用户名: 密码: 验证码:
雌激素对牙周膜细胞促炎因子及OPG/RANKL表达的调控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨质疏松(OP, osteoporosis)和牙周病(PD, periodontal disease)是世界范围内广泛发生的两类骨吸收性疾病。雌激素缺乏是绝经后妇女骨质疏松的重要致病因素之一,而骨质疏松则是牙周疾病与牙齿缺失的可能致病因素之一。临床研究表明绝经后妇女尽管口腔卫生状况没有改变,但循环雌激素水平降低时牙周病发病率明显增加。动物实验研究发现大鼠去势(OVX, ovariectomy)诱导的雌激素缺乏可引起下颌骨密度降低、下颌骨骨皮质变薄及牙槽骨吸收。而且,大量研究表明雌激素可能在慢性牙周疾病的发生、发展中具有重要意义。然而,雌激素影响牙周组织健康的确切分子机制目前尚不清楚。
     牙周病是炎性骨吸收性疾病,其主要特征是牙龈炎与牙槽骨吸收。一般认为,牙周病的组织损伤是牙周病原体及其代谢产物,特别是脂多糖(LPS,lipopolysaccharide)诱导的宿主免疫反应引起的,免疫细胞及局部组织细胞(如牙龈成纤维细胞、牙周膜细胞)分泌炎性因子参与这一过程。牙周膜(PDL, periodontal ligament)位于牙槽骨与牙骨质之间,其可影响骨形成-骨吸收平衡,在维持牙周组织代谢平衡中具有重要作用。
     Lerner指出雌激素缺乏可引起牙周组织骨改建失衡,即雌激素可能调控骨形成-骨吸收平衡而影响炎性诱导的牙周骨重建。以往,有关雌激素对牙周组织改建的影响的研究主要集中于雌激素对牙周膜细胞增殖及成骨能力的影响,而关于雌激素对牙周组织骨吸收的影响及相关作用机制的研究甚少。目前,雌激素缺乏引起的炎性因子表达改变,尤其是促炎因子IL-1、IL-6、TNF-α及破骨细胞形成相关因子OPG/RANKL表达水平改变对牙周组织的影响引起了学者们的广泛关注。
     丝裂原激活蛋白激酶(MAPK,Mitogen-activated protein kinases)可分为细胞外信号调控激酶(ERK-1/2,extracellular signal-regulated kinase)、c-jun N末端激酶(JNK,c-jun N-terminal kinase)及p38 MAPK三部分。MAPK是介导细胞反应的重要信号系统,参与了增殖、分化及凋亡等细胞活动,在炎性反应调控中具有重要作用。研究表明,尽管表达水平各不相同,牙周膜细胞表达所有MAPKs信号分子,MAPKs信号途径在牙周炎性疾病的发生、发展中具有重要的调控作用。
     研究目的
     (1)雌激素是否影响牙周膜细胞促炎因子TNF-α、IL-1β和IL-6表达;
     (2)雌激素是否影响牙周膜细胞OPG/RANKL表达;
     (3) TNF-α、IL-1β和IL-6是否参与调控LPS、E2诱导RANKL、OPG表达;
     (4) MAPKs信号途径否参与调控LPS、E2作用下牙周膜细胞促炎因子TNF-α、IL-1β和IL-6表达。
     研究方法
     (1)体外分离、培养(人)牙周膜细胞,以E. coli LPS(20μg/mL)为预刺激物诱导(人)牙周膜细胞促炎因子表达,加入不同浓度(10-7,10-8或10-9 M)的E2(17β-estradiol)培养6,12,24或72h。以未作任何处理的(人)牙周膜细胞为空白对照,特异性雌激素受体拮抗剂ICI 182,780处理组(10-6 M)作阴性对照。分别于6,12,24和72h收集细胞培养上清液,0.2%Txiton X-100裂解细胞,收集细胞裂解液。采用TRIzol试剂提取细胞总RNA,于-70℃保存备用。
     RT-PCR、ELISA分别检测E. coli LPS、E2作用下牙周膜细胞中TNF-α、IL-6和IL-1βmRNA及Pr(Protein)表达改变。
     (2) Real-time PCR、ELISA分别检测LPS、E2作用下牙周膜细胞OPG、RANKL mRNA及Pr表达改变。
     (3)为研究TNF-α、IL-1β和IL-6对LPS、E2诱导的牙周膜细胞RANKL、OPG表达调控作用,我们在培养基内加入TNF-α、IL-1β中和性抗体(anti TNF-α,1μg/mL; anti IL-1β, 1μg/mL)或IL-6可溶性受体(sIL-6R, 200 ng/mL),并于12,24和48h分别收集细胞,-70℃保存待检。Real-time PCR检测TNF-α、IL-1β中和性抗体及IL-6可溶性受体对牙周膜细胞OPG、RANKL mRNA表达的影响。
     (4)为了解丝裂原激活蛋白激酶(MAPKs)信号途径在牙周膜细胞促炎因子表达调控中的作用,于LPS、E2处理前15分钟分别向培养基内加入MAPKs信号途径生化抑制子PD98059(10μM)、SP600125(10μM)及SB203580(10μM)。细胞处理6h后收集细胞培养上清液,-70℃保存待检.以探讨MAPKs信号系统ERK、JNK及P38α在LPS诱导的促炎因子TNF-α、IL-1β和IL-6表达上调中的调控作用。ELISA检测MAPKs信号途径生化抑制子PD98059、SP600125及SB203580对LPS、E2作用下牙周膜细胞促炎因子TNF-α、IL-1β和IL-6表达的调控作用。
     实验结果
     (1)与对照组相比,E2对牙周膜细胞促炎因子TNF-α、IL-1β和IL-6自发性表达几乎无影响。E. coli LPS对促炎因子TNF-α、IL-6和IL-1βmRNA、Pr分泌具有显著促进作用,而E2可抑制LPS诱导的TNF-α、IL-6和IL-1βmRNA表达及Pr分泌,且E2对LPS诱导促炎因子表达的抑制作用具有剂量依赖性及时间依赖性。
     (2)与对照组相比,LPS可显著促进牙周膜细胞RANKL mRNA、Pr表达,同时对OPG表达也有一定的促进作用;E2可有效抑制LPS诱导RANKL表达;而E2单独处理可显著促进OPG表达增强,但对牙周膜细胞RANKL表达几乎无影响。
     (3) TNF-α、IL-1β中和性抗体及IL-6可溶性受体均可有效抑制LPS诱导的RANKL、OPG mRNA表达上调,该效应在细胞处理24~48h较明显。TNF-α、IL-1β中和性抗体及IL-6可溶性受体对E2诱导的OPG mRNA表达几乎无影响。
