用户名: 密码: 验证码:
微生物燃料电池处理有机废水过程中的产电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全世界范围内的能源紧缺和环境污染问题的加剧,研发新的环境友好处理工艺从有机废水中回收有价能源已经成为环境工程领域一个重要的方向,是实现废水处理能源化与可持续性发展的重要途径之一。微生物燃料电池(Microbial fuel cell,MFC)能够利用微生物作为催化剂将有机化合物氧化分解,同时产生电流,将有机物中的化学能直接转化为电能,是一种全新的废水处理技术。目前,MFC在全世界范围内的研究尚处于起步阶段,大量的工作集中在技术的可行性和基础研究的水平上,而限制该技术应用于商业化和工程应用的主要问题是产电功率密度低,材料造价昂贵,MFC型式的不确定。
     针对MFC研究目前存在的问题,本文以典型的双室MFC和单室MFC为研究对象,系统研究了MFC的基本特性、阳极底物溶液性质的影响、阴极强化、空气阴极MFC结构的改进及相关机制。论文取得了一些创新性的研究成果。
     使用厌氧污泥能够成功启动双室MFC和单室MFC,在间歇运行方式下,使用乙酸钠作为单一的有机底物能够获得稳定的电压输出和COD去除。最大功率密度的顺序为:K3[Fe(CN)6]阴极MFC>空气阴极MFC>曝气阴极MFC。K3[Fe(CN)6]阴极MFC、曝气阴极MFC和空气阴极MFC的库仑效率CE与COD去除率分别为49 %、28.2 %、33.8 %和60 %、45.3 %、80 %。控制双室MFC性能的关键因素是阳极特性,而控制单室MFC性能的关键因素是空气阴极的催化反应动力学和氧传质特性。导致K3[Fe(CN)6]阴极MFC和空气阴极MFC库仑损失的主要原因分别是厌氧菌与产电菌争夺有机底物和氧气的阴极扩散。这些结果表明,MFC能够实现产电和同步有机废水处理;此外,在对MFC反应器进行设计和运行优化时要充分考虑到不同形式MFC功率密度和库伦效率的主要限制因素不同。
     单糖、多糖以及一些常见的小分子有机挥发酸盐和醇类物质均可作为MFC产电的有机底物,功率密度随有机底物浓度的变化具有“饱和效应”,可以用经典的Monod方程式进行描述和非线性回归分析。底物浓度较高时,搅拌的影响不明显;底物浓度较低时,搅拌的影响十分显著。在双室MFC中,阳极电解液具有良好的缓冲能力能够维持pH处在一个稳定的水平,是保证MFC稳定运行的重要条件。适当地提高离子强度能够降低MFC的内阻,提高电流密度和功率密度。无论对于双室MFC还是单室MFC,高浓度的NH3-N对MFC产电都没有影响。单室MFC中的NH3-N转化与好氧氨氧化有关,与产电无关。双室MFC中阳极的一部分NH3-N在产电过程中以NH4+的形式扩散进入阴极,以维持电荷平衡。这些结果都表明,在对MFC进行基础研究和运行优化时,要充分考虑到有机物、水力条件及电解液缓冲能力对系统的影响和限制作用。
     通过对比研究发现,在双室MFC中,酸性KMnO4阴极MFC的开路电位能够达到1.48 V,最大功率密度远高于K3[Fe(CN)6]和氧气。在使用酸性KMnO4阴极时,阴极的电极电位主要受控于KMnO4浓度和pH,但对pH更加敏感。在[KMnO4]=20 mg·L-1和pH=3.5的条件下,环式MFC的最大功率密度能够达到3986.72 mW·m-2。SEM和XPS分析表明,KMnO4的主要还原产物是沉积在电极表面的固相MnO2,这是KMnO4阴极MFC具有高电位的主要原因。对于单室空气阴极MFC来说,阴极的性能是影响功率输出的重要因素。缩短电极距离、增大阴极的面积都能够降低电池内阻。空气阴极的Pt负载量对功率输出的影响与Nafion溶液的使用密切相关。这些结果都充分表明,提高阴极的电化学氧化性能是强化MFC功率输出的重要途径。
     开发了更适于废水处理的升流式空气阴极MFC(UAMFC)。随着有机负荷率的增加,功率密度先升高再降低;COD去除率、CE、EE和pH均呈现出下降的趋势。电化学阻抗谱(EIS)分析表明,电荷转移内阻Rc、欧姆内阻Rohm和扩散内阻Rd分别占总内阻的22.6 %、50.2 %和26.3 %,欧姆内阻占主导作用,主要由UAMFC的结构形式决定。高有机负荷下,回流比影响不显著;低有机负荷下,提高回流比能显著提高功率密度。氮的去除与产电过程无关,主要受到有机负荷的影响。通过对UAMFC的长期行为进行观察,发现功率以0.051 W·m-3·d-1的速率降低,欧姆内阻Rohm和扩散内阻Rd有升高的趋势。通过对空气阴极MFC的设计进行改进,能够实现连续产电及有机物和氮元素的去除。该种设计模式的显著优点是尽最大限度减少了电极距离,降低内阻,提高功率输出,进而为优化空气阴极MFC的设计与运行提供了切实可行的依据。
World-wide depletion of energy reservers and environmental contamination are inspiring the search for renewable and environment-friendly technologies to recover useful energy and materials from organic wastes. This has been particularly emphasised as a significant approach so as to make the wastewater treatment more sustainable and economical in the field of environmental engineering. Microbial fuel cell (MFC) has been addressed able to generate electrical currents via oxidizing orgianic compounds by using microorganisms as the bio-catalysts. Electricity generation during organic degradation represents a process of directly converting chemical energy within organic matters to electrical energy, which gives rise to a potential for MFC to produce electricity from organic wastewater along with wastewater treatment. Currently, MFC is still in its infant and majority of works have been emerged only focusing on its technical feasibility and fundamental characteristics. It has been taken into account that three bottlenecks in terms of low power density, high costs of materials and indetermination of available MFC configuration should be the main limiting elements for MFC technology to apply commercially.
