用户名: 密码: 验证码:
祁连山东段磷灰石裂变径迹热年代学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于青藏高原隆升—扩展的过程、时间及其机制,一直是国际地球科学界普遍关心的科学问题和学者们争论的热点。祁连山位于青藏高原的东北缘,新生代构造研究表明,逆冲断裂、活动褶皱、构造隆升在该区普遍发生,整个地区经历了强烈的构造变形。祁连山的抬升历史在一定程度上记录了青藏高原隆升的过程,近年来受到众多学者的越来越多的关注。相比在祁连山西段已经取得的科学进展,东段的研究工作略显不足,这在一定程度上妨碍了从整体上把握和认识青藏高原隆升及扩展对周缘地区的影响,因此有必要加强在祁连山东段的研究工作。磷灰石裂变径迹测年方法是近年来兴起一种低温热年代学方法,由于其封闭温度较低(100±20℃),对温度变化反应敏感,因此能够对构造活动和地表过程之间相互关系进行有效研究。
     本文以祁连山东段为研究区域,利用磷灰石裂变径迹测年方法对一组采自该区奥陶系花岗岩岩体的样品进行了测年分析,对其热演化历史进行了模拟,计算出该区长尺度地表剥蚀速率,并初步讨论了该区的构造活动和地形对裂变径迹年龄及长尺度地表剥蚀速率的影响。主要结论如下:
     1.祁连山东段13个的磷灰石裂变径迹视年龄结果为晚白垩纪到古新世(~56-86Ma),且大部分集中在70Ma到75Ma,均远远小于地层年龄。裂变径迹长度分布特征表明,样品在通过磷灰石裂变径迹部分退火带时发生了严重的退火。
     2.热历史模拟研究揭示出研究区从白垩纪晚期以来经历了三个主要演化阶段:①~75Ma到18Ma,祁连山东段处于构造稳定期,地表侵蚀速率为~0.01mmm/a,②~18Ma到~8Ma,祁连山东段进入快速抬升—侵蚀期,侵蚀速率为~0.07mm/a,③~8Ma至今,祁连山东段发生强烈抬升—侵蚀,侵蚀速率为~0.24mm/a,并且此次构造活动具有多阶段性。
     3.祁连山东段热演化历史说明,青藏高原东北缘的持续向外扩展促使祁连山从中新世中晚期开始,沿着祁连山活动断裂系由北西向南东逐渐抬升,最近8 Ma以来为祁连山抬升的主要阶段。
     4.地形对于磷灰石裂变径迹年龄可能有很大影响,尤其是对待类似本文中密集采样的测年结果,年龄普遍倒置现象很可能是由于地形和岩体抬升—地表剥蚀相互反馈使得样品发生差异性冷却退火所致。长尺度地表剥蚀速率在根本上受控于构造作用,并且能够反映构造影响下的地貌发育过程。
The process, time rate, and mechanism are key issues in understanding uplift and extension of the Tibetan Plateau, and attract consistent general concern in the geo-science field in recent decades. Margining the northeast Tibetan Plateau, the Qilian Mountain suffers dramatic tectonic deformation since Neogene, deduced from researches of ubiquitous thrust faults, active folds, and tectonic uplift in situ. Moreover, owing to its sensitive reflection upon the uplift, it provides an outstanding field laboratory for studies of plateau uplift and therefore receives much more concern recently. Nevertheless, the investigations on eastern Qilian Mountain is still insufficient comparing to the western Qilian Mountain, and in some extent, lack of data in this area impedes the full understanding of the effects of uplift of the Tibetan Plateau on surround regions.Thus, an enhancement of investigation on eastern Qilian Mountain is urgently required. Apatite fission track (AFT) dating is one of the most important thermochronology method springing up recently, and because of its sensitivity to temperature variation and lower closure temperature (100±20℃), AFT serves as a powerful approach in studies of tectonic activities,surface processes and mountain evolution.
