mo,J.X.Wang,M.Balasubramanian,F.Uribe,J.McBreen,R.R.Adzic.Pt submonolayers on metal nanoparticles - novel electrocatalysts for H_2 oxidation and O_2reduction[J].Electrochim.Acta,2003,48:3841-3849.
    [10]J.X.Wang,S.R.Brankovic,Y.Zhu,J.C.Hanson,R.R.Adzic.Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles[J].J.Electrochem.Soc.,2003,150:A1108-A1117.
    [11]J.Zhang,M.B.Vukmirovic,Y.Xu,M.Mavrikakis,R.R.Adzic.Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates [J].Angew.Chem.Int.Ed.2005,44:2132-2135.
    [12]J.Zhang,M.B.Vukmirovic,K.Sasaki,A.U.Nilekar,M.Mavrikakis,R.R.Adzic.Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J].J.Am.Chem.Soc.2005,127:12480-12481.
    [13]F.Maillard,G.Q.Lu,A.Wieckowski,U.Stimming.Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation[J].J.Phys.Chem.B,2005,109:16230-16243.
    [14]F.Maillard,E.R.Savinova,P.A.Simonov,V.I.Zaikovskii,U.Stimming.Infrared spectroscopic study of CO adsorption and electro-oxidation on carbon-supported Pt nanoparticles: Interparticle versus intraparticle heterogeneity [J]. J. Phys. Chem. B, 2004, 108: 17893-17904.
    [15] A. Hartstein, J. R. Kirtley, J. C. Tsang. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett., 1980,45: 201-204.
    [16] W. P. Halperin. Quantum size efects in metal particles [J]. Review of Modem Phys., 1986, 58(3):533-606.
    
    [17] P. Ball, L .Garwin. Science at the atomic scale [J]. Nature, 1992, 355: 761-766.
    [18] D. L. Feldheim, C D Keating. Self-assembly of single electron transistors and related devices [J]. Chem. Soc. Rev., 1998, 27(1):1-12.
    [19] G. Q. Lu, S. G. Sun, L. R. Cai, et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and,poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd,and Rh: Abnormal infrared effects (AIRES ) [J]. Langmuir, 2000, 16: 778-786.
    [20] S. G. Sun. Abnormal infrared effects of nanometer-scale thin film material of platinum group metals and alloys at electrode-electrolyte interfaces, Chapter 21 in Catalysis and Electrocatalysis of nanoparticles [ M], E.R. Savinova, C.G. Vayenas and A.Wieckowski (Eds), Marcel Dekker. Inc., New York, 2003.
    [21] Z. Q. Tian, B. Ren, B. W. Mao. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. l.Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J ]. J. Phys .Chem. B, 1997, 101(8):1338-1346.
    [22] Z. Q. Tian, B. Ren, D. Y.Wu. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures [J]. J. Phys. Chem. B, 2002, 106(37):9463-9483.
    [23] A. Abramov, Y. Djeridane, R. Vanderhaghen, P. R. I. Cabarrocas. Large grain mu c-Si: H films deposited at low temperature: Growth process and electronic properties [J]. J. NON-CRYSTALLINE SOLIDS, 2006, 352 (9- 20): 964-967.
    [24] C. L. Dong, K. Asokan, C. L. Chang, et al. Variation of electronic structures of CeA12 thin films with thickness studied by X-ray absorption near-edge structure spectroscopy [J]. J. Electron Spectroscopy And Related Phenomena, 2006,152 (1 -2): 1 -5.
    [25] E. R. Savinova, C. G. Vayenas, A. Wieckowski (Eds), Catalysis and Electrocatalysis of nanoparticles [M]. Marcel Dekker .Inc., New York, 2003.
    [26] M. L. Hitchman, F. Tian. Studies of TiO_2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol [J]. J. Electroanal. Chem., 2002, 538-539:165-172.
    [27]M.S.Zheng,S.G.Sun,S.P.Chen.Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of Pt Ru alloys for CO adsorption and oxidation[J].J.Appl.Electrochem.,2001,31:749-757.
    [28]X.Y.Qin,J.R.Sun,L.D.Zhang.Enhanced magnetism and its characteristics of nanostructured alloy NiAl[J].Nanostructured Materials,1997,9(1-8):623-626.
    [29]M.Mandal,S.Kundu,T.K.Sau,et al.Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy[J].Chem.Mater.,2003,15:3710-3715.
    [30]V.N.Balbyshev,D.J.King,A.Khramov,et al.Investigation of quaternary Al-based quasicrystal thin films for corrosion protection[J].Thin Solid Films,2004,447:558-563.
    [31]S.M.Chen.Characterization and electrocatalytic properties of cobalt hexacyanoferrate films [J].Electrochim.Acta,1998,43:3359-3369.
    [32]K.W.Park,J.H.Choi,Y.E Sung.Structural,chemical,and electronic properties of Pt/Ni thin film electrodes form ethanol electrooxidation[J].J.Phys.Chem.B,2003,107:5851-5856.
    [33]P.V.Kamat,S.Barazzouk,S.Hotchandani,K.G.Thomas.Nanostructured thin films of C-60-aniline dyad clusters:Electrodeposition,charge separation,and photoelectrochemistry [J].Chem.Eur.J.2000,6:3914-3921.
    [34]R.Brinzanik,P.J.Jensen,K.H.Bennemann.Simulation of the magnetic properties during the growth of nanostructured thin films[J].Nanostructured materials,1999,12(1-4):9-12.
    [35]R.Brinzanik,P.J.Jensen,K.H.Bennemann.Model study for the nonequilibrium magnetic domain structure during the growth of nanostructured ultrathin films[J].Journal of magnetism and magnetic materials,2002,238(2-3):258-269.
    [36]R.B.rinzanik,P.J.Jensen,K.H.Bennemann.Magnetic relaxation and dipole-coupling-induced magnetization in nanostructured thin films during growth:A cluster Monte Carlo study[J].Phys.Rev.B,2003,68(17):1-8.
    [37]K.Mae,T.Honda.Growth mode variations of thin films on nano-faceted substrates[J].Thin Solid Films,2000,373:199-202.
    [38]F.Craciun,P.Verardi,M.Dinescu,et al,Early stages of growth and nanostructure of Pb(Zr,Ti)O-3 thin films observed by atomic force microscopy[J].Thin Solid Films,1998,336:281-285.
    [39]Z.L.Cui,L.F.Dong,Z.K.Zhang.Oxidation behavior of nano-Feprepared by hydrogen arc plasma method[J].Nanostructured Materials,1995,5(7-8):829-833.
    [40]俞圣雯,陈平平,王广厚.LECBD法制备Pb团簇明[J].原子与分子物理学报,1998,1:264-266.
    [41]H.E.Schaefer,R.Wurschum,R.Birringer,et al,Nanometer-sized solids,their structure and properties[J].J.of the Less-common.Met.,1988,110:161-169.
    [42]朱勇,李宗全,吴希俊等.金属毫微粉的制备[J].科学通报,1989,34(17):1302-1303.
    [43]I.F.Vasconcelos,R S de Figueiredo.Transformation kinetics on mechanical alloying[J].J Phys.Chem.B,2003,107(16):3761-3767
    [44]E.Gomez,C.Muller,W.G.proud,et al,Electrodeposition of nickel on vitreous carbon:influence of potential on deposite morphology[J].J.Appl.Electrochem.,1992,22:872-876.
    [45]A.Bai,C.C.Hu.Cyclic voitarnmetric deposition of nanostructured iron-group alloys in high-aspect ratios without using templates[J].Electrochem.Commun.,2003,5:619-624.
    [46]A.lachenwitzer,M.R.Vogt,O.M.Magnussen,et al,Electrodeposition of Ni on Cu(100):an in-situ STM study[J].Surf Sci.,1997,382:107-115.
    [47]A.E.Bjerke,P.R.Griffiths,W.Theiss.Surface-enhanced infrared absorption of CO on platinized platinum[J].Anal.Chem.,1999,71:1967-1974.
    [48]A.J.Arvia,J.C.Canullo,E.Custidiano,et al,Electrochemical faceting of metal electrodes [J].Electrochim.Acta,1986,31(11):1359-1368.
    [49]A.C.Chialvo,W.E.Yriaca,A.J.Arvia.Changes in the electrochemical responses of noble metals produced by square-wave potential perturbations[J].J.Electroanal.Chem.,1983,146:93-108.
    [50]A.C.Chialvo,W.E Triaca,A.J.Arvia.Changes in the electrochemical responses of noble metals produced by square-wave potential perturbations[J].J.Electroanal.Chem.,1984,171:303-316.
    [51]陈友江,孙世刚,贡辉等.纳米结构Pt膜方波电位法制备及特殊红外性能[J].物理化学学报,2004,20(2):129-133.
    [52]M.J.Hostetler,R.J.Murray.Colloids and self-assembled monolayers[J].Curt.Opin.Colloid Interface Sci.,1997,2:42-50.
    [53]M.Brust,D.Bothell,C.J.Kiely,et al,Self-assembled gold nanoparticle thin films with nonmetallic coptical and electronic properties[J].Langmuir,1998,14:5425-5429.
    [54]M.Fuchs,K.S.Schweizer.Structure of colloid-polymer suspensions[J].J.Phys-Condens.Mat.,2002,14(12):239-269.
    [55]H.Shin,M.Agarwal,M.R.De Guire,A.H.Heuer.Deposition mechanism of oxide thin films on self-assembled organic monolayers[J].Acta.Mater.,1998,46(3):801-815.
    [56]J.L.Sbi,Z.X.Lin.Characterization of nano-sized ZrO2 powder[J].Powder Technology,1993,74(1):7-12.
    [57]J.L.Shi,J.H.Gan,Z.X.Lin.Formation of nanosized spherical aluminum hydroxide particles by urea method[J].Solid State Ionics,1989,32/33:537-543.
    [58]D.Jezequel,J.Guenot,N.Jouini,et al,Submicrometer zinc-oxide particles- elaboration in polyol medium and morphological-characteristics[J].J.Mater.Res.,1995,10(1):77-83.
    [59]X.Y.Xiao,H.Baltruschat.Electrochemical deposition and nanostructuring of As at Pt(111)[J].Langmuir,2003,19(18):7436-7444.
    [61]周根陶,郑永飞,刘双怀.一种新的制备超微粉末的方法-沉淀转化法[J].科学通报,1996,41(4):321-323.
    [62]Y.Xie,Y.T.Qian,W.Z.Wang,et al.A Benzene-thermal synthetic route to nanocrystalline gan[J].Science,1996,272:1926-1927.
    [63]Y.D.Li,Y.T.Qian,H.W.Liao,et al.A reduction-pyrolysis-catalysis synthesis of diamond [J].Science,1998,281:246-247.
    [64]王元生,李坚.溶胶一凝胶法制备Sb掺杂的a-Fe2O3纳米晶过程的结构研究[J].无机材料学报,1998,13(5):745-750.
    [65]G.Pacheco-Malagon,A.Garcia-Borquez,D.Coster,et al,TiO_2-Al_3O_3 nanocomposites[J].J.Mat.Res.,1995,10(5):1264-1269.
    [66]S.A.Bilmes,J.C.Rubim,A.Otto,et al,SERS from pyriding adsorbed on electrodispersed platinum-electrodes[J].Chem.Phys.Let.,1989,159(1):89-96.
    [67]Z.Q.Tian,B.Ren,B.W.Man.Extending surface Raman spectroscopy to transition metal surfaces for practical applications.1.Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J].J.Phys.Chem.B,1997,101:1338-11346.
    [68]Z.Q.Tian,J.S.Gao,B.Ren,et al,Can surface Raman spectroscopy be a general technique for surface science and electrochemistry[J].J.Raman Spectrosc.,1998,29:703-711.
    [69]B.Ren,X.Q.Li,Z.Q.Tian.Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes[J].Electrochim.Acta,2000,46:193-205.
    [70) Y.Xie,D.Y.Wu,G.K.Liu,et al.Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories[J].Electroanal.Chem.2003,554:417-425.
    [71]G.Q.Lu,S.G.Sun,S.P.Chen,N.H.Li,Y.Y.Yang,Z.W.Tian.In Electrode Process Ⅵ,Wieckowski A.and ltaya K.(Eds),The Electrochemical Society,Inc.,PV 96-8,1996,136.
    [72]M.Osawa,M.Kuramitsu,A.Hatta,W.Su"etaka,H.Seki.Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films[J].Surf Sci.Lett.1986,175:L787-L793.
    [73]Y.Suzuki,M.Osawa,A.Hatta,W.Suetaka.Mechanismof absorption enhancement in infrared ATR spectra observed in the Kretschmann configuration[J].Appl.Surf Sci.1988,33/34:875-881.
    [74]M.Osawa,M.Ikeda,Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films:contribution of electromagnetic and chemical mechanisms[J].J.Phys.Chem.1991,95:9914-9919.
    [75]M.Osawa,K.Ataka,K.Yoshii,Y.Nishikawa.Surface-enhanced infrared spectroscopy:the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J].Appl.Spectrosc.1993,47:1497-1502.
    [76]M.Osawa.Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy(SEIRAS)[J].Bull.Chem.Soc.Jpn.,1997,70:2861-2880.
    [77]Y.Nishikawa,K.Fujiwara,T.Shima.A Study of the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of silver island films [J].Appl.Spectrosc.1991,45:747-751.
    [78]Y.Nishikawa,K.Fujiwara,K.Ataka,M.Osawa,Surface-enhanced external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors,glasses,and polymers[J].Anal.Chem.1993,65:556-562.
    [79]Y.Nishikawa,T.Nagasawa,K.Fujiwara,M.Osawa,Silver island films for surface-enhanced infrared absorption spectroscopy:effect of island morphology on the absorption enhancement [J].Vib.Spectrosc.1993,6:43-53.
    [80]Y.Nishikawa,K.Fujiwara,T.Shima.Qualitative-analysis of nanogram samples with FT-IR transmission surface electromagnetic-wave spectroscopy[J].Appl.Spectrosc.1990,44:691-694.
    [81]Y.Nishikawa,Y.Ito,N.Yamakami,K.Fujiwara and T.Shima.Identification of subnanometer surface-layers on polymer-films by surface-enhanced infrared transmission spectroscopy[J].Surf Interface Anal.,1992,18:481-486.
    [82]Y.G.Yan,Q.X.Li,S.J.Huo,et al.Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces[J].J.Phys.Chem.B,2005,109(16):7900-7906.
    [83]严彦刚,李巧霞,霍胜娟.铂和钌纳米电极的全湿法制备及表面增强红外效应[J].化学学报,2005,63(6):545-549.
    [84]李巧霞,严彦刚,徐群杰.镉电极上的衰减全反射表面增强红外光谱[J].高等学校化学学报.2006,27(12):2414-2416.
    [85]S.J.Huo,X.K.Xue,Y.G.Yan,et al.Extending in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes[J].J.Phys.Chem.B,2006,110(9):4162-4169.
    [86]Q.-X.Li,X.-K.Xue,Q -J.Xu,W.-B.Cai.Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes[J].Appl.Spec.2007,11:1328-1333.
    [87]T.A.Lestowa,M.Leyva-Lucero,E.R.Mendez,et al,The surface enhanced second harmonic generation of light from a randomly rough metal surface in the Kretschmann geometry[J].Optics Comm.,2000,183:529-545.
    [88]T.V.Murzina,T.V.Misuryaev,A.F.Kravets,et al,Nonlinear magneto-optical Kerr effect and plasmon-assisted SHG in magnetic nanomaterials exhibiting giant magnetoresistance [J].Surf.Sci.,2001,482-485:1101-1106.
    [89]A.Peremans,A.Tadjeddine.Spectroscopic investigation of electrochemical interfaces at overpotential by infrared-visible sum-frequency generation-platinum in base and methanol-containing electrolyte[J].J.Electroanal.Chem.,1995,395:313-316.
    [90]S.Baldelli,A.S.Eppler,E.Auderson,et al,Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays[J].J.Chem.Phys.,2000,113:5432-5438.
    [91]K.W.Park,J.H.Choi,K.S Ahn,et at,PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method[J].J.Phys.Chem.B,2004,108(19):5989-5994.
    [92]R.Parsons,T.Vandernoot.The oxidation of small organic molecules:A survey of recent fuel cell related research[J].J Electroanal.Chem.,1988,257(1-2):9-45.
    [93]C.T.Hable,M.S.Wrighton.Electrocatalytic oxidation of methanol by assemblies of platinum/tin catalyst particles in a conducting polyaniline matrix[J].Langmuir,1991,7(7):1305-1309.
    [94]H.Laborde,J.M.Leger,C.Lamy.Electrocatalytic oxidation of methanol and Cl molecules on highly dispersed electrodes.1.Platinum in polyaniline[J].J.Appl.Electrochem.,1994,24:219-226.
    [95]M.Shibata,S.Motoo.Electrocatalysis by ad-atoms:Part ⅩⅪ.Catalytic effects on the elementary steps in methanol oxidation by non-oxygen-adsorbing ad-atoms[J].J.Electroanal.Chem.1987,229(I-2):385-394.
    [96]S.Swathirajan,Y.M.Mickhail.Methanol Oxidation on Platinum-Tin Catalysis Dispersed on Poly(3-methyl)thiophene Conducting Polymer[J].J.Electrochem.Soc.1992,139(8):2105-2110.
    [97] M. Krausa, W. Vielstich. Study of the electrocatelytic influence of PtIRu and Ru on the oxidation of residues of small organic molecules [J]. J. Electroanal. Chem., 1994, 379:307-314.
    [98] W. T. Napporn, H Laborde, J M Leger. Electro-oxidation of CI molecules at Pt-based catalysts highly dispersed into a polymer matrix: effect of the method of preparation [J]. J.Electroanal.Chem. 1996, 404(1): 153-159.
    [99] G. Q. Lu, S. G. Sun, S. P. Chen et.al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy [J]. J. Electroanal. Chem., 1997,421:19-23.
    [100] U. Heitz, R. Sherwood, D. M. Cox, A. Kaldor, J. T. Yates Jr. CO chemisorption on monodispersed platinum clusters on SiO2: Detection of CO chemisorption on single platinum atoms [J]. J .Phys. Chem., 1995, 99 (21): 8730-8735.
    
