用户名: 密码: 验证码:
漳州盆地地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漳州盆地是福建省最大的陆地断陷盆地,隐伏的九龙江断裂横贯盆地的北部,具有发生强烈地震的危险。本文研究了九龙江断裂上6级地震引起的漳州盆地及周边地区地震动的预测,计算了漳州市强地震场的分布,分析了空间分布特征和规律。
     强地震动研究洞察地震中地表震动发生、发展特征和规律性,涉及对震源的了解和模型的建立、传播介质影响的分析和模拟、场地条件影响分析等三方面的一系列基本问题。近断裂地震动更加复杂,受震源的影响十分显著。大型沉积盆地对地震动和震害的影响受到了全球地震工程研究者的广泛关注,牵涉松散软土的放大效应、埋藏基岩表面的聚焦效应和盆地边缘效应等。
     分析中,九龙江断裂用有限断层震源模型表达,根据活断层探查结果和半经验标定关系确定走向、倾向、倾角、长度、宽度和平均滑动量等。借助凹凸体和k平方模型结合的混合震源模型估计错动在破裂面上的分布,确定各个子源的滑动量。考虑半经验关系的不确定性引起的全局参数和局部参数的随机性,建立了30个震源模型。破裂起始点确定在九龙江断裂的东南端,破裂速度取剪切波速的0.85倍。
     高频地震动借助Atkinson等发展的随机合成方法估计,震源谱中采用动力拐角频率。先估计选定的位于盆地四角和中心的5个点在30个震源作用下基岩地表地震动的平均值,选定一个与平均特征最接近的震源模型。据此,计算地表200×200米的网格上共5796个点的加速度时程和反应谱。盆地内的点,先计算地下50米深度处(相当于漳州盆地松散土层最深处的两倍)地震动的傅氏谱,再乘上该点对应的盆地分区的传递函数,逆变换得到地表地震动。传递函数根据各分区代表性钻孔速度结构,采用等效线性化方法计算。根据各点峰值加速度,归纳、编制了漳州盆地及周边地区地震动峰值加速度分布预测图和分区图。共划分三类区,每一区进一步分为盆地内、外两个子区,对每一个子区提供了平均的加速度反应谱、各子区的标准化的反应谱图及参数表。
     低频地震动借助简化的数值格林函数方法计算。本文根据中国地震应急搜救中心提供的数据建立了漳州盆地的三维有限元网格模型,用解析法计算有限断层源引起的盖层底部的位移场,将其作为盖层波动有限元分析的输入。波动有限元计算了5796个点地表长周期加速度时程。
     长周期、短周期加速度时程经分别滤波,在时域叠加,合成了各点的加速度时程。按照与各子区平均反应谱最贴近的原则,选取各子区代表性点的时程作为抗震设计验算时程分析用的加速度时程。
The Zhangzhou basin is the largest faulting-subsided basin on land in Fujian Province. The Jiulongjiang blind fault is just beneath the northern part of the basin, which is potential to cause a strong earthquake. Strong ground motion in Zhangzhou basin and its vicinity from an earthquake with magnitude 6 on the Jiulongjiang fault is forecasted in this dissertation. Distribution of ground motion field at Zhangzhou City is calculated, the spatial characteristics and pattern is summarized.
     Study on strong ground motion insights into the generation and propagation characteristics and pattern of surface shaking during earthquake and deals with a series of basic problems about the source and source model, the propagation medium effects and the local site effects. Near fault ground motion is much more complex due to the significant effects of the source. Effect of large sediment basin on ground motion and earthquake damage become a highlight topic in earthquake engineering world wide these decades, which involves the amplifying effect of soft soil, the focusing effect of buried rock surface and the basin edge effect.
     A finite fault source model (FFM) is adopted to describe the Jiulongjiang fault for the forecasting. Global parameters such as strike, dip, dip angle, length and width of the fault, and the average slip on the fault are determined from the fault exploration data and a set of semi-empirical scaling laws. The slip distribution on the fault plane and then the slip at each sub-source are determined from a hybrid source model, which combines asperity model and k square model. 30 source models are generated taking the randomness into account on global and local parameters from the uncertainty of the semi-empirical scaling laws. The rupture start point is located at the southeast end of the Jiulongjiang fault and the rupture velocity is taken as 0.85 of the shear wave velocity in source area.