     Here, we analyzed a suite of apatite fission track data from local ordovician granite samples in eastern Qilian Mountain, modelled their thermal history evolution, calculated the long-term surface denudation rates, and then discussed the regional tectonics and the effects of topography on fission track ages and long-term surface denudation rates.Our investigation draws some conclusions as follows:
     1.Apparent ages of 13 apatite fission track samples from eastern Qilian Mountain range from late Cretaceous to Paleocene(-56-86Ma) and concentrate upon 70Ma to 75Ma, far younger than the age of strata. The horizontal confined tracks are relatively short, in the order of~12.5μm, the distributions of track length are broad and display single skewed peak, which suggest a strong annealing with the samples while going through the upper part of partial annealing zone.
     2.The modeling result of thermal evolution history with fission track data indicates three main cooling stages in eastern Qilian Mountain since late Cretaceous:①~75 Ma to 18 Ma, a relative stable state, with an low erosion rate of~0.01mm/a.②~18 Ma to~8 Ma, a stage of relatively rapid exhumation, and the erosion rates is-0.07 mm/a.③~8Ma to present, a dramatic high exhumation stage, which characterized a multiple sub-stage, and the average erosion rates is-0.24 mm/a.
     3.The thermal evolution history of eastern Qilian Mountain illustrates the outward growth of the Tibetan Plateau prompting the gradual uplift of Qilian Mountain from northwest to southeast along the Qilian active faults system since middle-late Miocene, and the latest 8 Ma is the major stage of uplift of Qilian Mountain.
     4. Topography may have significant influence on apatite fission track ages, especially to the intense sampling dating as this paper involves. The age inversion may come from the discrepant annealing induced by feedback between topography and rock uplift-surface denudation process. Long-term surface denudation rates are in first order controlled by tectonic uplift and could reflect the geomorphical evolution under the influence of tectonics.
引文
1 李吉均,方小敏 青藏高原隆起与环境变化研究 科学通报1998(15)
    2 ZhengDewen, ZhangPeizhen, WanJinlin et al Rapid exhumation at~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin Earth and Planetary Science Letters 2006 248(1-2) 198-208
    3 钟大赉,丁林 青藏高原的隆起过程及其机制探讨 中国科学D辑 1996 26(4)289-295
    4 张培震,郑德文,尹功明等有关青藏高原东北缘晚新生代扩展与隆升的讨论 第四纪研究2006(01)
    5潘保田,高红山,李炳元等青藏高原层状地貌与高原隆升 第四纪研究 2004(01)
    6李吉均青藏高原的地貌演化与亚洲季风 海洋地质与第四纪地质1999(01)
    7 方小敏,赵志军,李吉均等 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升 中国科学D辑2004 34(2)97-106
    8 Zhisheng A, Kutzbach J E, Prell W L et al Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times Nature 2001411(6833) 62-66
    9 Zech R, Zech M, Kubik P W et al Deglaciation and landscape history around Annapurna, Nepal, based on lOBe surface exposure dating Quaternary Science Reviews 2009 28(11-12) 1106-1118
    10 Molnar P, England P, Martinod J Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon Rev. Geophys.1993 31(4) 357-396
    11 李吉均,文世宣,张青松等青藏高原隆起的时代、幅度和形式探讨 中国科学A辑 1979(6)608—616
    12 Molnar P, Burchfiel B C, K'uangyi L et al Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia Geology 1987 15(3) 249-253
    13 Zhang P-Z, Shen Z, Wang M Continuous deformation of the Tibetan Plateau from global positioning system data Geology 2004
    14 Mercier J L, Armijo R, Tapponnier P et al Change from late tertiary compression to Quaternary extension in Southern Tibet during the India-Asia collsion. Tectonics 1987 6(3) 275-304
    15 张青松,李炳元,景可青藏地区上新世古地理和高原隆起北京:科学出版社1981
    16 Harrison T M, Copeland P, Kidd W S F et al Raising Tibet Science 1992 255(5052) 1663-1670
