用户名: 密码: 验证码:
鸭瘟病毒UL49基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、鸭瘟病毒UL49基因生物信息学分析。本章根据实验室测定的DPV UL49基因核酸序列及氨基酸序列,对其进行了生物信息学分析,研究结果表明:DPVUL49基因编码VP22蛋白,此蛋白由253aa组成,分子量约为27864.575Da,其中Arg、Ala、Ser、Asp与Thr的含量最高,分别为11.85%、11.85%、11.06%、7.11%及7.11%。相似性及进化树分析表明DPV应该划分为α疱疹病毒亚科、马立克病毒属。DPV VP22蛋白无信号肽、无跨膜区、无核输入及核输出信号,等电点为9.795,其C端126aa~191aa区域保守性最强;VP22蛋白可能含有2个N-糖基化位点、3个cAMP和cGMP-依赖蛋白激酶磷酸化位点,9个蛋白激酶C磷酸化位点,3个酪氨酸激酶Ⅱ磷酸化位点及3个酰胺化功能位点。亚细胞定位分析表明,DPV VP22蛋白存在于细胞核、细胞浆及线粒体中的可能性分别为87.2%、12.7%和0.1%。
     2、鸭瘟病毒UL49基因克隆、原核表达、蛋白纯化及多克隆抗体制备。根据实验室提供的DPV UL49基因序列,采用Oligo6.71软件设计了一对特异性引物,并将扩增出的UL49全基因克隆入pMD18-T载体中,经BamH I和Hind III双酶切后,克隆入原核表达载体pET-28a(+)中,成功构建了pET28a-UL49重组原核质粒。将此质粒转化表达宿主菌BL21(DE3),经过对IPTG浓度、诱导温度及诱导时间的优化,确定了pET28a-UL49重组质粒表达的最佳条件:即在37℃条件下,0.6mmol/L IPTG诱导表达4h,表达的重组VP22蛋白约为35kDa,具有高度可溶性及很好的反应原性。将纯化后的重组VP22蛋白免疫雄性家兔,制备分离兔抗重组VP22蛋白高免血清,效价最高为1:32;经饱和硫酸铵法粗提、HighQ阴离子交换层析法纯化后,、Western blot检测能够与纯化的VP22重组蛋白结合,具有很强的特异性,为进一步研究VP22蛋白的功能奠定了基础。
     3、鸭瘟病毒VP22蛋白亚细胞定位研究。采用间接免疫荧光法研究了DPV VP22蛋白在病毒感染鸭胚成纤维细胞中的定位时相,结果表明:DPV感染细胞6h后,在胞浆、核膜周围可见特异性荧光;12h后,在胞浆、核内均可见特异性荧光,胞核中的荧光呈均匀分布;随着时间推移,在病毒感染24h和36h后,绝大多数细胞核内都出现荧光且逐渐增强,胞浆中的荧光渐趋减少。由于在感染晚期,DPV可使鸭胚成纤维细胞形成蚀斑,细胞死亡后发生脱落进入培养液中,故在48h和72h时表达荧光的细胞数量渐趋减少。此外,大肠杆菌表达的VP22重组蛋白能够由培养液自主进入细胞内部:VP22蛋白加入MEM培养液4h后,胞浆内部可发现特异性荧光,并且随着时间的推移,胞浆内的荧光越来越强,至36h时几乎所有细胞的胞浆内均可见特异性荧光并呈颗粒状分布,荧光强度达到最大;可是在胞核内始终未见特异性荧光。
     4、鸭瘟病毒UL49基因转录时相与表达时相分析。本试验采用荧光定量PCR法及Western blot法研究了DPV UL49基因在鸭胚成纤维细胞中的转录及表达时相,试验结果表明:DPV UL49基因在病毒感染1h后开始转录,12h后转录量开始明显增加,24h时采用Western blot法能够检测到VP22蛋白,至72h~84h时UL49基因的转录量和表达量均达到最大值,之后开始逐渐降低。
     5、鸭瘟病毒VP22蛋白核定位信号研究。为了研究DPV VP22蛋白是否存在核定位信号及其功能位点的位置,以绿色荧光蛋白为标记,构建了一系列不同区域截短VP22蛋白缺失突变体与GFP融合表达的真核质粒,然后使用脂质体介导转染鸭胚成纤维细胞,通过荧光显微镜观察分析各个缺失突变体的亚细胞定位,从而确定与核定位相关的结构域,为进一步深入研究DPV VP22蛋白的结构与功能奠定了基础。试验结果表明:(1)DPV VP22蛋白具有核定位功能,并且这种功能不依赖其他DPV蛋白;(2)DPV VP22蛋白C端165aa~253aa区域能够独立作为核定位信号;(3)DPV VP22蛋白的核定位功能在活细胞及不同固定剂处理后的细胞中都能够检测到,所以其核定位功能不受固定剂的影响。
     6、DPV UL49基因RNA干扰有效靶点筛选及其对病毒重要糖蛋白基因转录的影响。根据实验室提供的DPV UL49基因序列,由上海吉玛制药技术有限公司设计4个不同的shRNA序列,然后插入到pGPU6载体中。将4个RNAi真核质粒与第六章构建的VP22a-GFP荧光质粒共转染鸭胚成纤维细胞,荧光显微镜观察干扰结果,4个RNAi干扰质粒均能够抑制VP22a-GFP质粒表达荧光,其中VP22-505和VP22-555表现的抑制作用最强。4种RNAi质粒对DPV UL49基因转录具有不同程度的抑制作用,尤其以VP22-505抑制效率最高,达到80%,从而确定了UL49基因中的“5-GCTGTTGGAGATTGCCAATGA-3"序列(即505bp-525bp)是RNAi发挥作用的最佳靶点。RNAi质粒VP22-505对DPV UL49基因转录抑制的同时,对DPV糖蛋白gB、gD和gE基因的转录也具有很强的抑制作用。
1. Bioinformatic analysis of UL27gene of Duck Plague Virus. In this paper, we conducted a detailed bioinformatic analysis of VP22protein. Our results showing that the DPV VP22protein has a molecular weight of27864.575Da, its pHi is computed to be9.795. The contents of Arg, Ala Ser, Asp and Thr were11.85%,11.85%,11.06%,7.11%and7.11%, respectively. For DPV VP22protein, the carboxyl terminus (126aa~191aa) is highly conserved. Similarity comparison and phylogenetic analysis showed that DPV aligns into the Alphaherpesvirus subfamily and is closely related to MDV. Two N-glycosylation sites, three cAMP-and cGMP-dependent protein kinase phosphorylation sites, nine protein kinase C phosphorylation sites, three Casein kinase II phosphorylation sites, two N-myristoylation sites, three Amidation sites were determined by PROSCAN. YLoc predicted that the DPV VP22protein sequence is located in the nucleus, cytoplasm and mitochondria with a probability of87.2%,12.7%and0.1%, respectively. Our results may be useful in future studies to elucidate the biological functions of VP22during DPV infection.