     High frequency ( f > 1Hz) ground motion is synthesized by a stochastic procedure developed by Atkinson, and the dynamic corner frequency is applied in source spectra. The rock site ground motions at 5 selected points around and in the basin from 30 source models are firstly calculated, and one of the models is chosen from the best fit to the mean response spectra. Acceleration time histories and spectra of motions at 5796 ground points on 200 km×200 km grids that covers the whole region, are calculated one by one. For the points located in basin, the motions at a depth 50 m (the double of the largest soil depth in the basin) are synthesized at first, and then their Fourier spectra are multiplied by the corresponding transfer function, the acceleration time histories are finally obtained from the inverse Fourier transformation. The transfer function is calculated for each zone by means of 1D wave propagation procedure with equivalent linearization, from the velocity structure of representative borehole in the zone. Furthermore, the peak ground acceleration distribution and zoning maps are plotted from the values at 5796 points. The whole region is divided into three zones. Each of them covers two sub-zones, in-basin and out-basin. The average acceleration response spectrum, the normalized response spectrum and corresponding parameters for each sub-zone are presented.
     Low frequency ( f < 1Hz) ground motion is calculated by a simplified Numerical Green Function approach. The 3D velocity structure model of Zhangzhou basin is worked out from the data provided by the China Center for Earthquake Disaster Emergency and SAR. The displacement field at the top of crystal rock from the finite fault source is calculated by analytical Green Function method and is taken as the input for 3D wave propagation finite element analysis. Acceleration time histories at the 5796 points are calculated by finite element method.
     The acceleration time history of each point is obtained from the superimposition of high and low frequency ground motions after high and low-pass filtering respectively, in time domain. The representative time history of each zone is taken from the point whose spectrum fits the average spectrum of the zone best, for inputs of time history analysis in seismic design.
引文
1林锦华.漳州断陷盆地及发震构造.地壳变形与地震. 2001, 21(2):85-89
    2中国地震局工程力学研究所.刘恢先地震工程学论文选集,地震出版社. 1994
    3陶夏新,李小军.工程地震基本科学问题.学科发展战略研究报告(2006年-2010年),国家自然科学基金委员会工程与材料科学部,北京:科学出版社,建筑、环境与土木工程II(土木工程卷). 2006:367-381
    4廖振鹏.地震小区划—理论与实践.地震出版社. 1989
    5廖振鹏,陶夏新.地震小区划.工程地震研究.国家地震局震害防御司. 1991
    6胡聿贤.地震工程学.第二版.地震出版社. 2006
    7 D. M. Boore and W. B. Joyner. Prediction of high-frequency strong ground motion. Proceeding of International Workshop on Earthquake Engineering. Shanghai, China. 1984
    8 K. Aki. An overview and issues: review of simulation procedures. Strong ground motion simulation and earthquake engineering applications. Earthquake Engineering Research Institute. 1985
    9 W. B. Joyner and D. M. Boore. Measurement, characterization, and prediction of strong ground motion. Proceeding of Earthquake Engineering and Soil Dynamics II-Recent Advances in Ground Motion Evaluation. Park City, Utah. 1988
    10 G. Atkinson and D. M. Boore. Recent trends in ground motion and spectral response relations for North America. Earthquake Spectra. 1990, 6: 15-35
    11 D. M. Boore and W. B. Joyner. Prediction of ground motion in North America. Proceedings of Seminar on New Developments in Earthquake Ground Motion Estimation and Implications for Engineering Design Practice, Redwood City, California, USA. 1994
    12 N. N. Ambraseys. The prediction of earthquake peak ground acceleration in Europe. Earthquake Engineering and Soil Dynamics. 1995, 24: 467-490
    13 N. N. Ambraseys, et al. Prediction of horizontal response spectra in Europe. Earthquake Engineering and Soil Dynamics. 1996, 25: 371-400