     This study systematically investigated the feature and corresponding mechanisms of two-chambered MFC and single-chambered MFC, including the basic characteristics of power generation, the effects of anodic substrate, cathode enhancement as well as improvements of air-cathode MFC design mode. Some innovative findings have been made as follows.
     The results demonstrated that both the two-chambered and single-chambered MFC after being started up by using anaerobic activated sludge as inoculated source could stably generate power with simultaneous COD removal when acetate was offered as the single carbon source. The maximum power density produced followed the order of K3[Fe(CN)6]-cathode MFC>air-cathode MFC>aeration-cathode MFC. CE and COD in such three MFCs was 49 %, 28.2 %, 33.8 % and 60 %, 45.3 %, 80 %, respectively. Besides, the performance of the two-chambered MFC was limited by the anode while the performance of the single-chambered MFC was mainly limited by the cathode, which was determined by the inherent nature of the MFC configuration. The main reason for Coulombic loss occurring in the two-chambered MFC and single-chambered MFC should be anaerobic loss and aerobic loss, respectively.
     Additionally, MFC was demonstrated capable of using a wide variety of organic compounds for power generation, including single-sugar, multi-sugar as well as several types of small molecular organic fatty acid and ethanol. The dependence of power density on initial COD concentration exhibited“saturation effect”, which could be described and explained with traditional Monod equation. The mixing was observed to have different impact on the MFC performance, depending upon the COD concentrtion, which was most likely due to the difference in diffusion of substrate into the biofilm. In the two-chambered MFC, buffering capacity of the anodic electrolyte played an important role in maintaining pH within a stable level. Increasing ion strength could result in a decrease of internal resistance as well as an increase of power density. High concentration of NH3-N was observed to have no obvious adverse influence on MFC performance. The oxidation of partial NH3-N in single-chambered MFC was achieved with oxygen as electron acceptor and independent on current output. In the two-chamber MFC, NH3-N could be transferred with the form of NH4+ cation into the cathode through PEM in order to balance the charge.