     2. Cloning, prokaryotic expression, purification and polyclonal antibody preparation of DPV UL49gene. The full-length UL49gene of DPV was amplified with a pair of primer. This product was cloned into the multiple cloning site of the pMD19-T vector. For recombinant protein production, a prokaryotic expression vector pET28a(+) was used. pMD19-UL49was digested with BamH Ⅰ and Hind Ⅲ and the UL49sequense was inserted into the BamH Ⅰ/Hind Ⅲ site of pET-28a(+), which is capable of producing recombinant protein with an N-terminal6xHis tag. The result was designated pET28a-UL49and transformed into E. coli BL21(DE3) for recombinant protein production by calcium chloride method. For optimizing protein expression, cells were harvested4h after induction by0.6mM IPTG at37℃may prove optimal for the yield of soluble protein. For the production of the polyclonal rabbit anti-VP22serum, a adult New Zealand white rabbit was inoculated four times with VP22protein. The rabbit was bled7to10days after the final booster, then it was killed and the IgG fraction of the serum was isolated by ammonium sulfate precipitation. Then, using a DEAE-Sepharose column, the IgG fraction was purified by ion-exchange column chromatography. These results will provide a basis for further analysis of the DPV VP22protein. Western blots shows that the rabbit anti-VP22polyclonal antibody has good specificity.
     3. Subcellular localization of Duck Plague Virus protein VP22. Indirect immunofluorescence tests revealed that the VP22antigens is detectable as early as6h postinfection, it exists predominantly in the cytoplasm and perinuclear region of DPV infected DEF in a diffuse fluorescent pattern early in infection, then migrates to and accumulates in the nucleus at12hpi, virtually every cell in the culture exhibited bright nucleus fluorescence at36hpi. At late stages of infection, cells expressing fluorescence dramatically reduced due to plaque famation at48hpi and72hpi. VP22found in infected cells is distributed in at least three distinct subcellular localizations, which we define as cytoplasmic, diffuse, and nuclear. Results of immunofluorescence studies show that the VP22recombinant protein can be detected in DEF after4h incubation in MEM, exhibiting pronounced accumulation in the cytoplasm, but failed migrates to and accumulates in the nucleus, virtually every cell in the culture exhibited bright cytoplasm fluorescence at36h. These results indicate that purified VP22recombinant protein retains the import property.
     4. Transcription characteristics and expression kinetics analysis of Duck Plague Virus UL49gene. In this study, we determined the transcription characteristics and expression kinetics of DPV UL49gene by FQ-PCR and Western blot method. The results showed that DPV UL49gene transcripts appeared at1hpi, the relative expression level was at a low level in the first12hpi, and VP22protein can be detected at24hpi, and then the transcripts and VP22protein were peaked at72-84hpi, thereafter both of them declined.
     5. Identification of the nuclear localization signal of Duck Plague Virus VP22protein. In order to mapped the functions of DPV VP22to specific regions in the polypeptide, we constructed a series of deletion constructs of VP22tagged by the GFP. The DPV VP22derivatives was transfected into DEF cells as described in Materials and Methods, and the subcellular localization pattern of the fusion proteins were examined using a Nikon Eclipse TE2000-U Inverted Microscope or a Nikon ECLIPSE80i fluorescence microscope. In this report, we demonstrate for the first time that (1) the nuclear localization of VP22is independent of other viral proteins,(2) VP22does not have a classical NLS, but a89-amino acid sequence from165aa to253aa within the carboxyl terminus was sufficient for nuclear localization.(3) the nuclear localization of VP22is independent of fixing agent.
