用户名: 密码: 验证码:
贵州暴雨洪涝的气候特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用贵州省气候中心提供的75个台站逐日降水资料,在运用常规气候统计方法、经验正交函数和相关分析的基础上,重点研究了48a来,贵州省暴雨的时空分布、演变特征和年降水量的长期演变趋势。结果表明,全省各地年均降水量在1100~1300mm之间,最多值接近1500mm,最少值约为840mm。年降水量的地区分布趋势是南部多于北部。全省有三个多雨区和三个少雨区。三个多雨区分别位于省的西南部、东南部和东北部,其中西南部多雨区的范围最大,也是全省最多雨量中心所在。三个少雨区分别在威宁、赫章和毕节一带,大娄山北部的道真、正安和桐梓一带,舞阳河流域的施秉、镇远一带。年暴雨量多值区与年降水量多值区一致,年暴雨雨量占年降水量的12-32%,年均暴雨日数在1.6~4.9天左右,夏季是全省暴雨、大暴雨的集中期,6月是季、月、旬暴雨最集中的时段。从整个线性趋势来看,年降水量呈减少的趋势,夏季暴雨量呈增加趋势,而春秋两季暴雨量呈减少趋势。省的东西部、省东北部与西南部、省东南部与西北部年降水量均呈反位相变化,另外省中部年降水量与东西部呈反位相变化,即中部多(少)雨时,东西部少(多)雨。贵州的夜间暴雨多发性非常明显,与产生暴雨的天气系统主要在夜间影响贵州密切相关。12月下旬—2月上旬全省无暴雨,11月中旬—3月中旬无大暴雨,特大暴雨集中在5月下旬—9月中旬(8月上、中旬除外)。
     贵州暴雨的产生符合具备一般暴雨形成的物理条件。触发条件、暴雨的反馈作用也是影响暴雨的因素,大尺度地形(青藏高原)有利于贵州暴雨的形成,局部地形幅合线而诱生的中尺度系统、喇叭口地形的辐合抬升作用对贵州暴雨的影响明显。直接造成贵州暴雨的天气影响系统主要有四类:冷锋低槽、南支低槽、低涡切变、台风等。根据地面冷锋、高空槽、低涡、切变线、台风、副高等天气系统的影响路径和高低空系统配置情况的不同,四类天气影响系统均可再细分:冷锋低槽包括从北方南下的冷锋和锋生冷锋与高空槽配合的两种类型,是春季、夏初、秋季产生暴雨的主要系统;南支低槽包括低槽热低压和低槽静止锋与冷空气配合的两类,是春季、秋季产生暴雨的主要系统;冷锋式和准静止锋式切变线与西南涡、高原涡的东移、东南移配合以及西太平洋高压和西藏高压之间的高空切变三类是夏季产生暴雨的主要系统。由广东沿海登陆的西移台风也是夏季产生暴雨的主要系统。
     另外针对贵州农村和城市的特点提出了暴雨洪涝的防御措施和建议。
Based on the conventional climate statistics analysis, Empirical Orthogonal Function and related analysis, daily precipitation data of the 75 observation stations of GuiZhou Province offered by GuiZhou Province Climate Center are used to study the spatial-temporal distribution, the characteristics of evolving of torrential rain, and the long period changing tendency of the annual precipitation in recent 48 years. The results indicate that the annual precipitation is between 1100mm and 1300mm, the maximum is up to 1500mm and the minimum is about 840mm. The annual precipitation in the south of GuiZhou is more than that in north. There are 3 centres of the most annual precipitation and 3 the least one. The location of the most annual precipitation canters are the southwest, southeast and northeast of GuiZhou. Among the three centers, the southwest one is the biggest one and the most annual precipitation center of whole province. The location of the least annual precipitation canters are the area along WeiNing, HeZhang and Bijie country, the area along DaoZhen, ZhengAn and TongZhi country at the north of DaLou Mountain, the area along ShiBing and ZhenYuan country at the basin of WuYang River. The area of more rainstorm is identical to the area of more annual precipitation, the annual precipitation of rainstorm is 12~32% of the total annual precipitation, the number of the annual average rainstorm days are 1.6~4.9days. The most rainstorm and downpour happen in summer time. June is the most concentrated time section that the seasonal, monthly and the period of ten-days distribution of rainstorm. Annual precipitation decreases, the precipitation of rainstorm in summer increase, while decreasing in spring and autumn. The precipitation of the east and west of GuiZhou Province is contrary to the precipitation of the middle, the northeast to the southwest and the southeast to the northwest are as the same, when the precipitation of the east and the west increase(decrease), the precipitation of the middle decrease(increase). There is no rainstorm during the last third of December to the first third of February of next year, neither large rainstorm during the middle of November to the middle of March of next year, All of the extraordinary rainstorm are happened during the last third of May to the middle of September except the first and middle third of August.