    [101] Bingchen Du, Yuye Tong. A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru surfaces: Direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt [J]. J. Phys. Chem. B, 2005, 109: 17775-17780.
    [102] Y. D. Jin, Y. Shen, S. J. Dong. Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for xxygen reduction [J]. J. Phys. Chem. B 2004,108, 8142-8147.
    [103] S. Kumar, S. Z. Zou. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: effects of film thickness [J]. Langmuir, 2007, 23:7365-7371.
    [104] S. Zou, M. J. Weaver, Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical-bonding versus electrostatic-field effects, [J]. J. Phys. Chem., 1996, 100: 4237-4242.
    [105] S. Wasmus, A. Kuver. Methanol oxidation and direct methanol fuel cells: a selective review [J]. J. Electroanal. Chem. 1999, 461: 14-31.
    [106] A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Norskov. Surface electronic structure and reactivity of transition and noble metals [J]. J. Mol. Catal. 1997, 115: 421-429.
    [107] B. Hammer, J. K. Norskov. Theoretical surface science and catalysis - Calculations and concepts [J].Adv. Catal. 2000, 45: 71-129.
    [108] J. Greeley, J. K. Norskov, M. Maurikakis. Electronic structure and catalysis on metal surfaces [J]. Annu. Rev. Phys. Chem. 2002, 53: 319-348.
    [109] U. B. Demirci. Theroretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells [J]. J. Power Source, 2007, 173: 11-18.
    [110]E.Antolini,J.R.C.Salgado,E.R.Gonzalez.Carbon supported Pt75M25(M = Co,Ni)alloys as anode and cathode electrocatalysts for direct methanol fuel cells[J].J.Electroanal.Chem.2005,580:145-151.
    [111]J.H.Choi,K.J.Jeong,Y.Dong,J.Han,T.H,Lim,J.S.Lee,Y.E.Sung,Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J].J.Power Sources,2006,163:71-75.
    [112]张叔良著,红外:光谱分析与新技术,1993,第一版
    [113]严彦刚,复旦大学博士学位论文[M],2007;霍胜娟,复旦大学博士学位论文[M],2007;马敏,复旦大学博士学位论文[M],2007。
    [114]A.Bewick,K.Kunimatsu.Infrared-spectroscopy of the electrode-electrolyte interphase[J].Surf.Sci.1980,101(1-3):131-138.
    [115]A.Bewick,K.Kunimatsu,B.S.Pons.Infrared-spectroscopy of the electrode-electrolyte interphase[J].Electrochim.Acta,1980,25(4):465-468.
    [116]A Bewick,K Kunimatsu,S Pons et al,Electrochemically modulated infrared spectroscopy (EMIRS):Experimental details[J].J.Electroanal.Chem.,1984,160(1-2):47-61.
    [117]S.Pons,The use of fourier transform infrared spectroscopy for in situ recording of species in the electrode- electrolyte solution-interphase[J].J.Electroanal.Chem.,1983,150(1-2):495-504.
    [118]D.S.Corrigan,L.W.H.Leung,M.J.Weaver.Single potential-alteration surface infrared-spectroscopy- examination of adsorbed species involvedin i rreversible electrode-reactions[J].Anal.Chem.1987,59(18):2252 -2256.
    [119]J.W.Russell,J.Overend,A.Bewick,et al.Infrared-spectrum of CO in a platinum electrode in acidic solution[J].J.Phys.Chem.B,1982,86(16),3066-3070.
    [120]W.R.Heineman,J.N.Burnett,R.W.Murry.Optically transparent thin-layer electrodes:ninhydrin reduction,in an infrared transparent cell[J].Anal.Chem.,1968,40:1974-1978.
    [121]周尉,王俊逸,盛海涛,江志裕,严曼明.甲醇阳极氧化的现场FTIR透射差谱研究[J].化学学报,2000,58(11):1447-1451.
    [122]F.Liu,W.Zhou,M.Yan,Z.Jiang,In situ transmission difference FTIR spectroscopic investigation on anodic oxidation of methanol in aqueous solution[J].Electrochem.Commun.,2003,5:276-282.
    [123]S.M.Moon,C.Bock,B.MacDougall.Setup,sensitivity and application of thin electrolyte layer ATR-FTIR spectroscopy[J].J.Electroanal.Chem.2004,568:225-233.
    [124]S.Y.Kang,I.C.Jeon,K.Kim.Infrared absorption enhancement at silver colloidal particles [J].Appl.Spectrosc.1998,52:278-283.
    [125] S. J. Lee, K. Kim. Diffuse reflectance infrared spectra of stearic acid self-assembled on fine silver particles [J]. Vib. Spectrosc. 1998, 18: 187-201.
    [126] J. A. Seelenbinder, C.W. Brown, P. Pivarnik, A. G. Rand. Colloidal gold filtrates as metal substrates for surface-enhanced infrared absorption spectroscopy [J]. Anal. Chem., 1999, 71(10): 1963-1966.
    [127] L. J. Wan, M. Terashima, H. Noda, M. Osawa. Molecular orientation and ordered structure of benzenethiol adsorbed on gold (111) [J]. J. Phys. Chem. B 2000, 104(15): 3563 -3569.
    [128] F. M. Hoffmann. Infrared reflection-absorption spectroscopy of adsorbed Molecules [J]. Surf. Sci. Rep. 1983, 3:107-192.
    [129] M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi. Surface-enhanced infrared ATR spectroscopy for in-situ studies of electrode-electrolyte interfaces [J]. J. Electron Spectrosc. Relat. Phenom. 1993, 64-5: 371-379.
    [130] T. Kamata, A. Kato, J. Umemura, T. Takenaka. Intensity enhancement of infrared attenuated total reflection spectra of stearic acid Langmuir-Blodgett monolayers with evaporated silver island films [J]. Langmuir, 1987, 3(6):1150-1154.
    [131] E. Johnson, R. Aroca. Surface-enhanced infrared spectroscopy of monolayers [J] J. Phys. Chem.1995, 99(23): 9325-9330.
    [132] A. N. Hatta. Y. Suzuki, W. Suetaka. Infrared absorption of polycyanoacrylate enhanced by Ag island films in the Kretschmann's ATR geometry: the coverage dependence [J]. Appl. Surf. Sci. 1989,37:299-305.
    [133] M. Osawa, M. Ikeda. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms [J]. J. Phys. Chem. 1991, 95(24): 9914-9919.
    [134] C. Kuhne, G. Steiner, W. B. Fischer, R. Salzer. Surface-enhanced FTIR spectroscopy on membranes [J]. J. Anal. Chem. 1998, 360: 750-754.
    [135] R.K. Chang, T. E. Furutak (eds), Surface Enhanced Raman Scattering, Plenum, New York (1982),
    
