用户名: 密码: 验证码:
基于MEMS技术的氧气微传感器机理研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧气传感器是气体传感器的主要分支之一。氧气传感器已广泛地应用于冶金、食品保鲜、医疗、生物、环保等领域。长期以来,各种氧气传感器的研究异常活跃。传统的氧检测方法能精确地分析氧的浓度,但其成本高、装置复杂、耗时长、使用和维修麻烦,不能满足实时监控或原位、在线测量的要求。大多数的光学氧气传感器灵敏度较低、稳定性较差。有些氧气传感器需要工作在高温下(500℃~600℃以上),要实现室温测量较为困难。气体传感器的敏感性能一般与工作温度密切相关,MEMS技术很容易将气敏元件和加热元件、温度探测元件制作在一起,保证了气体传感器的优良性能。MEMS(Micro Electro-Mechanical System)技术的发展对于半导体气体传感器的微型化、集成化、智能化、多功能化,以及提高其选择性、可靠性和稳定性都有重要的意义。目前基于MEMS技术的氧气微传感器在IEEE的各种刊物上已有一些相关的报道。本文的主要研究工作如下:
     1.以配位化合物的晶格结构理论为基础,对于二氧化锆立方固溶体结构进行分析,得出在二氧化锆中掺杂氧化钇,即钇稳定立方相二氧化锆(YSZ),其具有一定的氧离子空位,从而具有离子导电性,并讨论了氧化钇掺杂浓度对YSZ电导率的影响。
     2.以溶胶-凝胶(Sol-gel)理论为基础,制备钇稳定立方相二氧化锆(YSZ)溶胶-凝胶膜,并对不同的药品配比进行测试与比较。
     3.提出平板电容式氧气传感器的初始模型,并对其工作机理进行探讨。实验结果表明,该敏感膜具有较好的气体选择性和测量重复性。
     4.从传感器微型化方面考虑,结合MEMS技术和半导体工艺。设计MOS电容式氧气微传感器,并从半导体能带的角度出发,阐明其工作原理。
     5.以MOS电容式氧气微传感器的分析为基础,设计MOSFET氧气微传感器结构,在器件中集成了加热元件和测温元件。并设计了MOSFET氧气微传感器、加热元件及测温元件的具体工艺流程和模版。仿真实验结果表明MOSFET氧气微传感器不仅具有一般MOSFET的典型特性曲线,并且单位面积电容值(2.0×10~(-7)pF/μm~2)的微小变化能转换为较明显的电压信号(ΔV_(T max)=8mV)。MOSFET氧气微传感器结构为今后进行MOSFET氧气微传感器设计提供一定的参考价值。
Oxygen sensor is a primary branch of gas sensor. Oxygen sensor has widely applied to a lot of fields,such as metallurgy,keeping-fresh of food,medical treatment,biology,environmental protection and so on. For a long period of time,the study of oxygen sensor has been very active. The methods of traditional oxygen detection can accurately analyze the concentration of oxygen,but those factors such as high cost,complicated device,long time consumption and inconvenient operation and maintenance have restricted the application of real-time monitor and control and online measure. Most optical oxygen sensors can not solve the problems of low sensitivity and poor stability. Some oxygen sensors require working at high temperature (higher than 500C-600C) . It is difficult for them to work at room temperature. In a general way,the sensitive performance of gas sensor is closely relative to the working temperature. It is very easy for MEMS to integrate the gas sensitive element,the heater and temperature sensor together. T
    he development of MEMS provides the possibility of micromation,integration,intelligentization,multi-function of semiconductor gas sensor. And it also has very important significance to improve selectivity,reliability and stability of semiconductor gas sensor. Nowadays,there are some reports on oxygen micro-sensor based on MEMS in the references of IEEE. The following is the primary research work in this thesis.
    1. Based on the crystal lattice theory of coordinate chemical compound,the crystal lattice of zirconia was analyzed. Some results were obtained that adulterating zirconia with yttria,viz. Yttria-Stabilized Zirconia (YSZ),has some oxygen ion vacancies,sequentially has ionic conductivity. And the influence on YSZ ion conductivity of the different adulterated concentration of yttria was discussed.