    14 D. M. Boore. Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California. Bulletin of the Seismological Society of America. 2001, 91(5): 1212-1217
    15 X. X. Tao, Z. H. Zhou, Y. N. Zhou and H. Y. Wang. Observation and prediction of strong ground motion in China. NATO workshop, Kusadasi,Turkey, Keynote. 2004
    16周锡元.强震地面运动与设计地震的研究,特邀报告,学科发展战略研究报告(2006年-2010年),国家自然科学基金委员会工程与材料科学部,北京:科学出版社,建筑、环境与土木工程II(土木工程卷). 2006
    17 D. M. Boore. Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California. Bulletin of the Seismological Society of America. 2001, 91(5): 1212-1217
    18 X. X. Tao and J. G. Anderson. Near field strong ground motion simulation. Proceeding of International Conference on Advances and New Challenges in Earthquake Engineering Research, Harbin. 2002
    19 T. Khosrow, K. T. Shabestari and F. Yamazaki. Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake. Earthquake Engineering and Structure Dynamic. 2003, 32(14): 2197-2219
    20 http://earthquake.usgs.gov/ regional/world/events/1985_09_19.php
    21 http://libraryphoto.cr.usgs.gov/cgibin/search.cgi?search_mode=exact&selection=Mexico+City+Earthquake+1985%7CMexico+City%7CEarthquake%7C1985
    22 W. Hays, et al. Seismic Zonation-A Framework for linking earthquake risk assessment and earthquake risk management. 1998, Presses Academiques
    23 P. G. Somerville and R. Graves. Conditions that give rise to usually large long period ground motions. The Structural Design of Tall Buildings. 1993, 2(3): 211-232
    24 H. Yamanaka, Takemura M., Ishida H., Niwa M. Characteristics of long-period microtremors and their applicability in exploration of deepsedimentary layers. Bulletin of the Seismological Society of America. 1994, 84(6): 1831–1841
    25 K. Seo. Application of microtremors to earthquake engineering lessons learned from recent joint researches, Proc. of the Japan-China Joint Workshop on Prediction and Mitigation of Seismic Risk in Urban Region October, 11-13, 1997
    26 T. Satoh, H. Kawas. S-wave Velocity Structures of the Taichung Basin, Taiwan, Estimated from Array and Single-Station Records of Microtrmors. Bulletin of the Seismological Society of America. 2001, 91(5): 1267-1282
    27 D. M. Boore and W. B. Joyner. Estimation of ground motion at deep-soil sites in Eastern North America. Bulletin of the Seismological Society of America. 1991, 81(6): 2167-2185
    28 Y. S. Vladimir, C. H. Loh and K. L. Wen. Empirical study of sediment-filled basin response: the case of Taipei city. Earthquake Spectra. 2000, 16(3): 681-707.
    29李咸亨,吴志明,罗胜元,林熹麟.台北盆地地盘震动反应分析探讨.岩土工程学报, 2002,24(2): 154-158
    30 R. W. Graves, A. Pitarka and P. G. Somerville. Ground-motion amplification in the Santa Monica area: Effects of shallow basin-edge structure. Bulletin of the Seismological Society of America. 1998, 88(5): 1224-1242
    31 R. Eduardo and O. Mario. Spectral ratios for Mexico City from free-field recordings. Earthquake Spectra. 1999, 15(2): 273-295
    32 A. D. Frankel. Earthquake ground motions in sedimentary basins. P. C. Cheng. Conference Proceeding of Structures 2001—A Structural Engineering Odyssey, Washington D. C., USA, 2001
    33 T. Satoh, H. Kawase. Three-Dimensional Finite-Difference Waveform Modeling of Strong Motions Observed in the Sendai Basin, Japan. Bulletin of the Seismological Society of America. 2001a, 91(4): 812-825
    34 P. Y. Bard, M. Campilo, F. J. Chavez-Garcia and F. J. Sanchez-Sesma. The Mexico earthquake of September 19, 1985-A theoretical investigation of large and small-scale amplification effects in the Mexico City valley. Earthquake Spectra. 1988, 4: 609-633
    35 H. Kawase and K. Aki. A study on the response of a soft basin for incident S,P and Rayleigh waves with special reference to the long duration observed in Mexico City. Bulletin of the Seismological Society of America. 1989, 79:1361-1382
    36 P. G. Somerville, M. Sen, and B. Cohee. Simulation of strong ground motions recorded during the 1985 Michoacan, Mexico and Valparaiso, Chile earthquakes. Bulletin of the Seismological Society of America. 1991, 81(1): 1-27