    [136] H. Metiu. Surface enhanced spectroscopy [J]. Prog. Surf. Sci. 1984, 17: 153-320.
    [137] M. Moskovits. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys. 1985, 57: 783-826.
    [138] A. Wakaun, 'Surface-enhanced Electromagnetic Processes',in "Solid State Physics" [M]. eds H. Ehrenreich and D. Turnbull,Academic Press, New York, 1984, Vol. 38 : 223-294.
    [139] M. Osawa, K. Yoshii, K. Ataka, T. Tuyanagi. Real-time monitoring of electrochemical dynamics by submillisecond time-resolved surface-enhanced infrared attenuated-total-reflection spectroscopy [J]. Langmuir, 1994, 10(3): 640-642.
    [140] O. Krauth, G. Fahsold, A. Pucci. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin Fe films on MgO (001) [J]. J. Chem. Phys. 1999, 110: 3113-3117.
    [141] A.E. Bjerke, P.R. Griffiths, W. Theiss. Surface-enhanced infrared absorption of CO on platinized platinum [J]. Anal. Chem. 1999, 71(10): 1967-1974.
    [142] R. Aroca, B. Price. A new surface for surface-enhanced infrared spectroscopy: Tin island films [J]. J. Phys. Chem. B, 101(33): 6537-6540.
    [143] T. Yoshidome, T. Inoue, S. Kamata. Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films [J]. Chem. Lett. 1997, 6: 533-534.
    [144] S. Sato, K. Kamada, M. Osawa, Surface-enhanced IR absorption (SEIRA) on small Pt particles deposited on an island Au film [J]. Chem. Lett. 1999, 1: 15-16.
    [145] Y. Zhu, H. Uchida, M. Watanabe. Oxidation of carbon monoxide at a Platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique [J]. Langmuir, 1999, 15(25): 8757-8764.
    [146] R. Oritz, A. Cuesta, O.P. Marquez, J. Marquez, J.A. Mendez, C. Gutierrez. Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates [J]. J. Electroanal. Chem. 1999, 465(2): 234-238.
    [147] M. Watanabe, Y. Zhu, H. Uchida. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy [J]. J. Phys. Chem. B, 2000, 104(8):1762-1768.
    [148] B. N. J. Persson, R. Ryberg. Vibrational interaction between molecules adsorbed on a metal surface: the dipole-dipole interactions [J]. Phys. Rev. B, 1981, 24: 6954-6970.
    [149] B. N. J. Persson, A. Liebsch. Collective vibrational modes of isotopic mixtures of CO on Cu (111) and Cu (001) [J]. Surf. Sci. 1981, 110(2): 356-368.
    [150] P. Dumas, R.G. Tobin, P. Richards. Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy: I. Silver [J]. Surf. Sci. 1986, 171 (3):555-578.
    [151] G. T. Merklin, P. R. Griffiths. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver Films [J]. Langmuir, 1997, 13(23): 6159-6163.
    [152] J. P. Devlin, K. Consani. Metal surface spectroscopy. Charge transfer and totally symmetric mode activity [J]. J. Phys. Chem. 1981, 85(18): 2597-2598.
    [153]T.R.Jensen,R.P.Van Duyne,S.A.Johnson,V.A.Maroni.Surface-enhanced infrared spectroscopy:A comparison of metal island films with discrete and nondiscrete surface plasmons[J].Appl.Spectrosc.2000,54:371-377.
    [154]H.D.Wanzenbock,B.Mizaikoff,N.Weissenbacher,R.Kellner.Multiple internal reflection in surface enhanced infrared absorption spectroscopy(SEIRA) and its significance for various analyte groups[J].J.Mol.Struct.1997,410-411:535-538.
    [155]H.Miyake,S.Ye,M.Osawa.Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry[J].Electrochem.Commun.,2002,4(12):973-977.
    [156]H.Miyake,E.Hosono,M.Osawa.Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes[J].Chem.Phys.Lett.,2006,428(4-6):451-456.
    [157]A.Miki,S.Ye,M.Osawa.Surface-enhanced IR absorption on platinum nanoparticles:an application to real-time monitoring of electrocatalytic reactions[J].Chem.Commun.,2002,14:1500-1501.
    [158]Y.X.Diao,M.J.Han,L.J.Wan,et al.Adsorbed structures of 4,4'-bipyridine on Cu(111)in acid studied by STM and IR[J].Langmuir,2006,22(8):3640-3646.
    [159]H.Miyake,M.Osawa.Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution[J].Chem.Lett.,2004,33(3):278-279.
    [160]A.Rodes,J.M.Orts,J.M.Perez,J.M.Feliu,A.Aldaz.Sulphate adsorption at chemically deposited silver thin film electrodes:time-dependent behavior as studied by internal reflection step-scan infrared spectroscopy[J].Elctrochem.Commun.2003,5(1):56-60.
    [161]J.M.Delgado,J.M.Orts,A.Rodes.ATR-SEIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes[J].Langmuir 2005,21(19):8809-8816.
    [162]S.J.Huo,Q.X.Li,Y.G.Yan,et al.Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles[J].J.Phys.Chem.B,2005,109(33):15985-15991.
    [163]S.J.Huo,X.K.Xue,Q.X.Li,et al.Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy[J].J.Phys.Chem.B,2006,110(51):25721-25728.
    [164]H.F.Wang,Y.G.Yan,S.J.Huo.Wet process fabrication of Cu-on-Si electrodes for In situ SEIRAS application[J].Electrochim.Acta,2007,52(19):5950-5957.
    [165]林徉钦、李忠丽、章宏强、杨锋利.现场显微红外光谱电化学分析方法[P].中国专利:CN1080996A.1994-01-19.
    [166] W. Akemann, K. A. Friedrich, U. Linke, U. Stimming. The catalytic oxidation of carbon monoxide at the platinum/electrolyte interface investigated by optical second harmonic generation (SHG): comparison of Pt (111) and Pt (997) electrode surfaces [J]. Surf. Sci., 1998, 402 (1-3): 571-575
    
    [167] G. Q. Lu, A. Lagutchev, D. D. Dlott , A. Wieckowski. Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode [J]. Surf. Sci., 2005, 585 (1-2): 3-16
    [168] M. L. Lynch, R. M. Corn. In-situ 2nd- Harmonic generation studies of the surface -structure of a well-ordered Pt (111) electrode [J]. J. Phys. Chem. 1990, 94 (11): 4382-4385,
    [169] B. Pettinger, J. Lipkowski, S. Mirwald, A. Friedrich. Specific adsorption at Au (111) electrodes studied by second harmonic generation [J]. J. Electroanal. Chem. 1993, 329: 289-311.
    [170] D. A. Higgins, R. M. Corn. 2nd- Harmonic generation studies of adsorption at a liquid liquid electrochemical interface [J]. J. Phys. Chem. 1993, 97 (2): 489-493.
    
    [171] O. Sato, R. Baba, K. Hashimoto, A. Fujishima. Coherent interferometric analysis of the molecular orientation based on the study of the optical second harmonic generation [J]. J. Electroanal. Chem. 1991, 306, 291-296.
    
    [172] P. Guyot-Sionnest, A. Tadjeddine. Spectroscopic investigations of adsorbates at the metal—electrolyte interface using sum frequency generation [J]. Chem. Phys. Lett., 1990, 172:341-345.
    
    [173] K. Ataka, Y. Hara, M. Osawa. A new approach to electrode kinetics and dynamics by potential modulated Fourier transform infrared spectroscopy [J]. J. Electroanal. Chem., 1999, 473(1-2): 34-42.
    [174] Y. X. Chen, A. Miki, S. Ye, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode [J]. J. Am. Chem. Soc., 2003, 125(13): 3680-3681.
    [175] S. I. Yaniger, D. W. Vidrine. Dynamic FTIR. Part I: Rapid-scan methods in spectroelectrochemistry [J].Appl. Spectrosc., 1986,40(2): 174-180.
    
    [176] B. O. Budevska, P. R. Griffiths. Step-scan FT-IR external reflection spectrometry of the electrode-electrolyte interface by ootential modulation [J]. Anal. Chem., 1993, 65(21): 2963-2971.
    
    [177] S. Matsuda, F. Kitamura, M.Takahashi and M. Ito. Dynamic aspects of methanol oxidation on Pt electrodes by time resolved infrared reflection absorption-spectroscopy [J]. J. Electroanal. Chem., 1989, 214: 305-312.
    [178] G. K. Liu, B. Ren, D. Y. Wu, S. Duan, J. F. Li, J. L. Yao, R. A. Gu, Z. Q. Tian, Effect of intrinsic properties of metals on the adsorption behavior of molecules: Benzene adsorption on Pt group metals [J]. J. Phys. Chem. B, 2006, 110(35): 17498-17506.
    
    [179] J. S. Gao, Z. Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy Carbon substrates [J]. Spectrochemica. Acta A, 1997,(53): 1595-1602.
    
    [180] L. Cui, Z. Liu, S. Duan, D. Y. Wu, B. Ren, Z. Q. Tian. Oriention charge of adsobed Pyrazine on Roughened Rhodium electrodes as probed by Surface-Enhanced Raman Spectroscopy [J]. J. Phys. Chem. B, 2005, 109: 17597-17602.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001。
    [2]周伟舫,电化学测量,上海科学技术出版社,1983。
    [3]A.J.Bard,L.R.Faulkner,Electrochemical Methods Fundamentals and Applications[M].John Wiley & Sons,Inc.2001.
    [4]田昭武,电化学研究方法,科学出版社:北京,1984。
    [5]查全性等,电极过程动力学导论(第三版)[M].北京:科学教育出版社,2002.
    [6]张祖训,汪尔康,电化学原理和方法[M].北京:科学出版社,2000
    [7]K.Ataka,T.Yotsuyanagi and M.Osawa,Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption.spectroscopy[J].J.Phys.Chem.,1996,100(25):10664-10672.
    [8]E.Kretschmann,Determination of Optical Constants of Metals by Excitation of Surface Plasmons[J],Zeitschrift Fur Physik,1971,241(4):313-342.
    [1] N. M. Markovic, P. N. Ross, Surface science studies of model fuel cell electrocatalysts [J]. Surface Science Reports, 2002, 45(4-6): 117-229.
    