     6. The determination of RNA interference target for DPV UL49gene and its transcriptive effect to glycoprotein genes. According to the DPV UL49gene sequence,4shRNA were designed and constructed in pGPU6plasmids by Shanghai GenePharma Co.,Ltd.4RNAi plasmids and VP22a-GFP were cotransfected in DEF cells using LipofectamineTM2000Reagent, the results showed that VP22-505and VP22-555have inhibitive effect. Relative quantitative real-time RT-PCR analysis of UL49mRNA levels throughout DPV infections showed the "5-GCTGTTGGAGATTGCCAATGA-3" sequence (505bp~525bp) can be seen as the best target spot. When DEF cells were transfected with VP22-505expression vectors and then infected with DPV, the transcriptional effect of UL49, gB, gD and gE can be severely down-regulated by VP22-505.
引文
[1]殷震,刘景华.动物病毒学[M],1997,第二版,北京:科学出版社.
    [2]徐耀先,周晓峰,刘立德.分子病毒学[M],2000,第一版,武汉:湖北科学技术出版社.
    [3]A.Murphy Frederick, J.Gibbs E.Paul, C.Horzinek Marian, et al. Veterinary Virology[M],1999, third edition, San Diego:Academic Press.
    [4]Kelly B. J., Fraefel C., Cunningham A. L., et al. Functional roles of the tegument proteins of herpes simplex virus type 1[J]. Virus Res,2009,145(2):173-186.
    [5]Kristie T. M., Sharp P. A. Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV alpha-trans-activator protein[J]. Genes Dev,1990, 4(12):2383-2396.
    [6]Heine J. W., Honess R. W., Cassai E., et al. Proteins specified by herpes simplex virus. Ⅻ. The virion polypeptides of type 1 strains[J]. J Virol,1974,14(3):640-651.
    [7]Honess R. W., Roizman B. Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell[J]. J Virol,1973,12(6):1347-1365.
    [8]Spear P. G., Roizman B. Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion[J]. J Virol,1972,9(1):143-159.
    [9]Zhang Y., McKnight J. L. Herpes simplex virus type 1 UL46 and UL47 deletion mutants lack VP11 and VP12 or VP13 and VP14, respectively, and exhibit altered viral thymidine kinase expression[J]. J Virol,1993,67(3):1482-1492.
    [10]McLean G., Rixon F., Langeland N., et al. Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47[J]. J Gen Virol, 1990,71 (12):2953-2960.
    [11]Campbell M. E., Palfreyman J. W., Preston C. M. Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription [J]. J Mol Biol,1984,180(1):1-19.
    [12]Pellett P. E., McKnight J. L., Jenkins F. J., et al. Nucleotide sequence and predicted amino acid sequence of a protein encoded in a small herpes simplex virus DNA fragment capable of trans-inducing alpha genes[J]. Proc Natl Acad Sci U S A, 1985,82(17):5870-5874.
    [13]Elliott G. D., Meredith D. M. The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49[J]. J Gen Virol,1992,73 (Pt 3):723-726.
    [14]del Rio T., Werner H. C., Enquist L. W. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents[J]. J Virol,2002,76(2):774-782.
    [15]Li Yufeng, Huang Bing, Ma Xiuli, et al. Molecular characterization of the genome of duck enteritis virus[J]. Virology,2009,391:151-161.
    [16]Honess R. W., Roizman B. Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides[J]. Proc Natl Acad Sci U S A,1975,72(4):1276-1280.
    [17]Honess R. W., Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins[J]. J Virol, 1974,14(1):8-19.
    [18]Blaho J. A., Mitchell C., Roizman B. An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0,4,22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products[J]. J Biol Chem,1994,269(26):17401-17410.
    [19]Gibson W., Roizman B. Proteins specified by herpes simplex virus. Staining and radiolabeling properties of B capsid and virion proteins in polyacrylamide gels[J]. J Virol,1974,13(1):155-165.
    [20]Pomeranz L. E., Blaho J. A. Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection[J]. J Virol,1999,73(8): 6769-6781.
    [21]Geiss B. J., Tavis J. E., Metzger L. M., et al. Temporal regulation of herpes simplex virus type 2 VP22 expression and phosphorylation[J]. J Virol,2001,75(22): 10721-10729.
    [22]Elliott G., O'Reilly D., O'Hare P. Phosphorylation of the herpes simplex virus type 1 tegument protein VP22[J]. Virology,1996,226(1):140-145.
    [23]Morrison E. E., Wang Y. F., Meredith D. M. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument[J]. J Virol,1998,72(9):7108-7114.
    [24]Mouzakitis G., McLauchlan J., Barreca C., et al. Characterization of VP22 in herpes simplex virus-infected cells[J]. J Virol,2005,79(19):12185-12198.
    [25]Coulter L. J., Moss H. W., Lang J., et al. A mutant of herpes simplex virus type 1 in which the UL13 protein kinase gene is disrupted[J]. J Gen Virol,1993,74(3): 387-395.