     Using acidic permanganate as the cathodic electron acceptor could increase the open circuit potential (OCP) of the two-chambered MFC up to 1.48 V with a higher corresponding maximum power density than that using ferricyanide and oxygen. Unlike permanganate concentration, the cathode potential was shown more sensitive to pH value. At permanganate concentration of 20 mg·L-1 and pH=3.5, the maximum power density produced in bushing MFC could reach a level as high as 3986.72 mW·m-2. Both SEM and XPS analysis confirmed the mechanisms that the main reduced product of permanganate was solid-state MnO2 deposited on the electrode surface. Its redox potential as great as +1.70 V could explain the most probable reason for high OCP in the permanganate-cathode MFC, which was well consistent with the experimental results shown above. For single-chambered MFC, power density could be apparently increased by means of either reducing the electrode spacing or increasing the cathode area because of the corresponding decrease of internal resistance of the cell. The Pt loading and Nafion content were revealed to have a co-effect on power output, i. e., power density was substantially increased with the increase of Pt loading in the absence of Nafion binder solution, while such effect was absent in the presence of Nafion solution.
     An up-flow air-cathode MFC (UAMFC) was designed for more available applications for wastewater treatment. As the organic loading rate (OLR) increased, COD removing efficiency, CE, EE and pH tended to decline and power density revealed a setpoint, which might be attributed to the limitation of treating capacity and acid accumulation. As indicated by electrochemical impedance spectroscopy (EIS) analysis, charge transfer resistance (Rc), ohmic resistance (Rohm) and diffusion resistance (Rd) accounted for 22.6 %,50.2 % and 26.3 % of total internal resistance Large fraction of ohmic resistance mainly originated from the inherent limitation of the system in relation to the reactor design structure and electrolyte characteristics. Recirculation was found to have a substantial impact on electrochemical performance (power, Rohm and Rd) at low OLR, while such effect was absent at high OLR. Removal of nitrogen compounds in the UAMFC was obtained along with power generation. It was also shown here that the long-term operation might lead to the performance degradation of the UAMFC, as indicated by a decrease of power density at a rate of 0.051 W·m-3·d-1 and an increase of Rohm and Rd. Such design is more advantageous by its virtue of low internal resistance and high power density, which provides a proof-in-concept and new approach to optimize the air-cathode MFC design and operation.
引文
1 R. E. Smalley. Testimony to the senate committee on energy and natural resources; hearing on sustainable, low emission, electricity generation. www.americanenergyindependence.com/energychallenge.html. April 27th, 2004
    2 G. Tchobanoglous, F. L. Burton. Wastewater Engineering: Treatment, Disposal and Reuse, 3rd edition. Metcalf & Eddy, McGraw-Hill: NewYork, 1991
    3 W. Rulkens. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energ. Fuel, 2008, 22: 9~15
    4 L. T. Angenent, K. Karim, M. H. Al-Dahhan, B. A. Wrenn, R. Domiaguez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 2004, 9: 477~485
    5 B. E. Logan. Feature article: Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol., 2004, 38: 160a~167a
    6任南琪,王宝贞.有机废水发酵法生物制氢技术–原理与方法.黑龙江科学技术出版社. 1994.