    2. Based on the theory of Sol-gel,YSZ sol-gel membrane was made. And YSZ sol-gel membranes with the different zirconia concentration were tested.
    3. The initial model of flat capacitive oxygen sensor was proposed. Then the working mechanism of flat capacitive oxygen sensor was discussed. The experimental results show that the sensitive membrane is characterized by favorable selectivity and repetition.
    4. In view of micromation of sensor and MEMS fabrication processing,MOS capacitive oxygen micro-sensor was devised. According to theory of semiconductor energy band,the working principle of MOS capacitive oxygen micro-sensor was elucidated.
    
    
    5. Based on MOS capacitive oxygen micro-sensor,the structure of MOSFET oxygen micro-sensor was presented. The heater and temperature sensor are integrated into the device. Then the specific technological process and the masks of MOSFET oxygen micro-sensor,the heater and the temperature sensor were designed. Simulating curves indicate that MOSFET oxygen micro-sensor has the typical characteristic curves alike general MOSFETs. The minute
    variety of unit area capacitance (2.0x10-7 pF/um2) can be transformed into relatively obvious
    voltage signal (VTmax = 8/mV). The structure of MOSFET oxygen micro-sensor provides reference for the design of MOSFET oxygen micro-sensor for the future.
引文
[1] 周兆英,叶雄英,唐飞等.微机电系统技术.电子产品世界.1999,(5):19~21
    [2] 丁衡高.微机电系统的科学研究与技术开发.清华大学学报.1997,(9):1~5
    [3] 丁衡高.微系统与微米/纳米技术及其发展.第四界全国微米/纳米科学学术会议论文集.2000.1~6
    [4] 周兆英,王晓浩,叶雄英等.微型机电系统.中国机械工程.2000,11(1~2):163~168
    [5] 张兴,郝一龙,李志宏等.跨世纪的新技术-微机电系统.电子科技导报.1999,(4):2~5
    [6] 黄庆安.硅微机械加工技术.北京:科学出版社.1996
    [7] 王渭源,赖宗声,陆德仁等.用于微机械器件和微电子系统的关键技术-微机械技术.功能材料与器件学报.1998,4(4):27~223
    [8] 李志坚.微电子机械系统(MEMS)发展展望.电子科技导报.1997,(1):2~9
    [9] 苑伟政,李晓莹.微机械及微细加工技术.机械科学与技术.1997,16(3):503~508
    [10] 徐毓龙,徐玉成.崭新的微机电系统(MEMS)技术.电子科技.1999,(9):13~14
    [11] M. Mehregany. Microelectromechanical System. IEEE Circuits and Devices. 1993, (9):14~22
    [12] Menz. W. LIGA and related technologies for industrial application. The 8th international conference on solid-state sensors and actuators and eurosensors. 1995:552~555
    [13] 魏世钧.微机械技术与微传感器发展-21世纪航天传感器技术展望.遥测遥控.1998,19(2):6~10
    [14] K. Wise, K. Najafi. Microfabrication techniques for imegrated sensors and Microsystems.Sciences. 1991, Vol.254:1335~1342
    [15] 苑伟政,李晓莹.微机械及微细加工技术.机械科学与技术.1997,16(3):503~508
    [16] Bacher W. Menz, W. Mohr. J. The LIGA technique and its potential for microsystems. IEEE Transactions on Industrial Electronics. 1995, 142(5): 431~441
    [17] 李文望.微电子机械系统(MEMS)技术及其应用.鹭江职业大学学报.2001,9(2):53~57
    [18] 谢中生.MEMS阔步迈入新世纪.电子工业专用设备.1999,(4):22~24