     (4)①对TNF-α而言,SP600125(JNK生化抑制子)可有效抑制LPS的诱导效应,而PD98059(ERK生化抑制子)及SB203580(P38α生化抑制子)对LPS诱导的TNF-α分泌作用不明显;②对IL-1β而言,PD98059、SP600125及SB203580均可抑制LPS诱导的IL-1β,尤以SP600125最为显著;③对IL-6而言,PD98059和SP600125可抑制LPS诱导的IL-6表达上调,而SB203580作用不甚显著。
     结论:
     (1) E2可能并不改变牙周膜细胞促炎因子表达能力,但可调控LPS对牙周膜细胞促炎因子表达的刺激作用。
     (2)E2可完全逆转LPS作用引起的OPG/RANKL比率降低。因此,雌激素可改变牙周膜细胞OPG/RANKL比率而影响牙周病的进展。
     (3)LPS对RANKL、OPG表达的调控作用是通过上游促炎因子表达依赖性途径实现的,而E2诱导OPG表达上调的作用与促炎因子TNF-α、IL-1β和IL-6无关。
     (4)尽管对促炎因子TNF-α、IL-1β和IL-6表达的调控机制不尽相同,但MAPKs信号系统参与了牙周膜细胞促炎因子表达调控。即LPS可激活多条MAPKs信号通路,以不同的激活途径调控牙周膜细胞TNF-α、IL-1β和IL-6表达。E2对LPS诱导的促炎因子表达具有显著的抑制作用,而MAPK信号系统参与了LPS诱导的促炎因子表达,因而我们推测E2可能,至少部分地,经MAPK信号途径抑制了LPS诱导的促炎因子表达。
Background
     Both osteoporosis and periodontal disease are bone-resorptive diseases. Estrogen deficiency is believed to be one of the major causes of post-menopausal osteoporosis. Osteoporosis is considered as one of the risk factors for periodontal disease and tooth loss. Clinical observations in post-menopausal women have confirmed an increased prevalence of periodontal disease with lower estrogen level, even when oral hygiene remained unchanged. Animal experiments with ovariectomized (OVX) rats also demonstrated that estrogen deficiency may result in low mineral density of mandible, thin cortex of mandibular body, and resorption of alveolar bone. Furthermore, a number of studies suggested that estrogen may have an important role in chronic inflammatory periodontal diseases. However, the etiology of estrogen-associated periodontal diseases remains an enigma, partly because the precise effects of estrogen on periodontal tissues at molecular level are not yet known.
     Periodontitis is a chronic inflammatory disease characterized by gingival inflammation and alveolar bone resorption. It is generally accepted that much of the periodontal tissue destruction observed in periodontal disease is host mediated through inflammatory cytokines by local tissues and immune cells in response to the bacterial flora and its products/metabolites, especially lipopolysaccharide (LPS). The periodontal ligament (PDL), which lies between alveolar bone and cementum, plays a vital role in maintaining the homeostasis of periodontal tissues by affecting coordinated balance of bone-forming and bone-resorbing.
     A report reviewed by Lerner has demonstrated that estrogen deficiency can provoke an imbalance in the remodeling sequence of periodontal tissues. Previous studies mainly focused on whether estrogen affects the bone formation capability of PDL cells, such as the production of osteocalcin. However, the effects of estrogen on bone resorption in periodontium have been less explored. Estrogen deficiency-triggered changes in inflammatory cytokines are emerging as a common theme that may have a significant impact on bone resorption in periodontal tissues. The inflammatory cytokines that have attracted the most attention are TNF-α, IL-1β, IL-6, OPG and RANKL.