    7 J. Benemann. Hydrogen biotechnology: progress and prospects, Nat. Biotechnol., 1996, 14:1101~1103
    8 R. M. Allen, H. P. Bennetto. Microbial fuel-cells–electricity production from carbohydrates. Appl. Biochem. Biotechnol., 1993, 39: 27~40
    9 L. Galvani. De bononiensi scientiarum et artium instituto atque academia Comentarrii. 1791, 7: 363~418
    10 W. R. Grove. On voltaic series and the combination of gases by platinum. Philos. Mag. Ser., 1839, 3: 127~130
    11 M. C. Potter. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. London Ser. B, 1911, 84: 260 ~276
    12 D. H. Park, J. G. Zeikus. Electricity generation in microbial fuel cell using neutral red as electronophore. Appl. Environ. Microbiol., 2000, 66: 1292~1297
    13 D. Siebel, H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, C. F. Thurston. Electron-transfer coupling in microbial fuel cells. I. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Technol. Biotechnol., 1984, 34B: 3~12
    14 G. M. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling, C. F. Thurston. Electron-transfer coupling in microbial fuel cells. II. Performance of fuel cells containing selected microorganism-mediator combinations. J. Chem. Technol. Biotechnol., 1984, 34B: 13~27
    15 C. E. Reimers, L. M. Tender, S. Fertig, W. Wang. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol., 2001, 35: 192~195
    16 D. R. Bond, D. E. Holmes, L. M. Tender, D. R. Lovley. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483~485
    17 S. K. Chaudhuri, D. R. Lovley. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 2003, 21: 1229~1232
    18 U. Schr?der, F. Scholz. Bacterial batteries. Nat. Biotechnol., 2003, 21: 1151~1152
    19 www.microbialfuelcell.org
    20 J. B. Davis, H. F. Yarbrough. Preliminary experiments on a microbial fuel cell. Science, 1962, 137: 615~616
    21 H. P. Bennetto. Microbial fuel cells. Life chemisty reports, 1984, 2: 363~453
    22 R. S. Berk, J. H. Canfield. Bioelectrochemical energy conversion. Appl. Microbiol., 1964, 12: 10~12
    23 K. Rabaey, W. Verstraete. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 2005, 23: 291~298
    24 P. M. Vignais, B. Billoud. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev., 2007, 107: 4206~4272
    25 S. Tanisho, N. Kamiya, N. Wakao. Microbial fuel cell using Enterobacter aerogenes. Bioelectrochem. Bioenerg., 1989, 21: 25~32
    26 D. H. Park, J. G. Zeikus. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol.,1999, 181: 2403~2410
    27 B. E. Logan, S. A. Cheng, V. Watson, G. Estadt. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol., 2007, 41: 3341~3346
    28 D. H. Park, J. G. Zeikus. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 2003, 81: 348~355
    29 J. Niessen, U. Schr?der, M. Rosenbaum, F. Scholz. Fluorinate polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem. Commun., 2004, 6: 571~575
    30 U. Schr?der, J. Niessen, F. Scholz. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed., 2003, 42: 2880~2883
    31 D. A. Lowy, L. M. Tender, J. G. Zeikus, D. H. Park, D. R. Lovley. Harvesting energy from the marine sediment-water interface II– Kinetic activity of anode materials. Biosens. Bioelectron., 2006, 21: 2058~2063
    32 M. Rosenbaum, F. Zhao, U. Schr?der, F. Scholz. Interfacing electrocatalysis and Biocatalysis with Tungsten Carbide: A high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed., 2006, 118: 1~4
    33 M. Rosenbaum, F. Zhao, M. Quaas, H. Wulff, U. Schr?der, F. Scholz. Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Appl. Catal. B-Environ., 2007, 74: 262~270
    34 Y. Qiao, C. M. Li, S. J. Bao, Q. L. Bao. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources, 2007, 170: 79~84
    35 S. A. Cheng, H. Liu, B. E. Logan. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 2006, 40: 364~369
    36 F. Zhao, F. Harnisch, U. Schr?der, F. Scholz, P. Bogdanoff, I. Herrmann. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem.Commun., 2005, 7: 1405~1410