    [26]Overton H., McMillan D., Hope L., et al. Production of host shutoff-defective mutants of herpes simplex virus type 1 by inactivation of the UL13 gene[J]. Virology, 1994,202(1):97-106.
    [27]Purves F. C., Roizman B. The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22[J]. Proc Natl Acad Sci U S A,1992,89(16):7310-7314.
    [28]Geiss B. J., Cano G. L., Tavis J. E., et al. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization[J]. Virology,2004,330(1):74-81.
    [29]Elliott G, O'Reilly D., O'Hare P. Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22[J]. J Virol,1999,73(7):6203-6206.
    [30]Vittone V., Diefenbach E., Triffett D., et al. Determination of interactions between tegument proteins of herpes simplex virus type 1[J]. J Virol,2005,79(15): 9566-9571.
    [31]Ren X., Harms J. S., Splitter G. A. Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization[J]. J Virol,2001,75(17):8251-8258.
    [32]Elliott G., O'Hare P. Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division[J]. J Virol,2000,74(5):2131-2141.
    [33]Pomeranz L. E., Blaho J. A. Assembly of infectious Herpes simplex virus type 1 virions in the absence of full-length VP22[J]. J Virol,2000,74(21):10041-10054.
    [34]Elliott G, O'Hare P. Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection[J]. J Virol,1999,73(5):4110-4119.
    [35]Pinard M. F., Simard R., Bibor-Hardy V. DNA-binding proteins of herpes simplex virus type 1-infected BHK cell nuclear matrices[J]. J Gen Virol,1987,68(3): 727-735.
    [36]van Leeuwen H., Okuwaki M., Hong R., et al. Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of hi stone acetylation by INHAT[J]. J Gen Virol,2003, 84(9):2501-2510.
    [37]Elliott G., O'Hare P. Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules[J]. J Virol,1998,72(8): 6448-6455.
    [38]Yedowitz J. C., Kotsakis A., Schlegel E. F., et al. Nuclear localizations of the herpes simplex virus type 1 tegument proteins VP13/14, vhs, and VP16 precede VP22-dependent microtubule reorganization and VP22 nuclear import[J]. J Virol, 2005,79(8):4730-4743.
    [39]Kotsakis A., Pomeranz L. E., Blouin A., et al. Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein[J]. J Virol,2001,75(18):8697-8711.
    [40]Harms J. S., Ren X., Oliveira S. C., et al. Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations[J]. J Virol,2000,74(7):3301-3312.
    [41]Zhu J., Qiu Z., Wiese C., et al. Nuclear and mitochondrial localization signals overlap within bovine herpesvirus 1 tegument protein VP22[J]. J Biol Chem,2005, 280(16):16038-16044.
    [42]Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus[J]. J Gen Virol,1986,67(9):1759-1816.
    [43]Cai M., Wang S., Xing J., et al. Characterization of the nuclear import and export signals, and subcellular transport mechanism of varicella-zoster virus ORF9[J]. J Gen Virol,2011,92(3):621-626.
    [44]赵武,李斌,梁家幸,等.一种新兴的富有生命力的生物技术—蛋白转导[J].中国兽医科学,2008,38(4):360-364.
    [45]赵武,肖少波,方六荣,等.融合表达牛疱疹病毒1型VP22及猪繁殖与呼吸综合征病毒GP5重组伪狂犬病毒TK-/gE-/VP22 GP5+的构建[J].病毒学报,2006,22(1):62-65.
    [46]易军,宫卫东,王岭,等.VP22融合型显性负性突变体抑制乙肝病毒复制[J].第四军医大学学报,2006,27(10):875-878.
    [47]赵武,肖少波,方六荣,等.牛疱疹病毒Ⅰ型VP22和猪繁殖与呼吸综合征病毒GP5融合基因DNA疫苗的免疫效应[J].生物工程学报,2005,21(5):725-730.
    [48]赵武,肖少波,方六荣,等.共表达与牛疱疹病毒1型VP22融合的猪繁殖与呼吸综合征病毒E及M蛋白的重组伪狂犬病毒的构建及其免疫原性观察[J].畜牧兽医学报,2006,37(4):401-407.
    [49]Green M., Loewenstein P. M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein[J]. Cell,1988, 55(6):1179-1188.
    [50]Fawell S., Seery J., Daikh Y., et al. Tat-mediated delivery of heterologous proteins into cells[J]. Proc Natl Acad Sci U S A,1994,91(2):664-668.
    [51]Vives E., Brodin P., Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus[J]. J Biol Chem,1997,272(25):16010-16017.
    [52]Schwarze S. R., Ho A., Vocero-Akbani A., et al. In vivo protein transduction: delivery of a biologically active protein into the mouse[J]. Science,1999,285(5433): 1569-1572.
    [53]Kretz A., Wybranietz W. A., Hermening S., et al. HSV-1 VP22 augments adenoviral gene transfer to CNS neurons in the retina and striatum in vivo[J]. Mol Ther,2003,7(1):659-669.
    [54]Lai Z., Han I., Zirzow G., et al. Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors[J]. Proc Natl Acad Sci USA,2000,97(21):11297-11302.