     Aims
     (1) To explore the modulatory effects of estrogen on expression of pro-inflammatory cytokines such as TNF-α, IL-1βand IL-6 in the hPDL cells
     (2) To assess the modulatory effect of estrogen on OPG and RANKL expression in the hPDL cell.
     (3) To investigate whether estrogen modulate LPS-induced OPG and RANKL expression through the induction of TNF-α, IL-1βand IL-6 in the hPDL cell.
     (4) To determine whether estrogen modulate LPS-induced pro-inflammatory cytokines biosynthesis via multiple mitogen-activated protein kinase pathways in the hPDL cells.
     Methods
     (1) The hPDL cells were stimulated by E. coli LPS (Sigma, 20μg/ml)) with or without estrogen (17β-estradiol, E2, Sigma) (10-7, 10-8 or 10-9 M) for 6, 12, 24, 48 and 72 hours. The untreated hPDL cells served as normal control. To confirm the specificity of the estrogen effects, we employed ICI 182,780 (Tocris Cookson, 10-6 M), a specific estrogen receptor antagonist, as negative control. At specific times, culture media were collected. And the hPDL cells of all treatment groups were lysed in 0.2% Triton X-100 and the cell lysates were collected and centrifugated. The cell-free supernatants were stored at -70°C until being assayed.
     TNF-α, IL-1βand IL-6 mRNA induction was detected via reverse transcription-polymerase chain reaction (RT-PCR), while protein levels were quantified via enzyme-linked immunosorbent assays (ELISA).
     (2) To investigate the effects of E2 on expression of OPG and RANKL at both mRNA and protein level, quantitative Real-Time PCR and ELISA was performed.
     (3) The effects of anti TNF-α, anti IL-1βand sIL-6R on mRNA expression of OPG and RANKL induced by E2 and LPS were determined using Real-Time PCR.
     (4) The effects of biochemical inhibitors of ERK, JNKand p38 MAPK on pro-inflammatory cytokines TNF-α, IL-1βand IL-6 secretion were detected by ELISA.
     Results
     (1) In our study, it was found that E2 had little effect on the spontaneous expression of TNF-α, IL-1βand IL-6 by hPDL cells. Our results showed that E. coli LPS can induce the expression of TNF-α, IL-1βand IL-6 at both mRNA and protein level by hPDL cells, whereas co-treatment of E2 significantly suppressed LPS-stimulated production of TNF-α, IL-1βand IL-6 in hPDL cells in adose-dependent manner.
     (2) In this study, we observed that LPS up-regulated RANKL as well as OPG expression, though the OPG-inducing effect was not significant. We also found that E2 time-dependently increased OPG expression and attenuated the RANKL-inducing effects of LPS, however, no detectable effect on RANKL expression was observed with treatment of E2 alone. The LPS-induced decrease of OPG/RANKL ratio in hPDL cells was completely reversed by E2.
     (3) Our results demonstrated that neutralizing antibodies for these cytokines effectively inhibited LPS-induced OPG and RANKL expression while they did not abolish the induction of OPG by E2.
     (4) Our study showed that blocking JNK MAPK with SP600125 reduced LPS-induced TNF-αexpression. All MAPK inhibitors significantly reduced the IL-1βprotein levels induced by LPS. Our results also indicate that both PD98059 and SP600125 may suppress induction of IL-6 by LPS, whereas SB203580 had little effect on LPS-stimulated IL-6 biosynthesis.
     Conclusions
     (1) It was suggested that E2 may not alter the ability of hPDL cells to produce pro-inflammatory cytokines, but that it may modify the stimulatory effect of LPS on pro-inflammatory cytokines in hPDL cells.
     (2) Our study suggested that the LPS-induced decrease of OPG/RANKL ratio in hPDL cells was completely reversed by E2. Therefore, we proposed that E2 may influence the progression of periodontal disease via altering the ratio of OPG to RANKL in hPDL cells.
     (3) According to our study, we speculate that estrogen may modulate OPG expression in a manner independent of TNF-α, IL-1βand IL-6, although LPS may induce OPG and RANKL expression in a manner dependent on upstream inflammatory stimulators.
     (4) Our results indicated that, though the MAPK signaling pathways involved in the induction of pro-inflammatory cytokines varied among TNF-α, IL-1βand IL-6, induction of TNF-α, IL-1βand IL-6 by E. coli LPS requires signaling through ERK, JNK and p38 MAPK in hPDL cells. It is possible that E2 may, at least in part, modulate LPS-induced pro-inflammatory cytokines expression through multiple mitogen-activated protein kinase pathways in periodontal ligament cells.
引文
[1] Geurs NC. Osteoporosis and periodontal disease. Periodontol 2000. 2007;44:29-43.
    [2] Gruber CJ, Tschugguel W, Schneeberger C, Huber JC. Production and actions of estrogens. N Engl J Med. 2002;346(5):340-52.
    [3] Hillier SG, Whitelaw PF, Smyth CD. Follicular oestrogen synthesis: the “two-cell, two-gonadotrophin” model revisited. Mol Cell Endocrinol. 1994;100:51-4.
    [4] Anderson DC. Sex-hormone-binding globulin. Clin Endocrinol (Oxf ) 1974;3:69-96.