    [2] R. Adzic, In Electrocatalysis; J. Lipkowski, P. N. Ross, Eds.; Wiley-VCH: New York, 1998.
    [3] F. Maillard, G. Q. Lu, A. Wieckowski, U. Stimming. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation [J]. J. Phys. Chem. B, 2005, 109: 16230-16243.
    [4] Y. Tong, C. Rice, A. Wieckowski, E. Oldfield. In situ infrared study of carbon monoxide adsorbed onto commercial fuel-cell-grade carbon-supported platinum nanoparticles: Correlation with C-13 NMR results [J]. J. Phys. Chem. B, 2000, 104: 5803-5807.
    [5] S. Park, S. A. Wasileski, M. J. Weaver. Electrochemical infrared characterization of carbon-supported platinum nanoparticles: A benchmark structural comparison with single-crystal electrodes and high-nuclearity carbonyl clusters [J]. J. Phys. Chem, B 2001, 105: 9719-9725.
    
    [6] A. G. Somorjai. Introduction to surface chemistry and catalysis; Wiley: New York, 1994.
    [7] S. R. Brankovic, J. X. Wang, R. R. Adzic. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces [J]. Surf. Sci., 2001, 474: L173-L179.
    [8] S. R. Brankovic, J. X. Wang, R. R. Adzic. New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level [J]. J. Serb. Chem. Soc., 2001, 66: 887-889.
    [9] L. A. Kibler, M. Kleinert, R. Randier, D. M. Kolb. Initial stages of Pd deposition on Au (hkl) -Part I: Pd on Au(111) [J]. Surf. Sci., 1999, 443:19-30.
    [10] S. Morin, A. Lachenwitzer, F. A. Moller, et al., Comparative in situ STM studies on the electrodeposition of ultrathin nickel films on Ag (111) and Au (111) electrodes [J]. J. Electrochem. Soc., 1999, 146: 1013-1018.
    
    [11] R. J. Randier, D. M. Kolb, B. M. Ocko, et al., Electrochemical copper deposition on Au(100): a combined in situ STM and in situ surface X-ray diffraction study [J]. Surf. Sci., 2000, 447:187-200.
    
    [12] M. Dietterle, T. Will, D. M. Kolb. The initial stages of Cu electrodeposition on Ag (100): an in situ STM study [J]. Surf. Sci., 1998, 396: 189-197.
    [13] K. Uosaki, S. Ye, H. Naohara, et al., Electrochemical epitaxial growth of a Pt (111) phase on an Au (111) electrode [J]. J. Phys. Chem. B, 1997, 101:7566-7572.
    [14] J. D. E. Mcintyre, W. F. Peck. Electrodeposition of gold-depolarization effects induced by heavy-metal ions [J]. J. Electrochem. Soc. 1976, 123: 1800-1813.
    [15] D. Davidovic, R. R. Adzic. Electrocatalytic and morphological effects of antimony adsorbates on deposition of gold[J].Electrochim.Acta,1988,33:103-108.
    [16]S.R.Brankovic,N.Dimitrov,K.Sieradzki.Surfactant mediated electrochemical deposition of Ag on Au(111)[J].J.Electrochem.Soc.,1999,2:443-445.
    [17]K.Sieradzki,S.R.Brankovic,N.Dimitrov.Electrochemical defect-mediated thin-film growth[J].Science,1999,284:138-141.
    [18]M.Wunesche,H.Meyer,R.Schumacher.Formation and properties of UPD copper-deposits on polycrystallin platinum-electrodes[J].Electrochim.Acta,1995,40:629-635.
    [19]Y.D.Jin,Y.Shen,S.J.Dong.Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for xxygen reduction [J].J.Phys.Chem.B 2004,108,8142-8147.
    [20]F.Melissa,M.Y.Xie,M.J.Weaver.Surface-enhanced rarnan scattering on uniform platinum-group overlayers:preparation by redox replacement of underpotentiai-deposited metals on gold[J].Anal.Chem.,2001,73:5953-5960.
    [21]H.F.Wang,Y.G.Yan,S.J.Huo,W.B.Cai,Q.J.Xu,M.Osawa.Seeded Growth Fabrication of Cu-on-Si Electrodes for In Situ ATR-SEIRAS Applications[J].Electrochim.Acta,2007,52(19):5950-5957.
    [22]Qiao-xia Li,Xiao-kang Xue,Qun-jie Xu,Wen-bin Cai.Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes[J].Appl.Spec.,2007,11:1328-1333.
    [23]M.Osawa,in:J.M.Chalmers,P.R.Griffiths(Eds.),Handbook of Vibrational Spectroscopy,Vol.1,John Wiley & Sons,Chichester,U.K.,2002..
    [24]S.J.Huo,X.K.Xue,Y.G.Yan,Q.X.Li,M.Ma,W.B.Cai,Q.J.Xu,M.Osawa.Extending in situ attenuated-total-reflection surface-enhanced infrared absorption spectroscopy to Ni electrodes[J].J.Phys.Chem.B,2006,110(9):4162-4169.
    [25]Y.G.Yan,Q.J.Xu,W.B.Cai.Study of electroadsorption of aromatic molecules on Pt electrodes with surface enhanced IR absorption spectroscopy[J].Acta.Chim.Sinica.2006,64(6):458-462.
    [26]Q.X.Li,Y.G.Yan,Q.J.Xu,W.B.Cai.Attenuated-total-reflection Surface-enhanced Infrared Absorption Spectroscopy on Cadmium Electrode[J].Chem.J.Chinese.U.,2006,27(12):2414-2416.
    [27]S.J.Huo,X.K.Xue,Q.X.Li,S.F.Xu,W.B.Cai.Seeded-Growth Approach to Fabrication of Silver Nanoparticle Films on Silicon for Electrochemical ATR Surface-Enhanced IR Absorption Spectroscopy[J].J.Phys.Chem.B.2006,110(51):125721-25728.
    [28]W.B.Cai,L.J.Wan,H.Noda,et al,Orientational phase transition in a pyridine adlayer on gold (111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy [J]. Langmuir, 1998, 14 (24): 6992-6998.
    [29] S. G. Sun, W. B. Cai, L. J. Wan, M. Osawa. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy [J]. J. Phys .Chem. B, 1999, 103: 2460-2466.
    [30] Y. G. Yan, Q. X. Li, S. J. Huo, et al, Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B, 2005, 109(16): 7900-7906.
    [31] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun., 2002, 4: 973-977.
    [32] K. Ataka, T. Yotsuyanagi, M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J]. J.Phys. Chem., 1996, 100:10664-10672.
    [33] H. Noda, T. Minoha, L.-J. Wan, M. Osawa. Adsorption and ordered phase formation of 2, 2'-bypyridine on Au (111): a combined surface-enhanced infrared and STM study [J]. J. Electroanal. Chem., 2000, 481: 62-68.
    [34] W. Kern, D. A. Puotinen. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology [J]. RCA Rev., 1970,31:187-196.
    