    37 P. Clauwaert, D. van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey,W. Verstraete. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol., 2007, 41: 7564~7569
    38 Z. He, L. T. Angenent. Application of bacterial biocathodes in microbial fuel cells. Electroanal., 2006, 18: 2009~2015
    39 A. Bergel, D. Feron, A. Mollica. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun., 2005, 7: 900~904
    40 T. D. Gierke, G. E. Munn, F. C. Wilson. The morphology in Nafion perfluorinated membrane productsm as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys., 1981, 19: 1687~1704
    41 R. A. Rozendal, H. V. M. Hamelers, C. J. N. Buisman. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol., 2006, 40: 5206~5211
    42 K. J. Chae, M. Choi, F. F. Ajayi, W. Park, I. S. Chang, I. S. Kim. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energ. Fuels, 2008, 22: 169~176
    43 J. R. Kim, S. A. Cheng, S. E. Oh, B. E. Logan. Power generation using different cation, anion, ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol., 2007, 41: 1004~1009
    44 U. Schr?der. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 2007, 9: 2619~2629
    45 B. E. Logan, J. M. Regan. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14: 512~518
    46 M. E. Hernandez, D. K. Newman. Extracellular electron transfer. Cell Mol. Life Sci., 2001, 58: 1562~1571
    47 D. R. Bond, D. R. Lovley. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 2003, 69: 1548~1555
    48 H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, B. H. Kim. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enzyme Microbiol. Technol., 2002, 30: 145~152
    49 B. Cohen. The bacterial culture as an electrical half-cell. J. Bacteriol., 1931, 21: 18~19
    50 K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, W. Verstraete. Biofuelcells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 2004, 70: 5373~5382
    51 G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435: 1098~1101
    52 Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. E. Logan, K. H. Nealson, J. K. Fredrickson. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P. Natl. Acad. Sci. USA, 2006, 130: 11358~11363
    53 B. E. Logan, J. M. Regan. Microbial fuel cells–challenges and applications. Environ. Sci. Technol., 2006, 40: 5172~5180
    54 B. Min, S. Cheng, B. E. Logan. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 2005, 39: 1675~1686
    55 K. Rabaey, G. Lissens, S. D. Siciliano, W. Verstraete. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett., 2003, 25: 1531~1535
    56 M. Rosenbaum, U. Schr?der, F. Scholz. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ. Sci. Technol., 2005, 39: 6328~6333
    57 H. Liu, B. E. Logan. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 2004, 38: 4040~4046
    58 H. Liu, S. A. Cheng, B. E. Logan. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol., 2005, 39: 5488~5493
    59 S. A. Cheng, H. Liu, B. E. Logan. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol., 2006, 40: 2426~2432
    60 B. E. Logan, C. Murano, K. Scott, N. D. Gray, I. M. Head. Electricity generation from cysteine in a microbial fuel cell. Water Res., 2005, 39:942~952
    61 S. E. Oh, B. Min, B. E. Logan. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol., 2004, 38: 4900~4904
    62 B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, J. M. Jones-Meehan. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol., 2006, 40: 2629~2634
    63 J. C. Biffinger, J. Pietron, R. Ray, B. Little, B. R. Ringeisen. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathode. Biosen. Bioelectron., 2007, 22: 1672~1679
    64 B. R. Ringeisen, R. Ray, B. Little. A miniature microbial fuel cell operating with an aerobic anode chamber. J. Power Sources, 2007, 165: 591~597
    65 K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 2005, 39: 8077~8082
    66 Z. He, S. D. Minteer, L. T. Angenent. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol., 2005, 39: 5262~5267
    67 Z. He, N. Wagner, S. D. Minteer, L. T. Angenent. The upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol., 2006, 40: 5212~5217