    17 Coleman M Evidence for Tibetan uplift before 14 Myr ago from a new minimum age for east-west extension Nature 1995 374 49-52
    18 Burbank D W, Derry L A, France-Lanord C Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon Nature 1993 364(6432) 48-50
    19 Molnar P Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate Palaeontologia Electronica 2005 8(1) 1-23
    20 Molnar P Late Cenozoic increase in accumulation rates of terrestrial sediment:How might climate change have affected erosion rates? Annual Review of Earth and Planetary Sciences 2004 32(1) 67-89
    21 许志琴,杨经绥大陆俯冲作用及青藏高原周缘造山带的崛起 地学前缘 1999 6(3)139-151
    22 Tapponnier P, Zhiqin X, Roger F et al Oblique Stepwise Rise and Growth of the Tibet Plateau Science 2001 294(5547) 1671-1677
    23 陆洁民,郭召杰,赵泽辉等新生代酒西盆地沉积特征及其与祁连山隆升关系的研究 高校地质学报2004 10(1)50-61
    24陈柏林,王春宇,崔玲玲等 祁连山北缘—河西走廊西段晚新生代逆冲推覆断裂发育模式 地学前缘2008 15(6)260-277
    25 宋春晖,方小敏,李吉均等Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan Plateau since 13 Ma BP Science in China.Ser.D 2001 (S1)
    26陈杰,卢演俦,丁国瑜祁连山西段及酒西盆地区第四纪构造运动的阶段划分 第四纪研究 1996(3)263-271
    27 Gaudemer Y, Tapponnier P, Meyer B et al Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the'Tianzhu gap', on the western Haiyuan Fault, Gansu (China) Geophysical Journal International 1995 120(3) 599-645
    28 George A D, Marshallsea S J, Wyrwoll K-H et al Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis Geology 2001 29(10) 939-942
    29 Wang E Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet Earth and Planetary Science Letters 1997 150(1-2) 55-64
    30 Yue Y, Ritts B, Graham S Initiation and Long-Term Slip History of the Altyn Tagh Fault International Geology Review 2001 43(12) 1087-1093
    31 Metivier F, Gaudemer Y, Tapponnier P et al Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China Tectonics 1998 17(6) 823-842
    32陈杰,Wyrwoll K H,卢演俦等 祁连山北缘玉门砾岩的磁性地层年代与褶皱过程 第四纪研究2006(01)
    33 Wagner G, Haute P V D Fission-Track Dating. Norwell, U.S.A:Kluwer Academic Publishers,1992 59-159
    34 Price P B Recent applications of nuclear tracks in solids Radiation Measurements 2008 43(Supplement 1) S13-S25
    35 Wagner G A, Gleadow A J W, Fitzgerald P G The significance of the partial annealing zone in apatite fission-track analysis:Projected track length measurements and uplift chronology of the transantarctic mountains Chemical Geology:Isotope Geoscience section 1989 79(4) 295-305
    36 Gleadow A J W, Duddy I R, Green P F et al Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis Contributions to Mineralogy and Petrology 1986 94(4) 405-415
    37 Nissen E, Walker R T, Bayasgalan A et al The late Quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic lOBe and luminescence dating Earth and Planetary Science Letters 2009 286(3-4) 467-478
    38 Gleadow A J W, Belton D X, Kohn B P et al Fission Track Dating of Phosphate Minerals and the Thermochronology of Apatite Reviews in Mineralogy and Geochemistry 2002 48(1) 579-630
    39郑德文张万碎屑颗粒磷灰石裂变径迹法在制约地层年龄中的应用 矿物岩石地球化学通报2001(04)
    40 Wolela A Sedimentation and depositional environments of the Barremian-Cenomanian Debre Libanose Sandstone, Blue Nile (Abay) Basin, Ethiopia Cretaceous Research 2009 30(5) 1133-1145
    41 Tinker J, de Wit M, Brown R Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology Tectonophysics 2008 455(1-4) 77-93
    42 Sobel E R, Seward D Influence of etching conditions on apatite fission-track etch pit diameter Chemical Geology In Press, Accepted Manuscript
    43 Schmidt K L, Paterson S R, Blythe A E et al Mountain building across a lithospheric boundary during arc construction:The Cretaceous Peninsular Ranges batholith in the Sierra San Pedro Martir of Baja California, Mexico Tectonophysics 2009 477(3-4) 292-310