    [35] Z. Shi, J. Lipkowski. Investigations of SO_4~(2-) adsorption at the AU (111) electrode in the presence of under potentially deposited copper adatoms [J]. J. Electroanal. Chem. 1994, 364: 289-294..
    [36] O. M. Magnussen, J. Hotlos, G. Beitel, D. M. Kolb, R. J. Behm. Atomic-structure of ordered copper adlayers on single-crystalline gold electrodes [J]. J. Vac. Sci. Technol. B, 1991, 9: 969-975.
    [37] G. J. Edens, X. Gao, M. J. Weaver. The adsorption of sulfate on gold (111) in acidic aqueous-media-adlayer structural inferences from infrared-spectroscopy and scanning-tunneling-microscopy [J]. J. Electroanal. Chem., 1994, 375: 357-366.
    [38] T. Hachiya, H. Honbo and K. Itaya. Detailed underpotential deposition of copper on gold (111) in aqueous-solutions [J]. J. Electroanal. Chem., 1991, 315: 275-291.
    [39] K. Ataka, G. Nishina, W.B. Cai, S.G. Sun and M. Osawa. Dynamics of the dissolution of an underpotentially deposited Cu layer on Au (111): a combined time-resolved surface-enhanced infrared and chronoamperometric study [J]. Electrochem. Commun., 2000, 2: 417-421.
    [40]M.Futamata.Coadsorption of anions and water molecule during underpotential deposition of Cu and Ph on the Au(111) electrode surface[J].Chem.Phys.Lett.,2001,333:337-343.
    [41]M.F.Toney,J.N.Howard,J.Richer,G.L.Borges,J.G.Gordon,O.R.Melroy,D.Yee,L.B.Sorensen.Electrochemical deposition of copper on a gold electrode in sulfuric-acid-resolution of the interfacial structure[J].Phys.Rev.Lett.,1995,75:4472-4475.
    [42]M.Nakamura,O.Endo,T.Ohta,M.Ito,Y.Yoda.Surface X-ray diffraction study of Cu UPD on Au(111) electrode in 0.5 M H_2SO_4 solution:the coadsorption structure of UPD copper,hydration water molecule and bisulfate anion on Au(111)[J].Surf.Sci.,2002,514:227-233.
    [43]Bingchen Du,YuYe Tong.A coverage-dependent study of Pt spontaneously deposited onto Au and Ru surfaces:direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt[J].J.Phys.Chem B,2005,109:17775-17780.
    [44]查全性等,电极过程动力学导论,科学出版社:北京,2002
    [45]S.Kumar,S.Z.Zou.Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles:effects of film thickness[J].Langmuir,2007,23:7365-7371.
    [46]J.R.Kitchin,J.K.Norskov,M.A.Barteau,J.G.Chen.Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J].Phys.Rev.Lett.,2004,93:156801-156804.
    [47]J.R.Kitchin,J.K.Norskov,M.A.Barteau,J.G.Chen.Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals[J].J.Chem.Phys.,2004,120:10240-10246.
    [48]C.Kittel.Introduction to Solid State Physics;John Wiley & Sons:New York,1996.
    [49]B.Hammer,Y.Morikawa,J.K.Norskov.CO chemisorption at metal surfaces and overlayers [J].Phys.ReV.Lett.,1996,76:2141-2144.
    [50]A.Ruban,B.Hammer,P.Stoltze,H.L.Skriver,J.K.Nφrskov.Surface electronic structure and reactivity of transition and noble metals[J].J.Mol.Catal.A 1997,115:421-429.
    [51]M.O.Pedersen,S.Helveg,A.Ruban,I.Stensgaard,E.L(?)gsgaard,J.K.Nφrskov,F.Besenbacher.How a gold substrate can increase the reactivity of a Pt overlayer[J].Surf Sci.1999,426:395409.
    [52]P.W.Voorhees.Ostwald ripening of 2-phase mixtures[J].Annu.ReV.Mater.Sci.,1992,22:197-215.
    [53]B.Hammer,J.K.Norskov.Theoretical surface science and catalysis - Calculations and concepts[J].Adv.Catal.,2000,45:71-129.
    [54]K.A.Friedrich,F.Henglein,U.Stimming,W.Unkauf.Investigation of Pt particles on gold substrates by IR spectroscopy - Particle structure and catalytic activity [J]. Colloids Surf. A, 1998, 134: 193-206.
    [55] K. A. Friedrich, F. Henglein, U. Stimming, W. Unkauf. Size dependence of the CO monolayer oxidation on nanosized Pt particles supported on gold [J]. Electrochem. Acta, 2000, 45:3283-3293.
    [56] J. L. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates [J]. Angew. Chem., Int. Ed., 2005, 44: 2132-2135.
    [1]S.Gttesfeld,Polymer electrolyte fuel cells,in R.C.Alkire,H.Gerischer,D.M.Kolb and C.W.Tobias(Eds),'Advances in electrochemical science and engineering',Vol.5(Wiley-VCH,Inc,1997)
    [2]J.W.Gosselink.Pathways to a more sustainable production of energy:sustainable hydrogena research objective for Shell[J].Int.J.Hydrogen Energy,2002,27:1125-1129.
    [3]B.D.McNicol,D.A.J.Rand,K.R.Williams.Direct Methanol-Air Fuel Cell for Road Transportation[J].J.Power Sources,1999,83(1-2):15-31.
    [4]S.Kumar,Shouzhong Zou.Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness[J].Langmuir,2007,23:7365-7371.
    [5]R.Dillon,S.Srinivasan,A.S.Arico,V.Antonucci.International activities in DMFC R&D:status of technologies and potential applications[J].J.Power Sources,2004,127:112-126.
    [6]M.S.Zheng,S.G.Sun,S.P.Chen.Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of Pt/Ru alloys for CO adsorption and oxidation[J].J.Appl.Electrochem.,2001,31:749-757.
    [7]Z.Jusys,H.Massong,H.Baltruschat.A new approach for simultaneous DEMS and EQCM:Electro-oxidation of adsorbed CO on Pt and Pt-Ru[J].J.Electrochem.Soc.,1999,146:1093-1098.
    [8]A.Kelaidopoulou,E.Abelidou,A.Papiutsis,E.K.Polychroniadis.Electrooxidation of ethylene glycol on Pt-based catalysts dispersed in polyaniline[J].J.Appl.Electrochem.,1998,28:1101-1106.
    [9]G.Q.Lu,L.R.Cai,S.G.Sun,J.X.He.In situ FTIR spectroscopic studies of CO adsorption on electrodes of nanometer-thin layer of Pt-Ru and Pt-Pd surface alloys[J].Chinese Science Bulletin,1999,44:1470-1474.
    [10]L.W.Niedrach,D.W.McKee,J.Paynter,I.F.Danzig.Elecrocatalysts for hydrogen/carbon monoxide fuel cell anodes.I.Platinum-ruthenium system[J].Electrochem.Technol.,1967,5:318-323.
    [11]D.W.McKee,A.J.Scarpellino.Electrocatalysts for hydrogen/carbon monoxide fuel cell anodes.3.Behavior of supported binary noble metals[J].Electrochem.Technol.,1968,6:101-104
    [12]P.N.Ross,K.Kinoshita,A.J.Scarpellino.P.Stonehart.Electrocatalysis on binary-alloys.2.Oxidation of molecular-hydrogen on supported Pt+Ru alloys[J].J.Electroanal.Chem.,1975,63:97-110.
    [13]H.A.Gasteiger,N.M.Markovic,P.N.Ross,E.J.Cains.CO electrooxidation on well-characterized Pt-Ru alloys[J].J.Phys.Chem.,1994,98:617-625.
    [14]H.A.Gasteiger,N.M.Markovic,P.N.Ross,E.J.Cains.Electrooxidation of small organic-molecules on well-characterized Pt-Ru alloys[J].Electrochim.Acta,1994,39:1825-1832.
    [15]N.M.Markovic,H.A.Gasteiger,P.N.Ross,X.Jiang,I.Villegas,M.J.Weaver.Electrooxidation mechanisms of methanol and formic-acid on Pt-Ru alloy surfaces[J].Electrochim.Acta,1995,40:91-98.
    [16]H.A.Gasteiger,N.M.Markovic,P.N.Ross.H_2 and CO electrooxidation on well-characterized Pt,Ru,and Pt-Ru.1.Rotating-disk electrode studies of the pure gases including temperature effects[J].J.Phys.Chem.,1995,99:8290-8301.
    [17]T.Iwasita,R.Dalbeck,E.Pastor,X.Xia.Progress in the study of electrocatalytic reactions of organic-species[J].Electrochim.Acta,1994,39:1817-1823.
    [18]W.F.Lin,T.Iwasita,W.Vielstich.Catalysis of CO Electrooxidation at Pt,Ru,and PtRu Alloy.An in Situ FTIR Study[J].J.Phys.Chem.B,1999,103:3250-3257
    [19]M.Watanable,S.Motoo.Electrocatalysis by ad-atoms.3.Enhancement of oxidation of carbon-monoxide on platinum by ruthenium ad-atoms[J].J.ElectroanaL Chem.,1975,60:275-283.
    [20]A.Hamnett,Mechanism of Methanol Electro-Oxidation,in Interfacial Electrochemistry:Theory,Experiment,and Applications[M].Wieckowski,A.Ed.;Marcel Dekker:New York,1999,843-884.
    [21]J.C.Davies,B.E.Hayden,D.J.Pegg.The modification of Pt(110) by ruthenium:CO adsorption and electro-oxidation[J].Surf Sci.,2000,467:118-130.
    [22]J.B.Goodenough,A.Hamnett,R.Manoharan,B.J.Kennedy,S.A.Weeks.Methanol oxidation on unsupported and carbon supported Pt+Ru anodes[J].J.Electroanal.Chem.,1988,240:133-145.
    [23]T.lwasita,F.C.Nart,W.Vielstich.An FTIR study of the catalytic activity of a 85-15 Pt-Ru alloy for methanol oxidation[J].Ber.Bunsenegs.Phys.Chem.,1990,94:1030-1034.
    [24]M.Krausa,W.Vielstich.Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic-molecules[J].J.Electroanal.Chem.,1994,379:307-314.
    [25]T.Frelink,W.Visscher,J.A.R.Vanveen.Measurement of the Ru surface content of electrocodeposited PtRu electrodes with the electrochemical quartz crystal microbalance:Implications for methanol and CO electrooxidation[J].Langmuir,1996,12:3702-3708.
    [26] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Leger. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. J. Power Sources, 2002, 105: 283-296.
    [27] W. Chrzanowski, H. Kim, A. Wieckowski. Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes [J]. Catal. Lett., 1998, 50: 69-75.
    [28] W. Chrzanowski, A. Wieckowski. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis [J]. Langmuir, 1998, 14: 1967-1970.
    [29] A. Crown, C. Johnston, A. Wieckowski. Growth of ruthenium islands on Pt (hkl) electrodes obtained via repetitive spontaneous deposition [3].Surf. Sci., 2002, 506: L268-L274.
    [30] A. Crown, H. Kim, G. Q. Lu, I. R. de Moraes, C. Rice, A. Wieckowski. Research toward designing high activity catalysts for fuel cells: structure and reactivity [J]. J. New Mater. Electrochem. Syst., 2000, 3: 275-284.
    [31] A. Crown, I. R. de Moraes, A. Wieckowski. Examination of Pt (111)/Ru and Pt(111)/Os surfaces: STM imaging and methanol oxidation activity [J]. J. Electroanal. Chem., 2001, 500: 333-343.
    [32] G. Q. Lu, P. Waszczuk, A. Wieckowski. Oxidation of CO adsorbed from CO saturated solutions on the Pt (111)/Ru electrode [J]. J. Electroanal. Chem., 2002, 532: 49-55.
    [33] E. Herrero, J. M. Feliu, A. Wieckowski. Scanning tunneling microscopy images of ruthenium submonolayers spontaneously deposited on a Pt (111) electrode [J]. Langmuir, 1999, 15: 4944-4948.
    [34] S. R. Brankovic, N. S. Marinkovic, J. X. Wang, R. R. Adzic. Carbon monoxide oxidation on bare and Pt-modified Ru (1010) and Ru (0001) single crystal electrodes [J]. J. Electroanal. Chem., 2002, 532: 57-66.
    [35] S. R. Brankovic, J. McBreen, R. R. Adzic. Spontaneous deposition of Pt on the Ru (0001)surface [J]. J. Electroanal. Chem., 2001, 503: 99-104.
    [36] S. R. Brankovic, J. X. Wang, R. R. Adzic. Pt submonolayers on Ru nanoparticles - A novel low Pt loading, high CO tolerance fuel cell electrocatalyst [J]. Electrochem. Solid State Lett., 2001,4:A217-A220.
    [37] B. C. Du, Y.Y. Tong. A coverage-dependent study of Pt spontaneously deposited onto Au and Ru surfaces: direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt [J]. J. Phys.Chem.B, 2005, 109: 17775-17780.
    [38] A. Hartstein, J. R. Kirtley, J. C. Tsang. Enhancement in the infrared absorption from molecular monolayers with thin metal overlayers [J]. Phys. Rev. Lett., 1980, 45: 201-204.
    [39] M. Osawa, In Handbook of Vibrational Spectroscopy [M]. Vol. 1, Eds.: J. M. Chalmers, P. R. Griffiths, John Wiley & Sons, Chichester, 2002, p. 785.
    [40] W. B. Cai, L. J. Wan, H. Noda, Y. Hibino, K. Ataka, M. Osawa. Orientational phase transition in a pyridine adlayer on gold (111) [J]. Langmuir, 1998, 14: 6992-6998.
    [41] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun. 2002, 4(12) 4: 973-977.
    [42] Y. G. Yan, Q. X. Li, S. J. Huo, M. Ma, W. B. Cai, M. Osawa. Ubiquitous strategy for probing ATR Surface-Enhanced Infrared Absorption at Platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B. 2005, 109 (16): 7900-7906.
    [43] S. J. Huo, X. K. Xue, Y. G. Yan, Q. X. Li, M. Ma, W. B. Cai, Q. J. Xu, M. Osawa. Extending in situ Attenuated-Total-Reflection Surface-enhanced Infrared Absorption Spectroscopy to Ni electrodes [J]. J. Phys. Chem. B. 2006, 110 (9): 4162-4169.
    