    [5] Cheskis BJ, Greger JG, Nagpal S, Freedman LP. Signaling by estrogens. J Cell Physiol. 2007;213(3):610-7.
    [6] Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 1986;320(9):134-36.
    [7] Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA.Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93:5925-30.
    [8] Witkowska HE, Carlquist M, Engstrom O, et al.. Characterization of bacterially expressed rat estrogen receptor beta ligand binding domain by mass spectrometry: structural comparison with estrogen receptor alpha. Steroids. 1997;62:621-31.
    [9] Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology.1997;138:863-70.
    [10] Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993;90:11162-6.
    [11] Webb P, Lopez GN, Uht RM, Kushner PJ. Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 1995;9:443-56.
    [12] Compston JE. Sex steroids and bone. Physiol Rev. 2001;81(1):419-47.
    [13] Oyoo GO, Kariuki JG. Osteoporosis--from hormonal replacement therapy to bisphosphonates and beyond: a review. East Afr Med J. 2007;84(11):534-45.
    [14] Kaye EK. Bone health and oral health. J Am Dent Assoc. 2007;138(5):616-9.
    [15] Wactawski-Wende J, Grossi SG, Trevisan M, et al. The role of osteopenia in oral bone loss and periodontal disease. J Periodontol 1996;67:1076-84.
    [16] von Wowern N, Klausen B, Kollerup G. Osteoporosis: a risk factor in periodontal disease. J Periodontol 1994;65:1134-8.
    [17] Reinhardt RA, Payne JB, Maze CA, Patil KD, Gallagher SJ, Mattson JS. Influence of estrogen and osteopenia/osteoporosis on clinical periodontitis in postmenopausal women. J Periodontol 1999;70(8):823- 8.
    [18] Jeffcoat MK, Lewis CE, Reddy MS, Wang CY, Redford M. Post-menopausal bone loss and its relationship to oral bone loss. Periodontol 2000;23:94-102.
    [19] Tezal M, Wactaw ski-Wende J, Grossi SG, Ho AW, Dunford R, Genco RJ. The relationship between bone mineral density and periodontitis in postmenopausal women. J Periodontol 2000;71:1492-8.
    [20] Krejci CB, Bissada NF. Women's health issues and their relationship to periodontitis. J Am Dent Assoc. 2002;133(3):323-9.
    [21] Mohammad AR, Hooper DA, Vermilyea SG, Mariotti A, Preshaw PM. An investigation of the relationship between systemic bone density and clinical periodontal status in post-menopausal Asian American women. Int Dent J 2003;53:121-5.
    [22] Kribbs PJ. Comparison of mandibular bone in normal and osteoporotic women. J Prosthet Dent. 1990;63 (2):218-22.
    [23] Elders PJ, Habets LL, Netelenbos JC, van der Linden LW, van der Stelt PF. The relation between periodontitis and systemic bone mass in women between 46 and 55 years of age. J Clin Periodontol. 1992;19(7):492-6.
    [24] Hildebolt CF, Pilgram TK, Dotson M, Yokoyama-Crothers N, Muckerman J, Hauser J, Cohen S, Kardaris E, Vannier MW, Hanes P, Shrout MK, Civitelli R. Attachment loss with postmenopausal age and smoking. J Periodontal Res. 1997;32 (7):619-25.
    [25] Weyant RJ, Pearlstein ME, Churak AP, Forrest K, Famili P, Cauley JA. The association between osteopenia and periodontal attachment loss in older women. J Periodontol. 1999;70(9):982-91.
    [26] Lai YL. Osteoporosis and periodontal disease. J Chin Med Assoc. 2004;67(8):387-8.
    [27] Ushiroyama T, Ikeda A, Sakuma K, Ueki M. The effect of physicians' advice and recommendations on the compliance with hormone replacement therapy in the treatment of postmenopausal symptoms in Japanese women--a prospective study. J Med. 2004;35(1-6):163-9.
    [28] Wells G, Cranney A, Peterson J, Boucher M, Shea B, Robinson V, Coyle D, Tugwell P. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008;(1):CD004523.
    [29] Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279-302.
    [30] Bischoff L, Derk CT. Premenopausal osteoporosis. Minerva Med. 2008;99(1):55-63.
    [31] Daci E, van Cromphaut S, Bouillon R. Mechanisms influencing bone metabolism in chronic illness. Horm Res. 2002;58 Suppl 1:44-51.
    [32] Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res. 1982;4:1-6
    [33] Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res. 2005;20(2):177-184.
    [34] Sommerfeldt DW, Rubin CT. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001 Oct;10 Suppl 2:586-95.
    [35] Lerner UH. Bone remodeling in post-menopausal osteoporosis. J Dent Res. 2006;85(7):584-95.
    [36] Lerner UH. Inflammation-induced bone remodeling in periodontal disease and the influence of post-menopausal osteoporosis. J Dent Res. 2006;85(7):596-607.
    [37] Parfitt AM. What is the normal rate of bone remodeling? Bone. 2004;35:1-3.
    [38] Chow J, Tobias JH, Colston KW, Chambers TJ. Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. J Clin Invest. 1992;89:74-8.
    [39] Qu Q, Perala-Heape M, Kapanen A, Dahllund J, Salo J, et al.. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone. 1998;22:201-9.