     The mechanism of GuiZhou rainstorm is accord with the physical condition of normal rainstorm. The trigger condition and the feedback of the rainstorm itself are conductive to rainstorm; the large scale landform (Tibetan Plateau) is beneficial to GuiZhou rainstorm. The meso-scale system caused by the local landform convergence line, the convergence and the lift-up action of the flared landform influence the rainstorm in GuiZhou obviously. There are 4 major weather systems causing rainstorm in GuiZhou directly that cold front and trough, southern trough, vortex and shear line and typhoon. According to the influence path and the high-and-low profile of the weather systems, the four major systems can be further compartmentalized. The Cold Front and Trough Model contains two types that the cold front southward from north and cold front-genesis configuring upper trough, that is the main weather systems causing heavy-rain in spring, early summer and autumn. The Southern Trough Model includes two type that trough-heat-low-pressure and trough-quasi-stationary-front configuring cold air, that is the main systems causing rainstorm in spring and autumn. The three weather systems that the cold-front and quasi-stationary-front shear line, eastward or southeastward moving southwest vortex and plateau vortex, upper shear line between the West Pacific Subtropical High and the Qinghai-Xizang High are the main systems causing heavy-rain in summer. And the westward typhoon from GuangDong Province coast is the major system causing rainstorm in summer.
引文
[1]陶诗言等.中国之暴雨.北京:气象出版社.1979.1-225
    [2]冯平、崔广涛、钟昀.城市洪涝灾害直接经济损失的评估与预测[J].水利学报,2001(8): 64-68
    [3]来小芳、张艳玲、陆汉城、寿绍文.“配料法”用于长江下游暴雨预报.南京气象学院学报,2007(4):556-560
    [4]万蓉、郑国光.地基GPS在暴雨预报中的应用进展.气象科学,2008.28(6):697-702
    [5]梁钟清、金龙、巩远发.低纬度地区局地暴雨的神经网络预报方法研究.热带气象学报,2009.25(4):458-464
    [6]田小毅、霍焱、董芹、靖玉良、焦振峰等.用T213物理量场和相似性原理作暴雨判别预报.气象科学,2008.28(4):456-461
    [7]韦惠红、李才媛、邓红、熊秋芬等.SVM方法在武汉区域夏季暴雨预报业务中的应用.气象科技,2009.37(2):145-148
    [8]曹云昌、方宗义、李成才、王迎春.利用GPS和云图资料监测北京地区中小尺度降水的研究.高原气象,2005.24(1):91-96
    [9]伍荣生.大气动力学
    [10]丁一汇.高等天气学
    [11]陶诗言,李吉顺,王昂生.东亚季风与我国洪涝灾害[J].中国减灾,1997,7(4):18-23.