    [44] D. K. Lambert, vibrational Stark effect of adsorbates at electrochemical interface [J]. Electrochimica Acta, 1996,41(5): 623-630.
    [45] N. K. Ray, A. B. Anderson. Variations in carbon-oxygen and platinum-carbon frequencies for carbon monoxide on a platinum electrode [J]. J. Phys. Chem., 1982, 86(25): 4851-4852.
    [46] S. P. Mehandru, A. B. Anderson. Potential-induced variations in properties for carbon monoxide adsorbed on a platinum electrode [J]. J. Phys. Chem., 1989, 93(5): 2044-2047.
    [47] S. Zou, M. J. Weaver. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical-bonding versus electrostatic-field effects, [J]. J. Phys. Chem., 1996, 100: 4237-4242.
    [48] S. A. Wasileski, M. T. M. Koper, M. J. Weaver. Field-dependent electrode-chemisorbate bonding: sensitivity of vibrational Stark effect and binding energetics to nature of surface coordination [J]. J. Am. Chem. Soc., 2002, 124(11): 2796-2805.
    [49] H. Wang, R. G. Tobin, D. K. Lambert. Coadsorption of hydrogen and CO on Pt (335): Structure and vibrational Stark effect [J]. J. Chem. Phys., 1994, 101(5): 4277-4287.
    [50] R. Parsons, T. VanderNoot. The oxidation of small organic molecules. A survey of recent fuel cell related research [J]. J. Electroanal. Chem. 1988, 257: 9-45.
    [51] T. D. Jarvi, E. M. Stuve, In Electrocatalysis [M]. J. Lipkowski, P. N. Ross, Ed., Wiley-VCH: New York, 1998, pp 75-153.
    [52] A. Hamnett, In Interfacial Electrochemistry [M]. A. Wieckowski, Ed., Marcel Dekker, Inc.: New York, 1999, pp 843-883.
    [53] Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J].J.Am.Chem.Soc.2003,125(11):3680-3861.
    [54]T.Yajima,H.Uchida,M.Watanabe.In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J].J.Phys.Chem.B,2004,108:2654-2659.
    [55]F.Richarz,B.Wohlmann,U.Vogel,H.Hoffschulz,K.Wandelt.Surface and electrochemical characterization of electrodeposited PtRu alloys[J].Surf Sci.1995,335:361-371.
    [56]Z.D.Wei,S.H.Chan.Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation[J].J.Electroanal.Chem.,2004,569:23-33.
    [57]R.Ianniello,V.M.Schmidt,U.Stimming,J.Stumper,A.Wallau.CO adsorption and oxidation on Pt and Pt-Ru alloys-dependence on substrate composition[J].Electrochim.Acta,1994,39:1863-1869.
    [58]U.B.Demirci.Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells[J].Journal of Power Sources,2007,173:11-18.
    [59]M.Nakamura,M.Ito.Coadsorption of water monomers with CO on Ru(001) and charge transfer during hydration processes[J].Chem.Phys.Lett.2001,335:170-175.
    [60]M.Nakamura,M.Ito.Coadsorption of water and CO molecules on Ru(001) at high CO coverages:comparisons with a Ru(001) electrode surface[J].Surf Sci.2001,490:301-307.
    [61]W.F.Lin,P.A.C.hristensen,A.Hamnett.M.S.Zei.G.Ertl.The electro-oxidation of CO at the Ru(0001) single-crystal electrode surface[J].J.Phys.Chem.B,2000,104:6642-6652.
    [62]C.L.Green,A.Kucemak.Determination of the platinum and ruthenium surface areas in Platinum-Ruthenium alloy electrocatalysts by underpotential deposition of copper.Ⅰ.Unsupported catalysts[J].J.Phys.Chem.B,2002,106:1036-1047.
    [63]B.Hammer,Y.Morikawa,J.K.Norskov.CO chemisorption at metal surfaces and overlayers [J].Phys.ReV.Lett.1996,76:2141-2144.
    [64]A.Ruban,B.Hammer,P.Stoltze,H.L.Skriver,J.K.Norskov.Surface electronic structure and reactivity of transition and noble metals[J].J.Mol.Catal.A,1997,115:421-429.
    [65]M.O.Pedersen,S.Helveg,A.Ruban,I.Stensgaard,E.Laegsgaard,J.K.Norskov,F.Besenbacher.How a gold substrate can increase the reactivity of a Pt overlayer[J].Surf Sci.1999,426:395-409.
    [66]C.Lu,C.Rice,R.I.Masel,P.K.Babu,P.Waszczuk,H.S.Kim,E.Oldfield,A.Wieckowski.UHV,Electrochemical NMR,and electrochemical studies of Platinum/Ruthenium fuel cell catalysts[J].J.Phys.Chem.B,2002,106:9581-9589.
    [67]S.R.Brankovic,J.X.Wang,Y.Zhu,R.Sabatini,J.McBreen,R.R.Adzic.Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces [J]. J. Electroanal. Chem., 2002, 524-525: 231-241.
    [68] Y. Ishikawa, M. S. Liao, C. R. Cabrera. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M = Ru, Sn): a theoretical study [J]. Surf. Sci. 2000, 463: 66-80.
    [69] M. T. M. Koper, T. E. Shubina, R. A. van Santen. Periodic density functional study of CO and OH adsorption on Pt-Ru alloy surfaces: Implications for CO tolerant fuel cell catalysts [J].J. Phys. Chem. 2002, 106: 686-692.
    [70] F. Buatier de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R. J. Behm. CO adsorption and oxidation on bimetallic Pt/Ru (0001) surfaces - a combined STM and TPD/TPR study [J]. Surf. Sci. 1998,411:249-262.
    [71] B. Hammer, J. K. Norskov. Theoretical surface science and catalysis - Calculations and concepts [J].Adv. Catal. 2000, 45: 71-129.
    [72] M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, B. B. Blizanac, T. Tomoyuki, P.N. Ross, N. M. Markovic. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts[J]. J. Am. Chem. Soc. 2005, 127(18): 6819-6829.
    [1]H.Nagaoka,T.Imae.The construction of layered architectures of dendrimers-Adsorption layers of amino-terminated dendrimers on 3-mercaptopropionic acid self-assembled monolayer formed on Au[J].Int.J.Nonlinear Sci.Num.Sire.,2002,3(3-4):223-227.
    [2]L.J.Wan,H.Noda,C.Wang,C.L.Bai,M.Osawa.Controlled Orientation of Individual Molecules by Electrode Potentials[J].Chem.Phys.Chem.,2001,2:617-619.
    [3]T.Wandlowski,K.Ataka,and D.Mayer,In situ infrared study of 4,4'-bipyridine adsorption on thin gold films[J].Langmuir,2002,18(11):4331-4341.
    [4]Y.X.Diao,M.J.Han,L.J.Wan,K.Itaya,T.Uchida,H.Miyake,A.Yamakata,M.Osawa,Adsorbed structures of 4,4'-bipyridine on Cu(111) in acid studied by STM and IR[J].Langmuir,2006,22(8):3640-3646.
    [5]H.S.Kim,S.J.Lee,N.H.Kim,J.K.Yoon,H.K.Park,K.Kim.Adsorption characteristics of 1,4-phenylene diisocyanide on gold nanoparticles:infrared and raman spectroscopy study [J].Langmuir,2003,19(17):6701-6710.
    [6]L.Cui,Z.Liu,S.Duan,D.Y.Wu,B.Ren,Z.Q.Tian.Oriention charge of adsobed Pyrazine on Roughened Rhodium electrodes as probed by Surface-Enhanced Raman Spectroscopy[J].J.Phys.Chem.B,2005,109:17597-17602.
    [7]G.K.Liu,B.Ren,D.Y.Wu,S.Duan,J.F.Li,J.L.Yao,R.A.Gu,Z.Q.Tian,Effect of intrinsic properties of metals on the adsorption behavior of molecules:Benzene adsorption on Pt group metals[J].J.Phys.Chem.B,2006,110(35):17498-17506.
    [8]姚建林,厦门大学博士论文[D],2001
    [9]J.S.Gao,Z.Q.Tian,Surface Raman spectroscopic studies of ruthenium,rhodium and palladium electrodes deposited on glassy Carbon substrates[J].Spectrochemica.Acta A,1997,(53):1595-1602.
    [10]Z.Q.Tian,B.Ren,B.W.Mao.Extending surface Raman spectroscopy to transition metal surfaces for practical applications 1.Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J].J.Phys.Chem.,1997,101(8):1338-1346.
    [11] Z. Q. Tian, J. S. Gao, B. Ren, et al, Can surface Raman spectroscopy be a general technique for surface science and electrochemistry [J]. J. Raman Spectrosc., 1998, 29(8): 703-711.
    [12] B. Ren, X. Q. Li, Z. Q. Tian. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes [J]. Electrochim. Acta, 2000,46(2-3): 193-205.
    [13] W. B. Cai, B. Ren, X. Q. Li, et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment [J]. Surf. Sci., 1998, 406: 9-22.
    [14] B. Ren, X. F. Lin, J. W. Yan, et al. Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy [J]. J. Phys. Chem. B, 2003, 107(4): 899-902.
    [15] P. G. Cao, J. L. Yao, B. Ren, et al, Surface-enhanced Raman scattering spectra of thioureaadsorbed at an iron electrode in NaClO_4 solution [J]. J. Phys. Chem. B, 2002, 106 (39): 10150-10156.
    [16] Y. Xie, D. Y. Wu, G. K. Liu, et al, Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories [J]. J. Electroanal. Chem., 2003, 554: 417-425.
    [17] Q. J. Huang, X. F. Lin, Z. L.Yang, et al, An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy [J]. J. Electroanal. Chem., 2004, 563(1):121-131.
    [18] Z. Q. Tian, Z. L. Yang, B. Ren, et al, Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape [J]. Faraday Discuss., 2006, 132:159-170.
    [19] Z. Q. Tian, B. Ren, B. W. Mao, Extending surface Raman spectroscopy to transition metal surfaces for practical applications .1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces [J]. J. Phys. Chem. B, 1997, 101(8): 1338-1346.
    [20] L. Corrsin, B. J. Fax, R. C. Lord, The Vibrational Spectra of Pyridine and Pyridine-d_5, J. Chem. Phys, 1953, 21 (7): 1170-1176.
    [21] W. B. Cai, L. J. Wan, H. Noda, et al, Orientational phase transition in a pyridine adlayer on gold (111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy [J]. Langmuir, 1998, 14 (24): 6992-6998.
    [22] N. J. DiNardo, Ph. Avouris, J. E. Demuth, Chemisorbed pyridine on Ni (001): A high resolution electron energy loss study of vibrational and electronic excitations [J]. J. Chem. Phys. 1984,81:2169-2180.
    [23]Y. Ikezawa, T. Sawatari, T. Kitazume, H. Goto, K. Toriba. In situ FTIR study of pyridine adsorbed on a polycrystalline gold electrode [J]. Electrochim. Acta, 1998, 43: 3297-3301.
    [24] S. Haq, D. A. King, Configurational Transitions of Benzene and Pyridine Adsorbed on Pt{ 111} and Cu{110} Surfaces: An Infrared Study [J]. J. Phys. Chem., 1996, 100:16957-16965.
    [25] B. J. Bandy, D. R. Llyoyd, N. V. Richardson, Selection rules in photoemission from adsorbates: Pyridine adsorbed on copper [J]. Surf. Sci., 1979, 89: 344-353.
    [26] M. E. Bridge, M. Connolly, D. R. Lloyd, J. Somers, P. Jakob, D. Menzel, Electron spectroscopic studies of pyridine on metal surfaces [J]. Spectrochim. Acta A, 1987, 43:1473-1478.
    [27] A. L. Johnson, E. L. Muetterties, J. Stohr, F. Sette. Chemisorption geometry of pyridine on platinum (111) by NEXAFS [J]. J. Phys. Chem., 1985, 89(19): 4071-4075.
    [28] J. G. Lee, J. Ahner, J. T. Yates. The Adsorption Conformation of Chemisorbed Pyridine onthe Cu (110) Surface [J]. J. Chem. Phys. 2001, 114 (3): 1414-1419.
    [29] P. R. Davies, N. Shukla. The adsorption of pyridine at clean oxidized and hydroxylated Cu(111) surfaces [J]. Surf. Sci., 1995, 322 (1-3): 8-20.
    [30] M. R. Cohen, R. P. Merrill. Adsorption of pyridine on nickel (111): a HREELS, ARUPS, and XPS study [J]. Langmuir, 1990, 6 (7): 1282-1288.
    [31] V. H. Grassian, E. L. Muetterties. Electron energy loss and thermal desorption spectroscopy of pyridine adsorbed on piatinum (111) [J]. J. Phys. Chem., 1986, 90 (22): 5900-5907.
    [32] A. Bader, J. Haase, D. F. Frank, A. Puschmann, A. Otto. Orientational phase transition in the system pyridine/Ag (111): A near-edge X-ray-absorption fine-structure study [J]. Phys. Rev. Lett., 1986, 56(18): 1921-1924.
    [33] L. Stolberg, J. Lipkowskia. Adsorption of pyridine at the Au(100)-solution interface [J]. J. Electroanal. Chem., 1987, 238 (1-2): 333-353.
    [34] L. Stolberg, J. Lipkowskia, D. E. Irish. Adsorption of Pyridine at the Au (110)-solution Interface [J]. J. Electroanal. Chem., 1990, 296 (1): 171-189.
    [35] C. Zuo, P. W. Jagodzinski. Surface-enhanced raman scattering of pyridine using differentmetals: differences and explanation based on the selective formation of α-pyridyl on metal surfaces [J]. J. Phys. Chem. B., 2005, 109 (5): 1788-1793.
    [36] A. Bruckbauer, A. Otto. Spectroscopy of Raman Pyridine Adsorbed on Single Crystal Copper Electrodes [J]. J. Raman Spectrosc., 1998, 29, 665-672.
    [37] J. C. Ingram, J. E. Pemberton. Comparison of charge transfer enhancement in the surface enhanced raman scattering of pyridine on copper and silver electrodes [J]. Langmuir, 1992, 8 (8): 2034-2039.