    [40] Oursler MJ, Cortese C, Keeting P, Anderson MA, Bonde SK, Riggs BL, et al. Modulation of transforming growth factor-beta production in normal human osteoblast-like cells by 17 beta-estradiol and parathyroid hormone. Endocrinology. 1991b; 129:3313-20.
    [41] Ernst M, Heath JK, Rodan GA. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology. 1989;125:825-33.
    [42] Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115-37.
    [43] Tobias JH, Compston JE. Does estrogen stimulate osteoblast function in postmenopausal women? Bone. 1999;24:121- 4.
    [44] Samuels A, Perry MJ, Tobias JH. High-dose estrogen induces de novo medullary bone formation in female mice. J Bone Miner Res. 1999;14(2):178-86.
    [45] Plant A, Samuels A, Perry MJ, Colley S, Gibson R, Tobias JH. Estrogen-induced osteogenesis in mice is associated with the appearance of Cbfa1-expressing bone marrow cells. J Cell Biochem. 2002;84(2):285-94.
    [46] Plant A, Tobias JH. Increased bone morphogenetic protein-6 expression in mouse long bones after estrogen administration. J Bone Miner Res. 2002;17(5):782-90.
    [47] Rickard DJ, Hofbauer LC, Bonde SK, Gori F, Spelsberg TC, Riggs BL. Bone morphogenetic protein-6 production in human osteoblastic cell lines. Selective regulation by estrogen. J Clin Invest. 1998;101(2):413-22.
    [48] Ernst M, Heath JK, Rodan GA. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology. 1989;125(2):825-33.
    [49] Ishibe M, Nojima T, Ishibashi T, Koda T, Kaneda K, Rosier RN, Puzas JE. 17 beta-estradiol increases the receptor number and modulates the action of 1,25-dihydroxyvitamin D3 in human osteosarcoma-derived osteoblast-like cells. Calcif Tissue Int. 1995;57(6):430-5.
    [50] Slootweg MC, Swolin D, Netelenbos JC, Isaksson OG, Ohlsson C. Estrogen enhances growth hormone receptor expression and growth hormoneaction in rat osteosarcoma cells and human osteoblast-like cells. J Endocrinol. 1997;155(1):159-64.
    [51] Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107-18.
    [52] Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, Ross FP, Teitelbaum SL. Dexamethsone suppresses bone formation via the osteoclast. Adv Exp Med Biol. 2007;602:43-6.
    [53] Danilevicius CF, Lopes JB, Pereira RM. Bone metabolism and vascular calcification. Braz J Med Biol Res. 2007;40(4):435-42.
    [54] Cho TJ, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA, Choi IH. Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int. 2007;80(3):192-200.
    [55] Shen F, Ruddy MJ, Plamondon P, Gaffen SL. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-alpha-induced genes in bone cells. J Leukoc Biol. 2005 ;77(3):388-99.
    [56] Pischon N, Darbois LM, Palamakumbura AH, Kessler E, Trackman PC. Regulation of collagen deposition and lysyl oxidase by tumor necrosis factor-alpha in osteoblasts. J Biol Chem. 2004;279(29):30060-5.
    [57] Miljkovic D, Trajkovic V. Inducible nitric oxide synthase activation by interleukin-17. Cytokine Growth Factor Rev. 2004;15(1):21-32.
    [58] Osdoby P, Krukowski M, Oursler MJ, Salino-Hugg T. The origin, development and regulation of osteoclasts. Bioessays. 1987;7(1):30-4.
    [59] Oursler MJ. Mechanisms of steroid action on osteoclasts and osteoblasts. Biochem Soc Trans. 1998 ;26(1):33-8.
    [60] Oursler MJ. Direct and indirect effects of estrogen on osteoclasts. J Musculoskelet Neuronal Interact. 2003;3(4):363-6.
    [61] Pensler JM, Radosevich JA, Higbee R, Langman CB. Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors. J Bone Miner Res. 1990; 5:797-802.
    [62] Hoyland JA, Mee AP, Baird P, Braidman IP, Mawer EB, Freemont AJ. Demonstration of estrogen receptor mRNA in bone using in situ reverse-transcriptase polymerase chain reaction. Bone. 1997; 20:87-92.
    [63] Shevde NK, Bendixen AC, Dienger KM, Pike JW. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA. 2000; 97:7829-34.
    [64] Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem. 2001; 276:8836-40.
    [65] Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda A, Yang NN, Hakeda Y, Kumegawa M. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts.J Exp Med. 1997;186(4):489-95.
    [66] Akatsu T, Murakami T, Nishikawa M, Ono K, Shinomiya N, Tsuda E. Mochizuki S, Yamaguchi K, Kinosaki M, Higashio K, Yamamoto M, Motoyoshi K, Nagata N. Osteoclastogenesis inhibitory factor suppresses osteoclast survivalby interfering in the interaction of stromal cells with osteoclast. Biochem Biophys Res Commun. 1998; 250:229-34.
    [67] Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted Tartrate-Resistant Acid Phosphatase 5b is a Marker of Osteoclast Number in Human Osteoclast Cultures and the Rat Ovariectomy Model. Calcif Tissue Int. 2008;82(2):108-15.