    44 Metcalf J R, Fitzgerald P G, Baldwin S L et al Thermochronology of a convergent orogen:Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone Earth and Planetary Science Letters 2009287(3-4) 488-503
    45 Foster G L, Carter A Insights into the patterns and locations of erosion in the Himalaya--A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite Earth and Planetary Science Letters 2007 257(3-4) 407-418
    46 Feinstein S, Kohn B, Osadetz K et al Variable Phanerozoic thermal history in the Southern Canadian Shield: Evidence from an apatite fission track profile at the Underground Research Laboratory (URL), Manitoba Tectonophysics 2009 475(1) 190-199
    47 De Grave J, Van den haute P, Buslov M M et al Apatite fission-track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region Radiation Measurements 2008 43(1) 38-42
    48 Danisik M, Sachsenhofer R F, Privalov V A et al Low-temperature thermal evolution of the Azov Massif (Ukrainian Shield-Ukraine)--Implications for interpreting (U-Th)/He and fission track ages from cratons Tectonophysics 2008 456(3-4) 171-179
    49 DiBiase R A, Whipple K X, Heimsath A M et al Landscape form and millennial erosion rates in the San Gabriel Mountains, CA Earth and Planetary Science Letters 289(1-2) 134-144
    50 Yi Y, Carter A, Xia B et al A fission-track and (U-Th)/He thermochronometric study of the northern margin of the South China Sea:An example of a complex passive margin Tectonophysics 2009 474(3-4) 584-594
    51 Fan M, Dettman D L Late Paleocene high Laramide ranges in northeast Wyoming:Oxygen isotope study of ancient river water Earth and Planetary Science Letters 2009 286(1-2) 110-121
    52 Green P F On the thermo-tectonic evolution of northern England; evidence from fission track analysis Geological Magazine 1986 123(6) 493-506
    53 Balestrieri M L, Abbate E, Bigazzi G Insights on the thermal evolution of the Ligurian Apennines (Italy) through fission-track analysis Journal of the Geological Society, London 1996 153(3) 419-425
    54 Wagner G, Haute P V D Fission-Track Dating. Norwell, U.S.A:Kluwer Academic Publishers 199259-159
    55保增宽,袁万明,董金泉等磷灰石裂变径迹法研究阿尔泰青河地区地质热历史 核技术 2005 28(9)722-725
    56 LiuXiuming, WangShijie, ZhangFeng Fission Track Dating of Authigenic Quartz in Red Weathering Crusts of Carbonate Rocks in Guizhou Province Acta Geologica Sinica 2004 78(5) 1136-1142
    57 Stolar D B, Willett S D, Montgomery D R Characterization of topographic steady state in Taiwan Earth and Planetary Science Letters 2007 261(3-4) 421-431
    58 Wanming Y, Zengqian H, Shengrong L et al Fission track evidence on thermal history of Jiama polymetallic ore district,Tibet Science in China.Ser.D 2001 44(S1) 139-145
    59 来庆洲,丁林,王宏伟等青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约 中国科学D辑2006 36(9)785-796
    60 丁林,钟大赉,潘裕生等 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据 科学通报 199540(16)1497-1497
    61 雷永良,钟大赉,季建清等东喜马拉雅构造结更新世两期抬升-剥露事件的裂变径迹证据 第四纪研究2008 28(4)584-590
    62 YuanWanming, HouZengqian, LiShengrong et al Fission track evidence on thermal history of Jiama polymetallic ore district.Tibet Science in China.Ser.D 2001 44(S1) 139-145
    63 Wang Y, Zhang X, Sun L et al Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China):Constrained by 40Ar/39Ar and apatite fission track thermochronology Journal of Asian Earth Sciences 200729(2-3) 266-282
    64 ZhengDewen, ZhangPeizhen, WarJinlin et al Late Cenozoic deformation subsequence in northeastern margin of Tibet-Detrital AFT records from Linxia Basin Science in China.Ser.D 2003 46(No.OctS) 266-275
    65潘保田,邬光剑,王义祥等祁连山东段沙沟河阶地的年代与成因 科学通报2000 45(24)2669-2675
    66 高红山,潘保田,李吉均等 祁连山东段金塔河流域层状地貌时代与成因探讨 山地学报 2005 23(3)129-135
    67 Grist A M, Zentilli M Overvies of fission-track dating:Theory, Methods, Thermochronology and Applications 2005
    68李小明.裂变径迹方法及云开大山热年代学研究;2004.