    [38] Y. Ikezawa, T. Sawatari, H. Terashima. In situ FTIR study of pyridine adsorbed on Au (111), Au (100) and Au (110) electrodes [J]. Electrochim. Acta, 2001, 46(9): 1333-1337.
    [39] N. Li, V. Zamlynny, J. Lipkowski, F. Henglein, B. Pettinger. In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au (110) electrode surface [J]. J. Electroanal. Chem., 2002, 524: 43-53.
    [40] M. Hoon-Khoshla, W. R. Fawcett, A. Chen, J. Lipkowski, B. Pettinger. A SNIFTIRS study of the adsorption of pyridine at the Au (111) electrode-solution interface [J]. Electrochim. Acta, 1999, 45(4-5): 611-621.
    [41] S. J. Huo, X. K. Xue, Y. G. Yan, Q. X. Li, M. Ma, W. B. Cai, Q. J. Xu, M. Osawa, Extending in Situ Attenuated-Total-Reflection Surface-enhanced Infrared Absorption Spectroscopy to Ni Electrodes [J]. J. Phys. Chem. B, 2006, 110 (9): 4162-4169.
     [42] Y. G. Yan, Q. J. Xu, W. B. Cai. Study of electroadsorption of aromatic molecules on Pt electrodes with surface enhanced IR absorption spectroscopy [J]. Acta. Chim. Sinica, 2006, 64 (6): 458-462.
    [43] Q. X. Li, Y. G. Yan, Q. J. Xu, W. B. Cai, Attenuated-total-reflection Surface-enhanced Infrared Absorption Spectroscopy on Cadmium Electrode [J]. Chem. J. Chinese. U., 2006, 27 (12): 2414-2416.
    [44] S. J. Huo, X. K. Xue, Q. X. Li, S. F. Xu, W. B. Cai. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy [J]. J. Phys. Chem. B, 2006, 110 (51): 25721-25728.
    [45] A. Tadjeddine, A. Le Rille, O. Pluchery, F. Vidal, W. Q. Zheng, A. Peremans. Sum and difference frequency generation at the electrochemical interface [J]. Phys. Stat. Solidia- Appl. Research, 1999, 1:89-107.
    [46] D. B. Dougherty, J. Lee, J. T. Yates. Role of conformation in the electronic properties of chemisorbed pyridine on Cu (110): An STM/STS study [J]. J. Phys. Chem. B, 2006, 110 (24): 11991-11996.
    [47] L. J. Wan, C. Wang, C. L. Bai, M. Osawa. Adlayer structures of benzene and pyridine molecules on Cu (100) in solution by ECSTM [J]. J. Phys. Chem. B, 2001, 105 (35): 8399-8402.
    [48] D. Wang, Q. M. Xu, L. J. Wan, C. Wang, C. L. Bai. Adlayer structures of pyridine, pyrazine and triazine on Cu (111): an in situ scanning tunneling microscopy study [J]. Langmuir, 2002, 18 (13): 5133-5138.
    [49] R. A. Gu, X.Y. Shen, G. K. Liu., et al. Surface-enhanced Raman scattering from bare Zn electrode [J]. J. Phys. Chem. B, 2004, 108: 7519-17522.
    [50]L.A.Sanchez,R.L.Birke,J.R.Lombardi.The surface enhanced raman-spectrum from pyridine on mercury[J].Phys.Lett.,1981,79:219-223.
    [52]B.H.Loo,Surface enhanced raman-scattering from pyridine adsorbed on cadmium[J].J.Phys.Chem.,1981,75:5955-5956.
    [53]查全性 电极过程动力学导论(第三版)[M].北京:科学教育出版社,2002
    [54]S.A.Bilmes.SERS of pyridine adsorbed on rhodium electrodes[J].Chem.phys.lett.,1990171(1-2):141-146.
    [55]H.Feilchenfeld,X.P.Gao,M.J.Weaver.Surface-enhanced Raman spectroscopy of pyridine adsorbed on rhodium modified silver electrodes[J].Chem.Phys.Lett.,1989,161(4-5):321-326.
    [56]D.M.Lubman,R.Naaman.Surface-enhanced multiphoton ionization signal[J].Chem.Phys.Lett.,1983,95(4-5):322-324.
    [57]M.Moskovits.Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J].J.Chem.Phys.1978,69:4159-4161.
    [58]G.C.Schatz,R.P.Van Duyne.Electromagnetic mechanism of surface-enhanced spectroscopy.[M]Handbook of vibrational spectroscopy.Edt.By J.M.Cbalmers and P.R.Griffiths,John Wiley &Son Ltd,Chichester,2002.
    [59]M.Osawa,in:J.M.Chalmers,P.R.Griffiths(Eds.).[M]Handbook of Vibrational Spectroscopy,Vol.1,John Wiley & Sons,Chichester,U.K.,2002..
    [60].M.P.Andersson,P.Uvdal.Transformation of Pyridine to -Pyridyl on W(110) As Probed by Vibrational Spectroscopy:Experiments and Calculations[J].J.Phys.Chem.B,2001,105:9458 -9462.
    [61]L.Corrsin,B.J.Fax,R.C.Lode.The vibrational spectra of pyridine and pyridine -D5[J].J.Chem.Phys.,1953,21:1170-1176.
    [62]P.Jakob,D.R.Lloyd,D.Menzel.Adsorption of pyridine on Ru(001) - A study by high-resolution electron-energy loss spectroscopy[J].J.Electron.Spectrosc.Relat.Phenom.,1987,44:131 -139.
    [63]C.M.Mate,G.A.Somojai,H.W.K.Tom,X.D.Zhu,and Y.R.Shen,Vibrational and electronic spectroscopy of pyridine and benzene adsorbed on the Rh(111) crystal-surface[J].J.Chem.Phys.,1988,88:441-450.
    [64]T.lwasita,A.Rodes,E.Pastor.Vibrational spectroscopy of carbonate adsorbed on Pt(111)and Pt(110) single-crystal electrodes[J].J.Electroanal.Chem.,1995,383:181-189.
    [65]H.F.Wang,Y.G.Yah,S.J.Huo,W.B.Cai,Q.J.Xu,M.Osawa.Seeded growth fabrication of Cu-on-Si electrodes for In situ ATR-SE1RAS applications[J].Electrochim.Acta,2007,52 (19): 5950-5957.
    [66] Q.X Li, XK Xue, QJ Xu, WB Cai. Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes [J]. Appl. Spec. 2007,61: 1328-1333.
    [67] L. Brewer. Bonding and structures of transition metals - spectroscopy of gaseous atoms provides predictions of structures and thermodynamic properties of metals [J]. Science, 1969, 161:115-122.
    [1]G.Binnig,H.Rohrer,C.Gerber,E.Weibel.Surface studies by scanning tunneling microscopy[J].Phys.Rev.Lett.,1982,49:57-61.
    [2]G.Binnig,H.Rohrer.7 ×7 Reconstruction on Si(111) resolved in real space[J].Phys.Rev.Lett.,1983,50:120-123.
    [3]白春礼.扫描隧道显微技术及其应用[M].上海:科学技术出版社,1992.
    [4]万立骏.电化学扫描隧道显微技术及其应用[M].北京:科学出版社,2005.
    [5]R.Michaelis,D.M.Kolb.Stability and electrochemical properties of reconstructed Pt(110)[J].J.Electroannal.Chem.,1992,328:341-348.
    [6]H.Honbo,S.Sugawara,K.Itaya.Detailed in situ scanning tunneling microscopy of single crystal planes of Gold(111) in aqueous solutions[J].Anal.Chem.,1990,62:2424-2429.
    [7]J.Inukai,Y.Osawa,M.Wakisaka,K,Sashikata,Y.G.Kim,K.Itaya.Underpotentiai deposition of copper on iodine-modified Pt(111):in situ STM and ex situ LEED studies[J].J.Phys.Chem.B,1998,102:3498-3505.
    [8]K.Sashikata,T.Sugata,M.Sugimasa,K.Itaya.In situ scanning tunneling microscopy observation of a porphyrin adlayer on an iodine-modified Pt(100) electrode[J].Langmuir,1998,14:2896-2902.
    [9]T.Teshima,K.Ogaki,K.Itaya.Effect of adsorbed iodine on the dissolution and deposition reactions of Ag(100):Studies by in situ STM[J].J.Phys.Chem.B,1997,101:2046-2053.
    [10]J.Inukai,Y.Osawa,K.Itaya.Adlayer structures of chlorine,bromine,and iodine on Cu(111)electrode in solution:In-situ STM and ex-situ LEED studies[J].J.Phys.Chem.B,1998,102:10034-10040.
    [11]L.J.Wan,K.Itaya.In situ scanning tunneling microscopy of Cu(110):atomic structures of halide adlayers and anodic dissolution[J].J.Electroanal.Chem.,1999,473:10-18.
    [12]P.Muller,S.Ando,T.Yamada,K.Itaya.Formation of an ordered structure of iodine adsorbed on Ni(111) and the anodic dissolution processes:in-situ STM study[J].J.Electroanal.Chem.,1999,467:282-290.
    [13]N.J.Tao,S.M.Lindsay.In situ scanning tunneling microscopy study of iodine and bromine adsorption on gold(111) under potential control[J].J.Phys.Chem.,1992,96:513-5217.
    [14]S.Tanaka,S.L.Yau,K.Itaya.ln-situ tunneling microscopy of bromine adlayers on Pt(111)[J].J.Electroanal.Chem.,1995,396:125-130.
    [15]L.J.Wan,S.L.Yau,K.Itaya.Atomic structure of adsorbed sulfate on Rh(111) in sulfuric acid solution[J].J.Phys.Chem.1995,99:9507-9513.
    [16]L.J.Wan,M.Hara,J.Inukai,K.Itaya.In situ scanning tunneling microscopy of well-defined Ir (111) surface: High-resolution imaging of adsorbed sulfate [J]. J. Phys. Chem.B, 1999,103:6978-6983.
    [17] L. J. Wan, T. Suzuki, K. Sashikata, J. Okada, J. Inukai, K. Itaya. In situ scanning tunneling microscopy of adsorbed sulfate on well-defined Pd (111) in sulfuric acid solutionb[J]. J. Electroanal. Chem., 2000,484: 189-193
    [18] Y. G. Kim, S. L. Yau, K. Itaya. Direct observation of complexation of alkali cations on cyanide-modified Pt (111) by scanning tunneling microscopy [J]. J. Am. Chem. Soc., 1996, 118:393-400.
    [19] L. J. Wan, S.L. Yau, K. Itaya. Structure of thiocyanate adlayers on Rh (111): an in situ STM study [J]. J. Solid State Electrochem., 1997, 1: 45-52.
    [20] L. J. Wan, K. Itaya. Adlayer structure of TCNQ molecules on Cu (111): an in situ STM study [J]. Chinese Sci. Bull, 2001, 46: 377-379.
    [21] L. J. Wan, C. Wang, C. L. Bai, M. Osawa. Adlayer structures of benzene and pyridine molecules on Cu (100) in solution by ECSTM [J]. J. Phys. Chem. B, 2001, 105: 8399-8402.
    [22] D. Wang. L. J. Wan, Q. M. Xu, C. Wang, C. L. Bai, Adlayer on structures of pyrene and perylene on Cu (111): an in situ STM study [J]. Surf. Sci., 2001,478, L320-L326.
    [23] W. B. Cai, L. J. Wan, H. Noda, Y. Hibino, K. Ataka, M. Osawa. Orientational phase transition in a pyridine adlayer on gold (111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy [J]. Langmuir, 1998, 14: 6992-6998.
    [24] Y. Ikezawa, Y. Koda, M. Shibuya, H. Terashima. In situ FTIR study of pyrazine adsorbed on Au (111), Au (100) and Au (110) electrodes [J]. Electrochimica Acta 2000,45: 2075-2082.
    [25] Q. M. Xu, D. Wang, L. J. Wan, et al. Discrimination chiral molecules of (R) -PPA and (S)-PPA in aqueous solution by ECSTM [J]. Angew. Chem. Int. Ed., 2002, 41: 3408-3411.
    [26] J. V. Barth, J. Weckesser, G. Trimarchi, et al. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag (111) [J]. J. AM. Chem. Soc., 2002, 124:7991-8000.
    [27] V. Humblot, S. Haq, C. Muryn, et al. From local adsorption stresses to chiral surfaces: (R, R)-tartaric acid on Ni (110) [J]. J. Am. Chem. Soc., 2002, 124: 503-510.
    [28] N. J. Tao, C. Z. Li, H. X. He. Scanning tunneling microscopy applications in electrochemistry — beyond imaging [J]. J.Electroanal. Chem., 2000, 492: 81-93.
    [29] Haiming Zhang, zhaoxiong Xie, Bingwei Mao, Xin Xu, Self-assembly of normal alkanes on the Au(111) surfaces [J]. Chem. Eur. J., 2004, 10, 1415-1422.
    [30] D. J. Ellis, D. T. F. Dryden, T. Berge, J. M. Edwerdson, R. M. Henderson. Direct observation of DNA translocation and cleavage by endonuclease using atomic force microscopy [J]. Nature Structural biology, 1999, 6: 15-17.
    [31] Y. Fang, T. S. Spisz, T. Wiltshire, NP. D'Costa, N. Bankman, R.H.Reeves, J. H. Hoh. Solid-state DNA sizing by atomic f or ce microscopy [J]. Anal.Chem. 1998, 70: 2123-2139.
    [32] E. J. Fechter, P. B. DerVan. Allosterici nhibitiono fp rotein-DNA complexes by polyamide-intercalator conjugates [J]. J .Am .Chem.Soc. 2003, 125: 8476-8485.
    [33] J.Clavilier. The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region [J]. J. Electroanal. Chem., 1980, 107:211-216.
    [34] M. Nakamura, O. Endo, T. Ohta, M. Ito, Y. Yoda. Surface X-ray diffraction study of Cu UPD on Au (111) electrode in 0.5 M H2SO4 solution: the coadsoption structure of UPD copper, hydration water molecule and bisulfate anion on Au (111) [J]. Surf, Sci. 2002, 514: 227-233.
    [35] G. J. Edens, X. P. Gao, M. J. Weaver. The adsorpt ion of sulfate on gold (111) in acidic aqueous media: adlayer structural inferences from infrared spectroscopy and scanning tunneling microscopy [J]. J.Electroanal.Chem., 1994, 375: 357-366.
    [36] S. G. Sun, W. B. Cai, L. J. Wan, M. Osawa. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic vpltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy [J]. J. Phys.Chem. B, 1999, 103: 2460-2466.
    [37] T. Ito, P. Bulhlmann, Y. Umezawa. Polypyrrole-Modified Tips for Functional Group Recognition in Scanning Tunneling Microscopy [J]. Anal. Chem., 1999, 71: 1699-1705.
    