    [68] Fitzpatrick LA. Estrogen therapy for postmenopausal osteoporosis. Arq Bras Endocrinol Metabol. 2006;50(4):705-19.
    [69] Kremer M, Judd J, Rifkin B, Auszmann J, Oursler MJ. Estrogen modulation of osteoclast lysosomal enzyme secretion. J Cell Biochem. 1995;57(2):271-9.
    [70] Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257(5066):88-91.
    [71] Manolagas SC, Jilka RL. Cytokines, hematopoiesis, osteoclastogenesis, and estrogens. Calcif Tissue Int. 1992;50(3):199-202.
    [72] Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption.J Clin Invest. 19981;101(9):1942-50.
    [73] Chen JR, Haley RL, Hidestrand M, Shankar K, Liu X, Lumpkin CK, Simpson PM, Badger TM, Ronis MJ. Estradiol protects against ethanol-induced bone loss by inhibiting up-regulation of receptor activator of nuclear factor-kappaB ligand in osteoblasts. J Pharmacol Exp Ther. 2006;319(3):1182-90.
    [74] Michael H, H?rk?nen PL, V??n?nen HK, Hentunen TA. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res. 2005;20(12):2224-32.
    [75] Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun. 2005;328(3):688-96.
    [76] Balga R, Wetterwald A, Portenier J, Dolder S, Mueller C, Hofstetter W. Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone. 2006;39(2):325-35.
    [77] Joo SS, Kang HC, Lee MW, Choi YW, Lee DI. Inhibition of IL-1beta and IL-6 in osteoblast-like cell by isoflavones extracted from Sophorae fructus. Arch Pharm Res. 2003;26(12):1029-35.
    [78] Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci. 2006;1068:173-9.
    [79] Jeffcoate WJ, Game F, Cavanagh PR. The role of proinflammatory cytokines in the cause of neuropathic osteoarthropathy (acute Charcot foot) in diabetes. Lancet. 2005;366(9502):2058-61.
    [80] Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115(2):282-90.
    [81] Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol. 2002;198(2):220-7.
    [82] Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147-59.
    [83] Koka S, Petro TM, Reinhardt RA. Estrogen inhibits interleukin-1beta-induced interleukin-6 production by human osteoblast-like cells. J Interferon Cytokine Res. 1998;18(7):479-83.
    [84] Pfeilschifter J, K?ditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90-119.
    [85] Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest. 1992;89(3):883-91.
    [86] Passeri G, Girasole G, Jilka RL, Manolagas SC. Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology. 1993;133(2):822-8.
    [87] Ozmen B, Kirmaz C, Aydin K, Kafesciler SO, Guclu F, Hekimsoy Z. Influence of the selective oestrogen receptor modulator (raloxifene hydrochloride) on IL-6, TNF-alpha, TGF-beta1 and bone turnover markers in the treatment of postmenopausal osteoporosis. Eur Cytokine Netw. 2007;18(3):148-53.
    [88] Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM.Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A. 2007;104(14):6013-8.
    [89] Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Meyer JM, Vassalli P, Garcia I. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest. 1997;99(7):1699-703.
    [90] Kitazawa R, Kimble RB, Vannice JL, Kung VT, Pacifici R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest. 1994;94(6):2397-406.
    [91] Kimble RB, Kitazawa R, Vannice JL, Pacifici R. Persistent bone-sparing effect of interleukin-1 receptor antagonist: a hypothesis on the role of IL-1 in ovariectomy-induced bone loss. Calcif Tissue Int. 1994;55(4):260-5.
    [92] Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, Ciliberto G, Rodan GA, Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994;13(5):1189-96.
    [93] Sunyer T, Lewis J, Collin-Osdoby P, Osdoby P. Estrogen's bone-protective effects may involve differential IL-1 receptor regulation in human osteoclast-like cells. J Clin Invest. 1999;103(10):1409-18.
    [94] Kimble RB, Matayoshi AB, Vannice JL, Kung VT, Williams C, Pacifici R. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995;136(7):3054-61.
    [95] Lin SC, Yamate T, Taguchi Y, Borba VZ, Girasole G, O'Brien CA, Bellido T, Abe E, Manolagas SC. Regulation of the gp80 and gp130 subunits of the IL-6 receptor by sex steroids in the murine bone marrow. J Clin Invest. 1997;100(8):1980-90.
    [96] Saidenberg Kermanac'h N, Bessis N, Cohen-Solal M, De Vernejoul MC, Boissier MC. Osteoprotegerin and inflammation. Eur Cytokine Netw. 2002;13(2):144-53.
    [97] Lin JM, Callon KE, Lin CQ, Bava U, Zheng MH, Reid IR, Cornish J. Alteration of bone cell function by RANKL and OPG in different in vitro models. Eur J Clin Invest. 2007;37(5):407-15.
    [98] Baud'huin M, Lamoureux F, Duplomb L, Rédini F, Heymann D. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci. 2007;64(18):2334-50.
    [99] Sabokbar A, Kudo O, Athanasou NA. Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis. J Orthop Res. 2003;21(1):73-80.
    [100] Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999;25(3):255-9.
    [100] Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Am J Nephrol. 2007;27(5):466-78.
    [101] Pfeilschifter J, K?ditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90-119.