    37 P. G. Somerville and R. W. Graves. Strong ground motions of the Kobe, Japan earthquake of Jan. 17, 1995, and development of a model of forward rupture directivity effects applicable in California. Proceedings of the Western Regional Technical Seminar on Earthquake Engineering for Dams, Association of State Dam Safety Officials, Sacramento, California, USA, 1996
    38 K. Irikura. Prediction of strong motions from future earthquakes caused by active faults-case of the Osaka basin. Proceeding of the 12th World Conference on Earthquake Engineering, Auckland, 2000
    39王彦滨.盆地强地震地面运动的预测.防灾博览. 2003(6):5-6
    40周正华,王宇欢,刘泉,尹晓涛,杨程.求解运动方程的一种不等时间步长的显式数值积分方法.地震学报. 2005,27(2):225-229
    41周正华,周扣华.有阻尼振动方程常用显式积分格式稳定性分析.地震工程与工程振动. 2001,21(3):22-28
    42廖振鹏.透射边界和无穷远辐射条件.中国科学. 2001, 44(2): 177-186
    43廖振鹏,周正华,张艳红.波动数值模拟中透射边界的稳定实现.地球物理学报. 2002, 45(4): 533-545
    44 G. Atkinson. An overview of development in seismic hazard analysis. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver, Canada. 2004
    45 IASPEI/IAEE joint working group on ESG, Japanese national working group on ESG, Earthquake engineering research liaison committee, Science council of Japan association for earthquake disaster prevention. Proceedings of the international symposium on the effect of surface geology on seismic motion. 1992
    46师黎静.利用地脉动进行场地三维速度结构建模和成像.中国地震局工程力学研究所博士论文. 2007
    47 H. B. Seed. Dynamic analysis of the slide in the Lower San Fernado Dam during the earthquake of February 9, 1971. Journal of Geotechnical Engineering Division 1975, 101 (9): 889 - 911.
    48 H. Kawase. The cause of the damage belt in Kobe:“the basin-edge effect”constructive interference of the direct S wave with the basin induced diffracted/Rayleigh waves. Bulletin of the Seismological Society of America. 1996, 67(1): 25-34
    49 S. Hartzell, A. Leeds, A. Frankel, R. A. Williams, J. Odum, W. Stephenson and W. Silva. Simulation of broadband ground motion including nonlinear soil effects for magnitude 6.5 earthquake on the Seattle Fault, Seattle, Washington. Bulletin of the Seismological Society of America. 2002, 92(2): 831-853
    50 I. A. Beresenv and G. Atkinson. Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake, I. Validation on rock sites. Bulletin of the Seismological Society of America. 1998, 88(6): 1392-1401
    51 I. A. Beresenv and G. Atkinson. Generic finite-fault model for ground-motion prediction in Eastern North America. Bulletin of the Seismological Society of America. 1999, 89(3): 608-625
    52 X. X. Tao and G. X. Wang. Rupture directivity and hanging wall effect in near field strong ground motion simulation. ACTA Seismologica Sinica, 2003, 16(2): 205-212
    53 X. X. Tao and H. Y. Wang. A random source model for near filed strong ground motion prediction. Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004
    54 H. Y. Wang, X. X. Tao and J. Li. Global source parameters of finite fault model for strong ground motion predictions. Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004
    55王海云,陶夏新.近场强地震动预测中浅源地震的Asperity模型特征.哈尔滨工业大学学报. 2005, 37(11): 1533-1539
    56 H. Y. Wang and X. X. Tao. Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relations. EarthquakeEngineering and Engineering Vibration. 2003, 2(2): 201-211
    57中国地震应急搜救中心.漳州市活断层探测技术报告. 2005,内部
    58孙晓丹.震源对大跨度空间结构地震动输入的影响.哈尔滨工业大学硕士论文. 2005
    59 Y. Kakehi and K. Irikura. Estimation of high-frequency wave radiation areas on the fault plane by the envelope inversion of acceleration seismograms. Geophysical Journal International. 1996, 12(5): 892-900
    60 H. Kanamori and D. L. Anderson. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America. 1975, 65(5): 1073-1095
    61王海云.近场强地震动预测的随机震源模型.中国地震局工程力学研究所博士论文. 2004
    62 D. M. Boore. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America. 1983, 73(6): 1865-1894
    63 D. M. Boore and G. Atkinson. Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in Eastern North America. Bulletin of the Seismological Society of America. 1987, 77(2): 1987