    [12]倪允琪、周秀骥、张人禾、王鹏云、仪清菊等.“我国南方暴雨的实验与研究”.应用气象学报,2006.17(6):690-703
    [13]倪允琪、周秀骥等.“我国重大天气灾害形成机理与预测理论研究取得的主要研究成果”.地球科学进展,2006.21(9):881-894
    [13]邹竞蒙.中国的暴雨监测,暴雨和洪水国际学术研讨会.1992年10月5-10日,黄山,中国
    [14]冯伍虎、程麟生等.98.7特大暴雨的动力学及能量诊断分析.兰州大学学报:自然科学版,2002.38(4):131-137
    [15]方建刚、侯建忠、陶建玲、郭大梅.秦岭近邻地区秋季暴雨的天气动力学分析.兰州大学学报:自然科学版,2007.43(4):31-36
    [16]胡亮、何金海、高守亭等.华南持续性暴雨的大尺度降水条件分析.南京气象学院学报,2007.30(3):345-351
    [17]毛冬艳、钱传海、乔林、陈涛、吴秋霞.贵州南部一次突发性大暴雨的中尺度分析.南京气象学院学报,2007.30(5):601-609
    [18]黄明策.广西暴雨时空分布特征.广西气象,2006.27(3):9-13
    [19]陈二平、武永利、朱凌云等.山西省暴雨气候特征分析.山西气象,2003,2:21-24
    [20]刘小宁.我国暴雨极端事件的气候变化特征[J].灾害学,1999,14(1):54-59
    [21]陈晓光.气候变暖背景下宁夏暴雨日数的变化[J].气候变化研究进展,2007,3(2):85-90
    [22]龚强、王盘兴.东北夏季降水异常的年代际、年际变化特征及其成因分析[D]:[硕士学位论文].南京:南京气象学院,2003.
    [23]包澄澜.对我国南方暴雨天气的几点认识[G].暴雨文集.长春:吉林人民出版社,1979.
    [24]刘益兰、帅士章.贵州降水变化趋势特征分析.贵州气象,2001,25(1):10-12
    [25]张艳梅、江志红等.贵州夏季暴雨的气候特征.气候变化研究进展,2008.4(3):182-185
    [26]伍红雨、王谦谦.近49年贵州降水异常的气候特征分析.高原气象,2003.22(1):65-69
    [27]严小东、金建德等.近50年贵州降水时空分布分析.贵州气象,2004增刊.28:3-6
    [28]杨立群.贵州暴雨洪涝、秋绵雨和凝冻的气候特征及灾情分析.贵州气象,1999.23(4): 3-7
    [29]王明军、郭二凤等河南省暴雨特征及其形成的气候背景.河南气象.1999.1:25-26
    [30]黄嘉佑.气象统计分析与预报方法(第三版)[M].北京:气象出版社.2004:8-10.
    [31]李少娟、何大明、傅开道.澜沧江与下湄公河水位过程的关联分析.科学通报,2006,7,Vol.51,增刊.:40-41
    [32]侯伟芬、王谦谦.江南地区近50年地面气温的变化特征.高原气象,2004,6.Vol.23,No.3.
    [33]施能、陈家其、屠其璞.中国近100年来4个年代际的气候变化特征.气象学报,1995,11.Vol.53,No.4.
    [34]汪春生、秦宁生、张占峰等.青海高原近40a降水变化特征及其对生态环境的影响. 中国沙漠,2007,1.Vol.27,No.1.
    [35]Fu Congbin, Wang Qiang. The definition and detection of the abrupt climate change[J].Science Atmosphere Sinica,1992,16(4):482-492
    [36]李珍、姜逢清.1961—2004年新疆气候突变分析.冰川冻土.2007,6.Vol.29,No.3.
    [37]杨素英、王谦谦、孙凤华.中国东北南部冬季气温异常及其大气环流特征变化.2005,6.Vol.16,No.3.
    [38]吴洪宝、吴蕾.气候变率诊断和预测方法[M].北京:气象出版社,2005:15-44
    [39]张宇发.贵州降水近五十年变化趋势及突变.贵州气象,1998,22(5):19-21
    [40]吴仕章、周凝超.1991年贵州省暴雨洪水剖析及对策,贵州师范大学学报(自然科学版).1993,11(4):25-30
    [41]刘雪梅、于俊伟等.贵州洪涝灾害的承灾能力评估及对策研究.贵州气象.1999,23(5): 17-19
    [42]周凝超.贵州“9.17”暴雨洪灾及对策.贵州气象,1996,20(6):31-33
    [43]杨恕良、许丹.贵州省气象灾害及防御对策.贵州气象,1996,20(6):10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700