    [102] Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000;192(4):463-74.
    [103] Saika M, Inoue D, Kido S, Matsumoto T. 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology. 2001;142(6):2205-12.
    [104] Browner WS, Lui LY, Cummings SR. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab. 2001;86:631–7.
    [105] Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, Sakai H. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275:768–75.
    [106] Clowes JA, Riggs BL, Khosla S. The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev. 2005;208:207-27.
    [107] Darveau RP, Tanner A, Page RC. The microbial challenge in periodontitis. Periodontology 2000. 1997;14:12-32.
    [108] Quintero JC, Piesco NP, Langkamp HH, Bowen L, Agarwal S. LPS responsiveness in periodontal ligament cells is regulated by tumor necrosis factor-alpha. J Dent Res. 1995;74:1802-11.
    [109] Baxter JC, Fattore L. Osteoporosis and osseointegration of implants. J Prosthodont. 1993;2:120- 5.
    [110] Mohammad AR, Jones JD, Brunsvold MA. Osteoporosis and periodontal disease: a review. J CA Dent Assoc. 1994;22:69-75.
    [112] Reddy MS. Oral osteoporosis: is there an association between periodontitis and osteoporosis? Compend Contin Educ Dent. 2002;23(Suppl 10):21-8.
    [113] Jeffcoat MK, Geurs NC, Lewis CE. osteoporosis and periodontal bone loss. Clin Calcium. 2003;13:577-81.
    [114] Krall EA, Dawson-Hughes B, Papas A, Garcia RI. Tooth loss and skeletal bone density in healthy postmenopausal women. Osteoporos Int. 1994;4:104-109.
    [115] Daniell HW. Periodontitis in estrogen-deficient women. Arch Intern Med. 2002;162(22):2634-5.
    [116] Taguchi A, Ohtsuka M, Tsuda M, Nakamoto T, Kodama I, Inagaki K, Noguchi T, Kudo Y, Suei Y, Tanimoto K. Risk of vertebral osteoporosis in post-menopausal women with alterations of the mandible. Dentomaxillofac Radiol. 2007;36(3):143-8.
    [117] Kuroda S, Mukohyama H, Kondo H, Aoki K, Ohya K, Ohyama T, et al. Bone mineral density of the mandible in ovariectomized rats: analyses using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Oral Diseases. 2003;9:24– 8.
    [118] Miller SC, Bowman BM, Miller MA, Bagi CM. Calcium absorption and osseous organ-, tissue-, and envelope-specific changes following ovariectomy in rats. Bone. 1991;12:439- 46.
    [119] Elovic RP, Hipp JA, Hayes WC. Ovariectomy decreases the bone area fraction of the rat mandible. Calcif Tissue Int. 1995;56:305-10.
    [120] Geurs NC, Lewis CE, Jeffcoat MK. Osteoporosis and periodontal disease progression. Periodontol 2000. 2003; 32:105-10.
    [121] Guncu GN, Tozum TF, Caglayan F. Effects of endogenous sex hormones on the periodontium - review of literature. Australian Dental Journal .2005;50:138-45.
    [122] Ripamonti U. Recapitulating development: a template for periodontaltissue engineering. Tissue Eng. 2007;13(1):51-71.
    [123] Lekic P, Rojas J, Birek C, Tenenbaum H, McCulloch CA. Phenotypic comparison of periodontal ligament cells in vivo and in vitro. J Periodontal Res. 2001;36(2):71-9.
    [124] Lekic P, McCulloch CA. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec. 1996;245:327- 41.
    [125] Shimizu Y, Inomata Y, Tagami A. Suppression of osteoclast-like cell formation by periodontal ligament cells. J Bone Miner Metab. 1996;14:65-72.
    [126] Lewko WM, Anderson A. Estrogen receptors and growth response in cultured human periodontal ligament cells. Life Sci. 1986;39(13):1201-6.
    [127] Parkar MH, Newman HN, Olsen I.Polymerase chain reaction analysis of oestrogen and androgen receptor expression in human gingival and periodontal tissue. Arch Oral Biol. 1996;41(10):979-83.
    [128] Morishita M, Shimazu A, Iwamoto Y. Analysis of oestrogen receptor mRNA by reverse transcriptase-polymerase chain reaction in human periodontal ligament cells. Arch Oral Biol. 1999;44(9):781-3.
    [129] Jonsson D, Andersson G, Ekblad E, Liang M, Bratthall G, Nilsson BO. Immunocytochemical demonstration of estrogen receptor beta in human periodontal ligament cells. Arch Oral Biol. 2004;49(1):85-8.
    [130] Cao, M., Shu, L., Li, J., Su, J., Zhang, W., Wang, Q., Guo, T., Ding, Y. The expression of estrogen receptors and the effects of estrogen on human periodontal ligament cells. Methods Find Exp Clin Pharmacol. 2007, 29 (5): 329- 35.
    [131] Jonsson D, Nilsson J, Odenlund M, Bratthall G, Broman J, Ekblad E,Lydrup ML, Nilsson BO. Demonstration of mitochondrial oestrogen receptor beta and oestrogen-induced attenuation of cytochrome c oxidase subunit I expression in human periodontal ligament cells. Arch Oral Biol. 2007;52(7):669-76.