    [38] T. Ito, P. Bulhlmann, Y. Umezawa. Scanning Tunneling Microscopy Using Chemically Modified Tips [J]. Anal. Chem., 1998, 70: 255-259.
    [39] 严彦刚 复旦大学博士学位论文[D].上海,2007.
    [40] Y. G. Yan, Q. X. Li, S. J. Huo, et al Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces [J]. J. Phys. Chem. B, 2005, 109(16): 7900-7906.
    [41] H. Miyake, S. Ye, M. Osawa. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry [J]. Electrochem. Commun., 2002, 4: 973-977
    
    [42] O. S. Heavens, Optical Properties of Thin Solid Films [M]. Butterworths, London, 1965.
    [43] L. A. Nagahara, T. Ohmori, K. Hashimoto, A. Fujishima. The influence of hydrofluoric acid concentration on electroless copper deposition onto silicon [J]. J. Electroanal. Chem., 1992, 333:363-369.
    [44]L.A.Nagahara,T.Ohmori,K.Hashimoto,A.Fujishima.Effects of HF solution in the electroless deposition process on silicon surfaces[J].J.Vac.Sci.Technol.A,1993,11(4):763-767.
    [45]S.Warren,A.Reizle,A.Kazimirov,J.C.Ziegler,O.Bunk,L.X.Cao,F.U.Renner,D.M.Kolb,M.J.Bedzyk,J.Zegenhagen.A structure study of the electroless deposition of Au on Si(111):H[J].Surf.Sci.,2002,496:287-298.
    [46]M.Osawa,In Handbook of Vibrational Spectroscopy[M].Vol.1,Eds.:J.M.Chalmers,P.R.Griffiths,John Wiley & Sons,Chichester,2002,p.785.
    [47]K.Ataka,T.Yotsuyanagi,M.Osawa,Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy[J].J.Phys.Chem.,1996,100:10664-10672.
    [48]H.Noda,T.Minoha,L.-J.Wan,M.Osawa,Adsorption and ordered phase formation of 2,2'-bypyridine on Au(111):a combined surface-enhanced infrared and STM study[J].J.Electroanal.Chem.,2000,481:62-68.
    [49]L.J.Wan,M.Terashima,H.Noda,M.Osawa.Molecular orientation and ordered structure of benzenethiol adsorbed on gold(111)[J].J.Phys.Chem.B,2000,104:3563-3569.
    [50]江龙.胶体化学概论[M].北京:科学出版社.2002.
    [51]郑树亮.黑恩成,应用胶体化学[M].上海:华东理工大学出版社,1996,13-14.
    [52]W.P.Faulk,G.M.Taylor,An immunocolloid method for the electron microscope[J].Immunochemistry,1971,8:1081-1083.
    [53]Y.D.Jin,X.F.Kang,Y.H.Song,et al.Controlled nucleation and growth of surface-confined gold nanoparticles on a(3-aminopropyl) trimethoxysilane-modified class slide:A strategy for SPR substrates[J].Anal.Chem.,2001,73(13):2843-2849.
    [54]W.L.Cheng,S.J.Dong,E.K.Wang,Two- and three- dimensional Au nanoparticle /CoTMPyP self-assembled nanotructured materials:Film structure,tunable electrocatalytic activity,and plasmonic properties[J].J.Phys.Chem.B.,2004,108(50):19146-19154.
    [55]G.Frens,Controlled nucleation for the regulation of the particle size in monodisperse gold suspension[J].Nature Phys.Sci.,1973,241(105):20-21.
    [56]K.C.Grabar,R.G.Freeman,M.B.Hommer,et al,Preparation and characterization of Au colloidal monolayer[J].Anal.Chem.,1995,67(4):735-743.
    [57]R.G.Freeman,K.C.Grabar,K.J.Allison,et al,Self-assembled metal colloidal monolayers-an approach to SERS substrates[J],Science,1995,267(5204):1629-1632.
    [58]S.Y.Kang,I.C.Jeon,and K.Kim,Infrared absorption enhancement at silver colloidal particles[J],Appl.Spectrosc.,1998,52(2):278-283.
    [59]A.A.Kamnev,L.A.Dykman,P.A.Tarantilis and M.G.Polissiou,Spectroimmunochemistry using colloidal gold bioconjugates[J].Biosci.Rep.,2002,22(5-6):541-547.
    [60]T.R.Jensen,R.P.V.Duyne,S.A.Johnson and V.A.Maroni,Surface-enhanced infrared spectroscopy:A comparison of metal island films with discrete and nondiscrete surface plasmons[J].Appl.Spectrosc.,2000,54(3):371-377.
    [61]S.Park,A.Wieckowski.,M.J.Weaver,Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles[J].J.Am.Chem.Soc.,2003,125(8):2282-2290.
    [62]霍胜娟复旦大学博士论文[D].上海,2007.
    [63]S.J.Huo,Q.X.Li,Y.G.Yan,et al.Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles[J],J.Phys.Chem.B,2005,109(33):15985-15991.
    [64]K.C.Grabar,K.R.Brown,C.D.Keating,et al.,Nanoscale characterization of gold colloid monolayers:A comparison of four techniques[J]Anal.Chem.1997,69(3):471-477.
    [65]J.W.Zheng,Z.H.Zhu,H.F.Chen,Z.F.Liu,Nanopatterned assembling of colloidal gold nanoparticles on silicon[J].Langmuir,2000,16(10):4409-4412.
    [66]D.J.Dunaway,R.L.McCarley,Scanning force microscopy studies of enhanced metal nucleation-Au vapor-deposited on self-assembled monolayers of substituted silanes[J].Langmuir,1994,10(10):3598-3606.
    [67]A.E.Bjerke,P.R.Griffiths,W.Theiss,Surface-enhanced infrared absorption of CO on platinized platinum[J].Anal.Chem.,1999,71:1967-1974.
    [68]王会锋复旦大学硕士论文[M].上海:复旦大学,2007.
    [69]H.F.Wang,Y.G.Yan,S.J.Huo Wet process fabrication of Cu-on-Si electrodes for In situ SEIRAS Application[J].Electrimi.Acta.,2007,52(19):5950-5957.
    [70]查全性等,电极过程动力学导论,科学出版社:北京,2002
    [71]B.Ren,X.F.Lin,J.W.Yan,et al,Electrochemically roughened rhodium electrode as a substrate for surface-enhanced Raman spectroscopy[J].J.Phys.Chem.B,2003,107(4):899-902.
    [72]P.G.Cao,J.L.Yao,B.Ren,et al,Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO_4 solution[J],J.Phys.Chem.B,2002,106(39):10150-10156.
    [73]Y.Xie,D.Y.Wu,G.K.Liu,et al,Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories [J]. J. Electroanal. Chem., 2003, 554: 417-425.
    
    [74] W. B. Cai, B. Ren, X. Q. Li, et al, Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment [J]. Surf. Sci., 1998, 406:9-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700