    [19] 刘崇进,郑大日等.气体传感器的发展概况和发展方向.计算机自动测量与控制.1999,7(2):54~56
    [20] 徐涛,武国英.微结构气体传感器的研究现状与展望.电子科技导报.1999,(6):23~28
    
    
    [21] 李平,余萍,肖定全.气敏传感器的近期进展.功能材料.1999,30(2):126~128
    [22] 徐毓龙,徐玉成.气敏传感器及其发展动向.电子科技导报.1997,(6):14~15
    [23] 孙良彦.气体传感器研究的新动态.传感器技术.1995,(1)
    [24] 苏新梅,叶青,王道.气体传感器和电子鼻.大学化学.1998,13(5):31~33
    [25] 蔡晔,葛忠华,陈银飞.金属氧化物半导体气敏传感器的研究和开发进展.化工生产与技术.1997,(2):29~34
    [26] 刘笃仁,徐毓龙.微机电系统(MEMS)技术的应用:微结构气敏传感器.测控技术.2000,19(3):9~11
    [27] 潘本琛,高尚.气体传感器.煤炭科学技术.1996,24(11):48~50
    [28] 马丽杰.日本气体传感器产业化发展现状.云南大学学报.1997,19(2):211~216
    [29] 林海安,吴冲若.阵列和模式识别与气敏传感器.微电子学与计算机.1995,(1):38~40
    [30] 何锐,刘光葵,孙尧卿.氧传感器及其在汽车中的应用.传感器技术.1999,18(3):1~4
    [31] 张民权,陈焕钦,黄国贤.光学氧传感器的研制.分析实验室.1997,16(6):10~14
    [32] YuLong Xu, Xiaohua Zhou, O. Toft Sorensen. Oxygen sensors based on semiconducting metal oxides: an overview. Sensors and Actuators, 1986, B65 (2000):2~4
    [33] C. Podaru, V. Avramescu, R. Enache, G. Stoica. TiO_2 anodic oxide films for oxygen gas sensors.IEEE 1998:565~568
    [34] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, P. Nelli, L.Dori. Recent progress on gas sensors based on semiconducting thin films
    [35] F.A.科顿,G 威尔金森著.高等无机化学.人民教育出版社.1980
    [36] 斯拉文斯基著,王勤和译.元素的物理化学性质.北京:冶金工业出版社.1957
    [37] Craig A. J. Fisher, Hideaki Matsubara. The influence of grain boundary misorientation on ionic conductivity in YSZ. Journal of the European Ceramic Society, 19(1999): 703~707
    [38] Jagadish C. Ray, Ranjan K. Pati, P. Pramanik. Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ).Journal of the European Ceramic Society, 20 (2000): 1289~1295
    [39] 章天金,张端明,王世敏.YSZ薄膜的溶胶凝胶法制备及其电导性能.硅酸盐学报.1997,25(4):440~446
    [40] 唐超群,章天金,吴新明.YSZ超细粉末的溶胶-凝胶法制备.材料科学与工艺.1997,5(2):49~52
    
    
    [41] 丁星兆,何怡贞,董远达.溶胶-凝胶工艺在材料科学中的应用.材料科学与工程.1994,12(2):1~8
    [42] 丁爱军,徐毓龙,周晓华.溶胶-凝胶法制备TiO_2氧敏元件研究.西安电子科技大学学报.1994,21(1):117~120
    [43] 吕反修,许庆芳,宋铂,佟玉梅,喻中清.溶胶制备工艺对ZrO_2-Y_2O_3涂层性能的影响.北京科技大学学报.1996,18(2):131~135
    [44] 刘金尧.Pt(111)表面上一氧化碳的吸附与氧化反应.分子催化.1997,11(1):50~54
    [45] 李金兵,黄伟新,包信和.NO在Ag-Pt双金属表面上的吸附和分解.工业催化.2000,8(2):23~27
    [46] 周仁贤,蒋晓源,王东林,郑小明,徐晓玲.Pt/ZrO_2-Al_2O_3催化剂上CO表面反应性能研究.化学物理学报.1997,10(5):452~456
    [47] 刘文利,高建华,李蕾.粉末溅射SnO_2:Pt薄膜和SnO_2/SnO_2:Pt双层膜的气敏特性.山东大学学报.2000,35(2):181~186
    [48] 孙成文,李奇,陈深,杨芝洲.Pt/YSZ氧传感器的电极电阻和响应特性.无机材料学报.1998,13(4):561~567
    [49] B. Luerβen, S. Gunther, H. Marbach, M. Kiskinova, J. Janek, R.Imbihl. Photoelectron spectromicroscopy of electrochemically induced oxygen spillover at the Pt/YSZ interface.Chemical Physics Letters 316 (2000): 331-335
    [50] C. Athanasiou, G. Karagiannakis, S. Zisekas, M. Stoukides. Electrode polarization at the O_2 (g), Pd/YSZ interface. Solid State Ionics, 136-137 (2000): 873-877