    [132] Morishita M, Yamamura T, Shimazu A, Bachchu AH, Iwamoto Y.Estradiol enhances the production of mineralized nodules by human periodontal ligament cells. J Clin Periodontol. 1999;26(11):748-51.
    [133] Morishita M, Yamamura T, Bachchu MA, Shimazu A, Iwamoto Y.The effects of oestrogen on osteocalcin production by human periodontal ligament cells. Arch Oral Biol. 1998;43(4):329-33.
    [134] Jonsson D, Wahlin A, Idvall I, Johnsson I, Bratthall G, Nilsson BO. Differential effects of estrogen on DNA synthesis in human periodontal ligament and breast cancer cells. J Periodontal Res. 2005;40(5):401-6.
    [134] Jeffcoat MK, Lewis CE, Reddy MS, Wang CY, Redford M. Post-menopausal bone loss and its relationship to oral bone loss. Periodontol 2000. 2000;23:94-102.
    [135] Tanaka M, Ejiri S, Toyooka E, Kohno S, Ozawa H.Effects of ovariectomy on trabecular structures of rat alveolar bone. J Periodontal Res. 2002;37(2):161-5.
    [136] Duarte PM, Gon?alves P, Casati MZ, de Toledo S, Sallum EA, Nociti FH Jr. Estrogen and alendronate therapies may prevent the influence of estrogen deficiency on the tooth-supporting alveolar bone: a histometric study in rats. J Periodontal Res. 2006;41(6):541-6.
    [137] Binte Anwar R, Tanaka M, Kohno S, Ikegame M, Watanabe N, Nowazesh Ali M, Ejiri S. Relationship between porotic changes in alveolar bone and spinalosteoporosis. J Dent Res. 2007;86(1):52-7.
    [138] Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res. 1996;11(8):1043-51.
    [139] Kawamoto S, Ejiri S, Nagaoka E, Ozawa H. Effects of oestrogen deficiency on osteoclastogenesis in the rat periodontium. Arch Oral Biol. 2002;47:67-73.
    [140] Faloni AP, Sasso-Cerri E, Katchburian E, Cerri PS. Decrease in the number and apoptosis of alveolar bone osteoclasts in estrogen-treated rats. J Periodontal Res. 2007;42(3):193-201.
    [141] Hamdy NA. Targeting the RANK/RANKL/OPG signaling pathway: a novel approach in the management of osteoporosis. Curr Opin Investig Drugs. 2007;8(4):299-303.
    [142] Tiranathanagul S, Yongchaitrakul T, Pattamapun K, Pavasant P. Actinobacillus actinomycetemcomitans lipopolysaccharide activates matrix metalloproteinase-2 and increases receptor activator of nuclear factor-kappaB ligand expression in human periodontal ligament cells. J Periodontol. 2004;75(12):1647-54.
    [143] Hasegawa T, Kikuiri T, Takeyama S, Yoshimura Y, Mitome M, Oguchi H, Shirakawa T. Human periodontal ligament cells derived from deciduous teeth induce osteoclastogenesis in vitro. Tissue Cell. 2002;34(1):44-51.
    [144] Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A, Oguchi H, Shirakawa T. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res. 2002;37(6):405-11.
    [145] Nico C. Geurs, Cora Elizabeth Lewis, Marjorie K. Jeffcoat. Osteoporosisand periodontal disease progression. Periodontology 2000. 2003;32:105–10.
    [146] Reddy MS, Geurs NC, Gunsolley JC. Periodontal host modulation with antiproteinase, anti-inflammatory, and bone-sparing agents. A systematic review. Ann Periodontol. 2003;8(1):12-37.
    [147] Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74(3):391-401.
    [148] Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med. 2001 Jun;79(5-6):243-53.
    [149] Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345-57.
    [150] Rogers JE, Li F, Coatney DD, Otremba J, Kriegl JM, Protter TA, Higgins LS, Medicherla S, Kirkwood KL. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. J Periodontol. 2007;78(10):1992-8.
    [151] Patil CS, Kirkwood KL. p38 MAPK signaling in oral-related diseases. J Dent Res. 2007;86(9):812-25.
    [152] Lagoo-Deenadayalan S, Lagoo AS, Barber WH, Hardy KJ. A standardized approach to PCR-based semiquantitation of multiple cytokine gene transcrips from small cell samples. Lymphokine Cytokine Res. 1993;12:59~67.
    [153] Fukushima H, Kajiya H, Takada K, Okamoto F, Okabe K. Expression androle of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur J Oral Sci. 2003;111:346-52.
    [154] Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74(3):391-401.
    [155] Takashiba S, Naruishi K, Murayama Y. Perspective of cytokine regulation for periodontal treatment: fibroblast biology. J Periodontol. 2003;74(1):103-10.
    [156] Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al.. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Me. 2000;191:275-86.
    [157] Hofbauer LC, Kühne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268-75.
    [158]Wada N, Maeda H, Yoshimine Y, Akamine A. Lipopolysaccharide stimulates osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction IL-1 beta and TNF-alpha. Bone. 2004;35:629-35.
    [159] Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K, et al. Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem.1998;273: 27091-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700