    64 B. A. Bolt ed. Seismic strong motion synthetics. Orland, Florida, Academic Press. 1987
    65 T. C. Hanks and R. K. McGuire. The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America. 1981, 71(6): 2071-2095
    66 G. Atkinson and D. M. Boore. Stochastic point source modeling of ground motion in the Cascadia region. Seismological Research Letter. 1997, 68(1): 74-85
    67 G. Atkinson and W. Silva. An empirical study of earthquake source spectra for California earthquakes. Bulletin of the Seismological Society of America. 1997, 87(1): 97-113
    68 G. Atkinson and W. Silva. Stochastic Modeling of California ground motions. Bulletin of the Seismological Society of America. 2000, 90(2): 255-274
    69 I. A. Beresenv and G. Atkinson. Modeling finite-fault radiation from theωn spectrum. Bulletin of the Seismological Society of America. 1997, 87(1): 67-84
    70 K. Aki. Scaling law of seismic spectrum. Journal of Geophysical Research. 1967, 72: 1212-1231
    71 T. C. Hanks. b values andω2 seismic source models: implications for tectonic stress variation along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research. 1979, 84(5): 2235-2242
    72 J. G. Boatwright and G. L. Choy. Acceleration source spectra anticipated for large earthquakes in northeastern North America. Bulletin of the Seismological Society of America. 1992, 82(2): 660-682
    73 G. Atkinson. Earthquake source spectra in the Eastern North America. Bulletin of the Seismological Society of America. 1993, 83(6): 1778-1798
    74 G. Atkinson and D. M. Boore. Evaluation of models for earthquake source spectra in eastern North America. Bulletin of the Seismological Society of America. 1998, 88(4): 917-934
    75 I. A. Beresenv and G. Atkinson. Source parameters of earthquakes in eastern and western North America based on finite-fault modeling. Bulletin of the Seismological Society of America. 2002, 92(2): 695-710
    76 D. Motazedian and G. M. Atkinson. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency. Bulletin of the Seismological Society of America. 2005, 95(3): 995-1010
    77 B. Mohammadioum and L. Serva. Stress drop, slip type, earthquake magnitude, and seismic hazard. Bulletin of the Seismological Society of America. 2001, 91(4):694-707
    78 G. Atkinson. Attenuation of strong ground motion in Canada from a random vibrations approach. Bulletin of the Seismological Society of America. 1984, 74(6): 2629-2653
    79 J. G. Anderson and S. E. Hough. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America. 1984, 74(5): 1969-1993
    80 G. Atkinson. The high-frequency shape of the source spectrum for earthquakes in Eastern and Western Canada. Bulletin of the Seismological Society of America. 1996, 86(1A): 106-112
    81陶夏新.工程地震学.中国地震局工程力学研究所研究生课程讲义. 2003
    82袁晓铭,孙锐,孙静.常规土类动剪切模量和阻尼比试验研究.地震工程与工程振动. 2000, 20(4):133-139
    83汤国安,扬昕. ArcGIS地理信息系统空间分析教程.科学出版社. 2006: 363-369
    84中华人民共和国国家标准.工程场地地震安全性评价(GBl7741-2005). 2005
    85中华人民共和国国家标准.建筑物抗震设计规范(BG50011-2001).2001
    86张冬丽,陶夏新,周正华.近场地震动格林函数的解析法与数值法对比研究.西北地震学报. 2004,26(3):199-205
    87 F. Gilbert. Excitation of the normal models of the earth by earthquake source. Geophysical Journal of the Royal Astronomical Society. 1971, 22: 223-226
    88 K. Aki and P. G. Richards. Quantitative Seismology Theory and Methods[M]. Vols. 1, 2, Freeman. 1980
    89张冬丽,陶夏新,周正华.关于有限断层计算模型的研究——考虑位错时、空不均匀分布的滑动时间函数.西北地震学报. 2005,27(3):193-198
    90 W. B. Joyner and D. M. Boore. On simulating large earthquake by Green’s function addition of small earthquakes. Earthquake Source Mechanics, Geophysical Monograph. 1986, 37: 269-274
    91 A. Pitarka, K. Irikura, T. Iwata and H. Sekiguchi. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake. Bulletin of the Seismological Society of America. 1998, 88(2): 428-440
    92周正华,廖振鹏.消除多次透射公式飘移失稳的措施.力学学报. 2001,33(4): 550-554

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700