    [55]Zavaglia D., Favrot M. C., Eymin B., et al. Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein[J]. Gene Ther,2003,10(4):314-325.
    [56]Brewis N. D., Phelan A., Normand N., et al. Particle assembly incorporating a VP22-BH3 fusion protein, facilitating intracellular delivery, regulated release, and apoptosis[J]. Mol Ther,2003,7(2):262-270.
    [57]Lemken M. L., Graepler F., Wolf C., et al. Fusion of HSV-1 VP22 to a bifunctional chimeric SuperCD suicide gene compensates for low suicide gene transduction efficiencies[J]. Int J Oncol,2007,30(5):1153-1161.
    [58]Wybranietz W. A., Gross C. D., Phelan A., et al. Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene[J]. Gene Ther,2001,8(21):1654-1664.
    [59]Kueltzo L. A., Normand N., O' Hare P., et al. Conformational lability of herpesvirus protein VP22[J]. J Biol Chem,2000,275(43):33213-33221.
    [60]Wills K. N., Atencio I. A., Avanzini J. B., et al. Intratumoral spread and increased efficacy of a p53-VP22 fusion protein expressed by a recombinant adenovirus[J]. J Virol,2001,75(18):8733-8741.
    [61]Lobanov V. A., Zheng C., Babiuk L. A., et al. Intracellular trafficking of VP22 in bovine herpesvirus-1 infected cells[J]. Virology,2010,396(2):189-202.
    [62]Nishi K., Saigo K. Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6[J]. J Biol Chem,2007,282(37):27503-27517.
    [63]Zhang C., Qin A., Chen H., et al. MDV-1 VP22:a transporter that can selectively deliver proteins into cells[J]. Arch Virol,2009,154(7):1027-1034.
    [64]Dilber M. S., Phelan A., Aints A., et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22[J]. Gene Ther, 1999,6(1):12-21.
    [65]Lee K. C., Hamstra D. A., Bullarayasamudram S., et al. Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit[J]. Gene Ther,2006,13(2):127-137.
    [66]Normand N., van Leeuwen H., O'Hare P. Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery[J]. J Biol Chem,2001,276(18):15042-15050.
    [67]Normand N., Valamanesh F., Savoldelli M., et al. VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo[J]. Mol Vis,2005,11:184-191.
    [68]Zavaglia D., Normand N., Brewis N., et al. VP22-mediated and light-activated delivery of an anti-c-rafl antisense oligonucleotide improves its activity after intratumoral injection in nude mice[J]. Mol Ther,2003,8(5):840-845.
    [69]陈关平,吴涛,黄勤锋,等.融合表达牛疙疹病毒Ⅰ型VP22基因和O型口蹄疫病毒P12A3C基因的DNA疫苗的构建及其免疫应答[J].中国兽医学报,2009,29(8):973-977.
    [70]陈鸿军,张晨飞,宋翠萍,等.MDV-1 VP22增强鸡传染性法氏囊炎病毒VP2DNA免疫作用[J].中国科学C辑:生命科学,2008,38(9):873-878.
    [71]陈鸿军,秦爱建,宋翠萍,等.MDV VP22的N1-18是发挥蛋白转导功能必需的序列[J].微生物学报,2008,48(1):91-97.
    [72]张晨飞,秦爱建,陈鸿军,等.马立克氏病病毒CVI988株VP22蛋白承载异源蛋白细胞间扩散[J].中国预防兽医学报,2009,31(3):170-175.
    [73]Saha S., Yoshida S., Ohba K., et al. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus[J]. Virology,2006,354(1):48-57.
    [74]Michel N., Osen W., Gissmann L., et al. Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination[J]. Virology,2002,294(1):47-59.
    [75]Kim T. W., Hung C. F., Kim J. W., et al. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity [J]. Hum Gene Ther,2004,15(2):167-177.
    [76]Oliveira S. C., Harms J. S., Afonso R. R., et al. A genetic immunization adjuvant system based on BVP22-antigen fusion[J]. Hum Gene Ther,2001,12(10):1353-1359.
    [77]熊符,张成,郑卉,等.人单纯疱疹病毒1型VP22介导的microdystrophin 重组腺病毒的构建及其蛋白转导特性[J].中国医学科学院学报,2008,30(4):499-507.
    [78]Qiu Z., Harms J. S., Zhu J., et al. Bovine herpesvirus tegument protein VP22 enhances thymidine kinase/ganciclovir suicide gene therapy for neuroblastomas compared to herpes simplex virus VP22[J]. J Virol,2004,78(8):4224-4233.
    [79]Duffy C., Lavail J. H., Tauscher A. N., et al. Characterization of a UL49-null mutant:VP22 of herpes simplex virus type 1 facilitates viral spread in cultured cells and the mouse cornea[J]. J Virol,2006,80(17):8664-8675.
    [80]Elliott G., Hafezi W., Whiteley A., et al. Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICPO[J]. J Virol,2005,79(15):9735-9745.
    [81]Liang X., Chow B., Li Y., et al. Characterization of bovine herpesvirus 1 UL49 homolog gene and product:bovine herpesvirus 1 UL49 homolog is dispensable for virus growth[J]. J Virol,1995,69(6):3863-3867.