    [51] C.M.S. Rodrigues, J.A. Labrincha, F.M.B. Marques. Postmortem characterization of one yttria stabilized zirconia (YSZ)-based oxygen sensor. Solid State Ionics, 136~137 (2000):671-675
    [52] B. Luerβen, J. Janek, R. Imbihl. Electrocatalysis on Pt/YSZ electrodes. Solid State Ionics,141-142 (2001): 701-707
    [53] Darja Kek, Peter Panjan, Elke Wanzenberg, Janez Jamnik. Electrical and microstructural investigations of cermet anode/YSZ thin film systems. Journal of the European Ceramic Society,21(2001):1861-1865
    [54] 王家骅,李长健,牛文成编著.半导体器件物理.北京:科学出版社.1983
    [55] 谢孟贤,刘国维编.半导体工艺原理 北京:国防工业出版社.1980
    
    
    [56] 刘迎春,叶湘滨编著.传感器原理、设计与应用.长沙:国防科技大学出版社.1997
    [57] 方佩敏编著.新编传感器原理·应用·电路详解.北京:电子工业出版社.1994
    [58] 李素珍,丁辛芳编.半导体器件物理基础.北京:高等教育出版社.1983
    [59] 厦门大学物理系半导体物理教研室编.半导体器件工艺原理.北京:人民教育出版社.1977
    [60] 康昌鹤等编著.气、湿敏感器件及其应用.北京:科学出版社.1988
    [61] 罗晋生等编.半导体理论.成都:电子科技大学出版社.1991
    [62] 刘恩科等编.半导体物理学.北京:国防工业出版社.1994
    [63] 程卫国主编.MATLAB 5.3精要、编程及高级应用.北京:机械工业出版社.2000
    [64] 张瑞菊,俞梅.具有敏感膜的MIS型固态氧传感器的研制.医疗设备信息.1999,(2):13~15
    [65] Jason C.S. Lee, Jesse C. Patton, Francis A. Spelman. Development of silicon-based micro sensor for oxygen measurement in gas phase. 1994 IEEE: 826~827
    [66] Q.T. Zhao, F. Klinkhammer, M. Dolle, L. Kappius, S. Mantl. A novel silicide nanopatterning method for the fabrication of ultra-short channel Schottky-tunneling MOSFETs.Microelectronic Engineering 50 (2000): 133-138
    [67] Bon-Keun Juna, Dong-Hwan Kima, Jae-Young Leemb, Jung-Hee Leea, Yong-Hyun Leea. Fabrication of a depletion mode GaAs MOSFET using Al_2O_3 as a gate insulator through the selective wet oxidation of AlAs. Thin Solid Films 360 (2000): 229~232
    [68] David Rowlands, Sima Dimitrijev, H. Barry Harrison. The effects of process induced gate-to-source/drain junction separation in MOSFET structures. Microelectronics Reliability 38(1998): 1855~1866
    [69] M.H. Juang, L.C. Sun, W.T. Chen, C.I. Ou-Yang. A process simpli Ecation scheme for fabricating self-aligned silicided trench-gate power MOSFETs. Solid-Slate Electronics 45 (2001): 169~172
    [70] 张之圣,刘志刚,张维新,王文生.一种新型的YSZ栅MOS氧传感器及其响应机理.电子学报.1995,23(5):115~118
    [71] H.F.沃尔夫编.硅半导体工艺数据手册.国防工业出版社.1975
    [72] 张维新,朱秀文,毛赣如编.半导体传感器.天津:天津出版社.1992
    [73] 丁镇生编著.传感器及传感技术应用.北京:电子工业出版社.1998
    [74] 贾伯年,俞朴主编.传感器技术.南京:东南大学出版社.2000
    
    
    [75] 张福学等编著.传感器敏感元器件大全.北京:电子工业出版社.1990
    [76] 牛德芳等编著.半导体传感器原理及其应用.大连:大连理工大学出版社.1993
    [77] 陈贵灿等编著.CMOS集成电路设计.西安:西安交通大学出版社.2000
    [78] 李本俊,刘立华,辛德禄编.CMOS集成电路原理与设计.北京:北京邮电大学出版社,1997
    [79] 江丕桓,周国云,黄运锐等.场效应晶体管及其集成电路.国防工业出版社.1974
    [80] 亢宝位.场效应晶体管理论基础.北京:科学出版社.1985
    [81] 上海无线电十四厂,上海科学技术大学编.场效应半导体器件.上海人民出版社.1972