    68 B. Min, B. E. Logan. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 2004, 38: 5809~5814
    69 H. Liu, R. Ramnarayanan, B. E. Logan. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol., 2004, 38: 2281~2285
    70 P. Aelterman, K. Rabaey, T. H. Pham, N. Boon, W. Verstraete. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 2006, 40: 3388~3394
    71 S. E. Oh, B. E. Logan. Voltage reversal during microbial fuel cell stack operation. J. Power Sources, 2007, 167: 11~17
    72 D. R. Lovely. Microbial fuel cells: Novel microbial physiologies and engineering approaches. Curr. Opin. Biotech., 2006, 17: 327~332
    73 L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, D. R. Lovley. Harnessing microbially generated power on the seafloor. Nat. Biotechnol., 2002, 20: 821~825
    74 W. S. D. Wilcock, P. C. Kauffman. Development of a seawater battery for deep-water applications. J. Power Sources, 1997, 66: 71~75
    75 F. Hasvold, H. Henriksen, E. Mevaer, G. Citi, B. F. Johansen, T. Kjfnigsen, R. Galetti. Seawater battery for subsea control systems. J. Power Sources, 1997, 65: 253~261
    76 F. Rezaei, T. L. Richard, R. A. Brennan, B. E. Logan. Substrate-enhanced microbial fuel cell for improved remote power generation from sediment-based systems. Environ. Sci. Technol., 2007, 41: 4053~4058
    77 H. Liu, S. Grot, B. E. Logan. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol., 2005, 39: 4317~4320
    78 R. A. Rozendal, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, C. J. N. Buisman. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energ., 2006, 31: 1632~1640
    79 B. Min, J. R. Kim, S. E. Oh, J. M. Regan, B. E. Logan. Electricity generation from swine wastewater using microbial fuel cells. Water Res., 2005, 39: 4961~4968
    80 S. Cheng, B. E. Logan. Sustainable and efficient biohydrogen production via electrohydrogenesis. P. Natl. Acad. Sci. USA, 2007, 104: 18871~18873
    81 I. S. Chang, J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, B. H. Kim. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron., 2004, 19: 607~613
    82 I. S. Chang, H. Moon, J. K. Jang, B. H. Kim. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron., 2005, 20: 1856~1859
    83 A. Kumlanghan, J. Liu, P. Thavarungkul, P. Kanatharana, B. Mattiasson. Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens. Bioelectron., 2007, 22: 2939~2944
    84 R. A. Alberty. Thermodynamics of Biochemical Reactions. John Wiley & Sons: New York, 2003
    85 A. J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution. Marcel Dekker: New York, 1985
    86 J. Larminie, A. Dicks. Fuel Cell Systems Explained. John Wiley & Sons: Chichester, 2000
    87 G. Hoogers. Fuel Cell Technology Handbook. CRC Press: Boca Raton, FL, 2003
    88 A. J. Bard, L. R. Faulkner. Electrochemical Methods: Fundamentals and Applications, 2nd edition. John Wiley & Sons: New York, 2001
    89 A. Katsaounis, S. P. Balomenou, D. Tsiplakides, M. Tsampas, C. G. Vayens. The role of potential-dependent electrolyte resistance in the performance, steady-state multiplicities and oscillations of PEM fuel cells: Experimental investigation and macroscopic modelling. Electrochim. Acta., 2005, 50: 5132~5143
    90 N. Wagner. Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a. c. impedance spectroscopy. J. Appl. Electrochem., 2002, 32: 859~863
    91 E. Barsoukov, J. R. Macdonald. Impedance Spectroscopy: Theory, Experiment, and Applications. 2nd edition. Wiley-Interscience: Hoboken, N J, 2005
    92曹楚南,张鉴清.电化学阻抗谱导论.科学出版社, 2002
    93 K. R. Cooper, M. Smith. Electrical test methods for on-line fuel cell ohmic resistance measurement. J. Power Sources, 2006, 160: 1088~1095
    94 B. E. Logan, B. Hamelers, R. A. Rozendal, U. Schr?der, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey. Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40: 5181~5192
    95 B. H. Kim, I. S. Chang, G. M. Gadd. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol., 2007, 76: 485~494