    69 Shuster D L, Farley K A The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite Geochimica et Cosmochimica Acta 2009 73(1)183-196
    70 Walia M, Yang T F, Liu T-K et al Fission track dates of Mandi granite and adjacent tectonic units in Kulu-Beas valley, NW Himalaya, India Radiation Measurements 2008 43(Supplement 1) S343-S347
    71 Anell I, Thybo H, Artemieva I M Cenozoic uplift and subsidence in the North Atlantic region:Geological evidence revisited Tectonophysics 2009 474(1-2) 78-105
    72 Soofi M A, Wu P Crustal deformation due to Alaska-Yakutat collision Journal of Geodynamics 2008 46(1-2) 38-47
    73 Galbraith R F Statistics for Fission track analysis 2005
    74 Green P F, Durrani S A Annealing studies of tracks in crystals Nuclear Track Detection 197 71(1) 33-39
    75 Fayon A K, Whitney D L Interpretation of tectonic versus magmatic processes for resetting apatite fission track ages in the Nigde Massif, Turkey Tectonophysics 2007 434(1-4) 1-13
    76 Spiegel C, Kohn B, Belton D et al Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples:The effect of He implantation Earth and Planetary Science Letters 2009 285(1-2) 105-114
    77 Gleadow A J W, Duddy I R, Lovering J F Fission track analysis:A new tool for the evaluation of thermal histories and hydrocarbon potential Austral Petrol Explor Assoc J 1983 23 93-102
    78 国家地震局地质研究所祁连山-河西走廊活动断裂系.北京:地震出版社,1993 7-29
    79 PanBaotian, GaoHongshan, WuGuangjian et al Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China Earth Surface Processes and Landforms 2007 32(26) 143-154
    80国家地震局地质研究所中国活断层研究专辑祁连山-河西走廊活动断裂系1993年09月
    81 袁万明,保增宽,董金泉等新疆土屋-延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析 中国科学D辑2007 37(10)1330-1337
    82袁万明,王世成,李胜荣等西藏冈底斯带构造活动的裂变径迹证据 科学通报2001(20)
    83袁万明,杜杨松,杨立强等西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析 岩石学报2007(11)
    84袁万明,董金泉,保增宽等西藏冈底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束 原子能科学技术 2008(06)
    85 陈文寄,郝杰 冈底斯岩带热演化史的MDD模式新证据Ⅰ 地球学报 1997 18(A00)86-88
    86 Copeland P, Harrison T M, Yun P et al Thermal evolution of the Gangdese batholith, southern Tibet:A history of episodic unroofing. Tectonics 1995 14 223-236
    87 Molnar P, Tapponnier P Relation of the tectonics of eastern China to the India-Eurasia collision:Application of slip-line field theory to large-scale continental tectonics Geology 197 75(4) 212-216
    88 Tapponnier P, Peltzer G, Le Dain AY et al Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine Geology 1982 10(12) 611-616
    89 Clark Burchfiel B, Royden L H Tectonic of Asia 50 years after the death of Emile Argand Eclogae Geologicae Helvetiae 1991 84(3) 599-629 (2 p.1/2)
    90 Yue Y, Liou J G Two-stage evolution model for the Altyn Tagh fault, China Geology 1999 27(3) 227-230
    91 Annette D G, Susan J M, Karl-Heinz W et al Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis Geology 2001 29(10) 939-942
    92 Clift P D, Hodges K V, Heslop D et al Correlation of Himalayan exhumation rates and Asian monsoon intensity Nature Geosci 2008 1(12) 875-880
    93 Galy A, France-Lanord C Higher erosion rates in the Himalaya:Geochemical constraints on riverine fluxes Geology 2001 29(1) 23-26
    94 Aalto R, Dunne T, Guyot Jean L Geomorphic Controls on Andean Denudation Rates The Journal of Geology 2006 114(1) 85-99
    95 Pan B-t, Geng H-p, Hu X-f et al The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, N.W. China Earth and Planetary Science Letters 292(1-2) 148-157
    胡小飞,潘保田,Eirc Kirby,李清洋,耿豪鹏,陈吉峰,河道陡峭指数所反映的祁连山北翼抬升速率的东西差异,科学通报(待刊)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700