    [82] (美)K.A.杰克逊主编,屠海令等译校.半导体工艺.北京:科学出版社 1999
    [83] 任致程编著.半导体敏感元件及其典型应用实例.北京:机械工业出版社.1989
    [84] 麦德林著.场效应晶体管.香港:万里书局.1980
    [85] 张建人编著.MOS集成电路分析与设计基础.电子工业出版社.1987
    [86] 赵雅兴主编.电子线路PSPICE分析与设计.天津:天津大学出版社.1995
    [87] 郑光钦编著.全能混合电路仿真OrCAD PSpiceA/D V9.北京:中国铁道出版社.2000
    [88] 高文焕,汪蕙编著.模拟电路的计算机分析与设计:PSpice程序应用.北京:清华大学出版社.1999
    [89] 石广元.双栅MOSFET工作原理与制造工艺.辽宁大学学报.1995,(22):68~72
    [90] Masato NAKAO, Harunobu SATO, Kiichi KAMIMURA, Yoshiharu ONUMA. Preparation and property of tetragonal zirconia thin films for oxygen sensor. Electronic Manufacturing Technology Symposium, 1995, Proceedings of 1995 Japan International, 18th IEEE/CPMT International, 1996:162 -165
    [91] Seong-Soon Cho, Ho-Gi Kim. Pt Deposition Effect for the Catalyst of the Semiconducting Oxygen Sensor. Ferroelectrics, 1996. ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of, vol.2:983-986
    [92] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, B. Henderson. High sensitivity and temperature tolerant Microelectronic O_2 gas sensor. Solid State Sensors and Actuators, 1997.TRANSDUCERS '97 Chicago, 1997 International Conference, vol.2:979-982
    [93] K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh. Sol-gel prepared MoO_3-WO_3 thin-films for O_2 gas sensing. Sensors and Actuators B77 (2001): 478~483
    [93] K.R. Sridhar, J.A. Blanchard. Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor. Sensors and Actuators B59 (1999): 60-67
    
    
    [94]Guo-Long Tan, Xi-Jun Wu. Electronic conductivity of a ZrO2 thin film as an oxygen sensor. Thin Solid Films 330 (1998): 59-61
    [95]A.D. Brailsford, M. Yussouff, E.M. Logothetis. A first-principles model of the zirconia oxygen sensor. Sensors and Actuators B44 (1997): 321~326
    [96]R. A. Mendybaev, J. R. Beckett, E. Stolper, L. Grossman. Measurement of oxygen fugacities under reducing conditions: Non-Nemstian behavior of Y_2O_3-doped zirconia oxygen sensors.
    [97]R.W. Gibson, R.V. Kumar, D.J. Fray. Novel sensors for monitoring high oxygen concentrations. Solid State Ionics 121 (1999): 43-50
    [98]A.G. Mortimer, G.P. Reed. Development of a robust electrochemical oxygen sensor. Sensors and Actuators B24-25 (1995): 328-335
    [99]Huixian Zhu, Tai-Chin Lo, Ralf Lenigk, Reinhard Renneberg. Fabrication of a novel oxygen sensor with CMOS compatible processes. Sensors and Actuators B46 (1998): 155-159
    [100]C.M.S. Rodrigues, J.A. Labrincha, F.M.B. Marques. Postmortem characterization of one yttria stabilized zirconia (YSZ)-based oxygen sensor. Solid State Ionics 136-137 (2000):671-675
    [101]半导体器件工艺.上海:上海科学技术文献出版社.1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700