    [82]Dorange F., Tischer B. K., Vautherot J. F., et al. Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth[J]. J Virol,2002, 76(4):1959-1970.
    [83]Tischer B. K., Kaufer B. B., Sommer M., et al. A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9[J]. J Virol,2007,81(23):13200-13208.
    [84]Leslie J., Rixon F. J., McLauchlan J. Overexpression of the herpes simplex virus type 1 tegument protein VP22 increases its incorporation into virus particles[J]. Virology,1996,220(1):60-68.
    [85]Wysocka J., Herr W. The herpes simplex virus VP16-induced complex:the makings of a regulatory switch[J]. Trends Biochem Sci,2003,28(6):294-304.
    [86]Elliott G., Mouzakitis G., O'Hare P. VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells[J]. J Virol,1995,69(12):7932-7941.
    [87]Sciortino M. T., Taddeo B., Giuffre-Cuculletto M., et al. Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the defect in the UL41 gene encoding host shutoff RNase[J]. J Virol,2007,81(20): 10924-10932.
    [88]Yao F., Courtney R. J. Association of ICP0 but not ICP27 with purified virions of herpes simplex virus type 1[J]. J Virol,1992,66(5):2709-2716.
    [89]Yao F., Courtney R. J. A major transcriptional regulatory protein (ICP4) of herpes simplex virus type 1 is associated with purified virions[J]. J Virol,1989,63(8): 3338-3344.
    [90]Cilloniz C., Jackson W., Grose C., et al. The varicella-zoster virus (VZV) ORR9 protein interacts with the IE62 major VZV transactivator[J]. J Virol,2007,81(2): 761-774.
    [91]Potel C., Elliott G. Phosphorylation of the herpes simplex virus tegument protein VP22 has no effect on incorporation of VP22 into the virus but is involved in optimal expression and virion packaging of ICPO[J]. J Virol,2005,79(22):14057-14068.
    [92]Yu X., Liu L., Wu L., et al. Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICPO[J]. Biochimie,2010,92(8):1024-1030.
    [93]Everett R., O'Hare P., O'Rourke D., et al. Point mutations in the herpes simplex virus type 1 Vmw110 RING finger helix affect activation of gene expression, viral growth, and interaction with PML-containing nuclear structures [J]. J Virol,1995, 69(11):7339-7344.
    [94]Duffy C., Mbong E. F., Baines J. D. VP22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mRNAs at early times in infection[J]. J Virol,2009,83(2):1009-1017.
    [95]Gross S. T., Harley C. A., Wilson D. W. The cytoplasmic tail of Herpes simplex virus glycoprotein H binds to the tegument protein VP16 in vitro and in vivo[J]. Virology,2003,317(1):1-12.
    [96]Zhu Q., Courtney R. J. Chemical cross-linking of virion envelope and tegument proteins of herpes simplex virus type 1[J]. Virology,1994,204(2):590-599.
    [97]Farnsworth A., Wisner T. W., Johnson D. C. Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD[J]. J Virol,2007,81(1):319-331.
    [98]Chi J. H., Harley C. A., Mukhopadhyay A., et al. The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids[J]. J Gen Virol,2005,86(2):253-261.
    [99]O'Regan K. J., Bucks M. A., Murphy M. A., et al. A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE)[J]. Virology,2007,358(1):192-200.
    [100]Fuchs W., Klupp B. G., Granzow H., et al. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49[J]. J Virol,2002,76(16):8208-8217.
    [101]Gough R. E., Alexander D. J. Duck virus enteritis in waterfowl[J]. Vet Rec, 1987,121(3):72.
    [102]Y. M. Saif, H. J. Barnes, J. R. Glisson, et al. Diseases of Poultry [M].2003,11th edition. Ames:Iowa State University Press.
    [103]Kisary J., Zsak L. Comparative studies on duck viral enteritis (DVE) virus strains in geese[J]. Avian Pathol,1983,12(4):395-408.
    [104]Davison S., Converse K. A., Hamir A. N., et al. Duck viral enteritis in domestic muscovy ducks in Pennsylvania[J]. Avian Dis,1993,37(4):1142-1146.
    [105]Keymer I. F., Gough R. E. Duck virus enteritis (anatid herpesvirus infection) in mute swans (Cygnus olor)[J]. Avian Pathol,1986,15(1):161-170.
    [106]Wobeser G. Experimental duck plague in blue-winged teal and Canada geese[J]. J Wildl Dis,1987,23(3):368-375.
    [107]A. E. R. F. Baudet. Mortality in ducks in the Netherlands caused by a filtrable virus; fowl plague[J]. Tijdschr. Diergeneeskd,1923,50:455-459.
    [108]Y.X. Huang. Study on duck plague-like disease. J. South China Agric. Univ, 1959,1:1-12.
    [109]Casari G., De Daruvar A., Sander C., et al. Bioinformatics and the discovery of gene function[J]. Trends Genet,1996,12(7):244-245.
    [110]Edwards Y. J., Cottage A. Prediction of protein structure and function by using bioinformatics[J]. Methods Mol Biol,2001,175:341-375.
    [111]张成岗,贺福初.生物信息学方法与实践[M].2002,第一版,北京:科学出版社.