    96衣宝廉,韩明,张恩俊等.千瓦级质子交换膜燃料电池.电源技术. 1999, 23: 120~125
    97 D. R. Lovley, E. J. P. Phillips. Novel mode of microbial energy metabolism: organic carbon coupled to dissimilatory reduction of iron or manganese. Appl.Environ. Microbiol., 1988, 54: 1472~1480
    98 American Public Health Association, American Water Works Association, Water Pollution Control Federation. In Standard Methods for the Examination of Water and Wastewater, 18th edition.; American Public Health Association: Washington, DC, 1992
    99 S. Cheng, H. Liu, B. E. Logan. Increased performance of single-chamber microbial fuel cell using an improved cathode structure. Electrochem. Commun., 2006, 8: 489~494
    100 G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, H. J. Kim. Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens. Bioelectron., 2003, 18: 327~338
    101 D. K. Newman, R. Koler. A role for excreted quinones in extracellular electron transfer. Nature, 2000, 405: 94~97
    102 H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, H. I. Chang. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001, 7: 297~306
    103 G. S. Kumar, M. Raja, S. Parthasarathy. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochim. Acta., 1995, 40: 285~290
    104 D. T. Sawyer, W. R. Heineman, J. M. Beebe. Chemistry Experiments for Instrumental Methods. John Wiley & Sons: New York, 1984
    105 J. Menicucci, H. Beyenal, E. Marsili, R. A. Veluchamy, G. Demir, Z. Lewandowski. Procedure for determing maximum sustainable power generated by microbial fuel cells. Environ. Sci. Technol., 2006, 40: 1062~1068
    106 J. Vandermeer, L. Stone, B. Blasius. Categories of chaos and fractal basin boundaries in forced predator-prey models. Chaos, Solitions Fract., 2001, 12: 265~276
    107 J. R. Kim, B. Min, B. E. Logan. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol., 2005, 68: 23~30
    108 S. Freguia, K. Rabaey, Z. G. Yuan, J. Keller. Electron and carbon balances inmicrobial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ. Sci. Technol., 2007, 41: 2915~2921
    109 H. Liu, S. A. Cheng, B. E. Logan. Production of electricity from acetate or butyrate in a single chamber microbial fuel cell. Environ. Sci. Technol., 2005, 39: 658~662
    110 A. Castro-Gonzalez, M. Enriquez-Poy, C. Duran-de-Bazua. Design, construction, and starting-up of an anaerobic reactor for the stabilisation, handling, and disposal of excess biological sludge generated in a wastewater treatment plant. Anaerobe, 2001, 7: 143~149
    111 N. Ren, B. Wang, J. Huang. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol. Bioeng., 1996, 54, 428~433
    112藏荣春,夏凤毅.微生物动力学模型.化学工业出版社. 2004
    113 F. Zhao, F. Harnisch, U. Schr?der, F. Scholz, P. Bogdanoff, I. Herrmann. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol., 2006, 5193~5199
    114 M. S. M. Jetten, N. Strous, K. T. van de Pas-Schoonen, J. Schalk, Udo G. J. M. van Deongen, A. A van de Graaf, S. Logemann, G. Muyzer, M. C. M. van Loosdrecht, J. G. Kuenen. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev., 1999, 22: 421~437
    115 C. Gallert, J. Winter. Mesophilic and thermophilic anaerobic digestion of source-sorted organic waste: effect of ammonia on glucose degradation and methane production. Appl. Microbial. Biotechnol., 1997, 48: 405~410
    116 I. Angelidaki, B. K. Ahring. Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res., 1994, 28: 727~731
    117 X. Z. Li, Q. L. Zhao. Inhibition of microbial activity of activated sludge by ammonia in leachate. Environ. Int., 1999, 25: 961~968
    118小久见善八[日].电化学.科学出版社. 2002
    119 M. S. Wu, J. T. Lee, Y. Y. Wang, C. C. Wan. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition. J. Phys. Chem. B, 2004, 108: 16331~16333
    120傅献彩,沈文霞,姚天杨.物理化学(下).高等教育出版社. 2000
    121梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成及测量.环境科学. 2007, 28: 1894~1898
    122 N. Wagner, M. Schulze, E. Gulz?w. Long term investigations of silver cathodes for alkaline fuel cells. J. Power Sources, 2004, 127: 264~272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700