    [112]Weaver T., Cooper S. Exploring protein function and evolution using free online bioinformatics tools[J]. Biochem Mol Biol Educ,2005,33(5):319-322.
    [113]Edwards Y. J., Cottage A. Bioinformatics methods to predict protein structure and function. A practical approach[J]. Mol Biotechnol,2003,23(2):139-166.
    [114]Geourjon C., Deleage G., Roux B. ANTHEPROT:an interactive graphics software for analyzing protein structures from sequences [J]. J Mol Graph,1991,9(3): 188-190,167.
    [115]Deleage G., Combet C., Blanchet C., et al. ANTHEPROT:an integrated protein sequence analysis software with client/server capabilities[J]. Comput Biol Med,2001, 31(4):259-267.
    [116]Geourjon C., Deleage G. ANTHEPROT 2.0:a three-dimensional module fully coupled with protein sequence analysis methods[J]. J Mol Graph,1995,13(3): 209-212.
    [117]缪德年,王秀花,姚惠娟,等.超强毒RB1B株马立克氏病UL49基因的克隆和序列分析[J].上海农业学报,2005,21(2):24-27.
    [118]刘建华,李娜,仇华吉,等.伪狂犬病病毒Bartha-K61株UL49基因的克隆和序列分析[J].中国预防兽医学报,2005,27(4):269-272.
    [119]余晓岚,肖少波,方六荣,等.牛疱疹病毒Ⅰ型u149(VP22)基因的序列分析及其表达[J].中国病毒学,2003,18(2):104-107.
    [120]薛庆中,陈辰,陈晓龙,等.DNA和蛋白质序列数据分析工具.2009年,第一版,北京:科学出版社.
    [121]Bendtsen J. D., Nielsen H., von Heijne G, et al. Improved prediction of signal peptides:SignalP 3.0[J]. J Mol Biol,2004,340(4):783-795.
    [122]Nielsen H., Engelbrecht J., Brunak S., et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng,1997, 10(1):1-6.
    [123]Chen Y., Yu P., Luo J., et al. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT[J]. Mamm Genome,2003,14(12):859-865.
    [124]Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997[J]. Nucleic Acids Res,1997,25(1):217-221.
    [125]Neron B., Menager H., Maufrais C., et al. Mobyle:a new full web bioinformatics framework[J]. Bioinformatics,2009,25(22):3005-3011.
    [126]贾仁勇,程安春,汪铭书,等.不同条件对鸭瘟病毒感染细胞蛋白质组二维电泳分析结果的影响[J].中国兽医学报,2009,29(3):272-276.
    [127]Briesemeister S., Rahnenfuhrer J., Kohlbacher O. YLoc--an interpretable web server for predicting subcellular localization[J]. Nucleic Acids Res,2010,38 Suppl: 497-502.
    [128]Cokol M., Nair R., Rost B. Finding nuclear localization signals[J]. EMBO Rep, 2000,1(5):411-415.
    [129]la Cour T., Kiemer L., Molgaard A., et al. Analysis and prediction of leucine-rich nuclear export signals[J]. Protein Eng Des Sel,2004,17(6):527-536.
    [130]Sharp P. M., Tuohy T. M., Mosurski K. R. Codon usage in yeast:cluster analysis clearly differentiates highly and lowly expressed genes[J]. Nucleic Acids Res, 1986,14(13):5125-5143.
    [131]Wright F. The 'effective number of codons'used in a gene[J]. Gene,1990,87(1): 23-29.
    [132]Epstein R. J., Lin K., Tan T. W. A functional significance for codon third bases[J]. Gene,2000,245(2):291-298.
    [133]Sharp P. M., Li W. H. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications [J]. Nucleic Acids Res, 1987,15(3):1281-1295.
    [134]Lu H., Zhao W. M., Zheng Y., et al. Analysis of synonymous codon usage bias in Chlamydia[J]. Acta Biochim Biophys Sin,2005,37(1):1-10.
    [135]Jiang Long, Cheng Anchun, Wang Mingshu, et al. Characterization of Duck Plague Virus Tegument Protein VP22 and Molecular Evolution of Herpesvirinae[J]. 2010 3rd International Conference on Computer and Electrical Engineering,2010,5: 38-42.
    [136]蔡铭升,程安春,汪铭书,等.鸭瘟病毒VP26基因克隆和分子特性分析[J].畜牧兽医学报,2009,40(7):1112-1119.
    [137]Jiang Long, Cheng Anchun, Wang Mingshu, et al. Bioinformatic Analysis of UL27 gene of Duck Plague Virus CHv Strain, in 2010 4th International Conference on Bioinformatics and Biomedical Engineering.2010.1:143-149.
    [138]徐超,李欣然,信洪一,等.鸭瘟病毒gC基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [139]贾仁勇,程安春,汪铭书,等.鸭瘟病毒UL24基因的分子特征分析[J].中国兽医科学,2009,39(2):110-118.
    [140]娄昆鹏,程安春,汪铭书,等.鸭瘟病毒UL28基因的克隆、鉴定及序列分析[J].农业生物技术学报,2010,18(8):737-745.
    [141]Liu S., Chen S., Li H., et al. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV)[J]. Gene, 2007,401(1-2):88-96.
    [142]葛菡,徐超,程安春,等.鸭瘟病毒TK基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(4):297-302.
    [143]钟小容,程安春,汪铭书,等.鸭瘟病毒CHv株UL34基因的克隆及分子特性分析[J].中国兽医学报,2010,30(2):196-201.
    [144]招丽婵,袁桂萍,程安春,等.鸭瘟病毒dUTPase基因的分子特性及转录时相分析[J].高技术通讯,2008,18(10):1088-1094.
    [145]罗丹丹,程安春,汪铭书,等.鸭瘟病毒UL47基因克隆及其分子特性分析[J].中国兽医学报,2011,31(1):29-35.
    [146]Jiang Long, Cheng Anchun, Wang Mingshu, et al. Bioinformatic Analysis of Duck Plague Virus Tegument Protein VP22[J].2010 3rd International Conference on Computer and Electrical Engineering 2010,5:32-37.
    [147]陈鸿军,秦爱建,宋翠萍,等.MDV VP22的N1-18是发挥蛋白转导功能必需的序列[J].微生物学报,2008,48(1):91-97.
    [148]Jia R., Cheng A., Wang M., et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus[J]. Virus Genes,2009,38(1):96-103.
    [149]Cai M. S., Cheng A. C., Wang M. S., et al. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene[J]. Intervirology,2009,52(5): 266-278.
    [150]郭宇飞,程安春,汪铭书,等.鸭胚成纤维细胞中鸭瘟强毒的增殖特性研究[J].病毒学报,2008,24(5):352-357.
    [151]郭宇飞,程安春,汪铭书,等.鸭瘟病毒的纯化及电镜负染形态观察[J].中国兽医科学,2008,38(5):393-396.
    [152]Guo Yufei, Shen Chanjuan, Cheng Anchun, et al. Anatid herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo fibroblast cultures[J]. Veterinary Microbiology,2009,138(3-4):258-265.
    [153]卢圣栋,马清钧,刘德培,等.现代分子生物学实验技术[M],1999,第二版,北京:协和医科大学出版社.
    [154]吴雄文,梁智辉.实用免疫学实验技术[M],2002年,第一版,武汉:湖北科学技术出版社.
    [155]杨汉春.动物免疫学[M],1995,第二版,北京:中国农业大学出版社.
    [156]陈鸿军,宋翠萍,秦爱建,等MDV-1 VP22羧基端在大肠杆菌中高效可溶性表达[J].中国病毒学,2006,21(2):169-172.
    [157]宋翠萍,陈鸿军,秦爱建,等.抗MDV-1 VP22羧基端单克隆抗体的制备与免疫学特性鉴定[J].细胞与分子免疫学杂志,2007,23(3):249-253.
    [158]余晓岚,肖少波,方六荣,等.牛疱疹病毒Ⅰ型u149(VP22)基因的序列分析及其表达[J].中国病毒学,2003,18(2):104-107.
    [159]刘燕,田志军,郑宝亮,等.猪瘟病毒E2基因和牛疱疹病毒Ⅰ型UL49基因的共表达[J].中国兽医科学,2006,36(10):777-781.
    [160]D.R.马歇克,J.T.门永,R.R.布格斯,等.蛋白质纯化与鉴定实验指南[M],1999,第一版,北京:科学出版社.
    [161]王克雄,李慧昕,李阳,等.鸭肠炎病毒VP22蛋白单克隆抗体的制备及鉴定[J].中国预防兽医学报,2009,31(9):721-725.
    [162]陈鸿军,宋翠萍,秦爱建,等.MDV-1 CVI988/Rispens疫苗毒体外感染期间VP22的表达及细胞间转导作用[J].中国科学C辑:生命科学,2006,36(2):145-149.
    [163J Dorange F., El Mehdaoui S., Pichon C., et al. Marek's disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16[J]. J Gen Virol, 2000,81(Pt 9):2219-2230.
    [164]O'Donnell L. A., Clemmer J. A., Czymmek K., et al. Marek's disease virus VP22:subcellular localization and characterization of carboxyl terminal deletion Mutations[J]. Virology,2002,292(2):235-240.
    [165]张晨飞,秦爱建,陈娟娟,等.重组人腺病毒表达的MDV-1 VP22蛋白的不同定位模式[J].细胞与分子免疫学杂志,2009,25(9):787-791.
    [166]Aints A., Guven H., Gahrton G., et al. Mapping of herpes simplex virus-1 VP22 functional domains for inter- and subcellular protein targeting[J]. Gene Ther,2001, 8(14):1051-1056.
    [167]Bennett R. P., Dalby B., Guy P. M. Protein delivery using VP22[J]. Nat Biotechnol,2002,20(1):20.
    [168]Elliott G., O'Hare P. Intercellular trafficking of VP22-GFP fusion proteins[J]. Gene Ther,1999,6(1):149-151.
    [169]Wybranietz W. A., Prinz F., Spiegel M., et al. Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines[J]. J Gene Med,1999, 1(4):265-274.
    [170]Roeder G. E., Parish J. L., Stern P. L., et al. Herpes simplex virus VP22-human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammalian cells and induce apoptotic cell death[J]. Biotechnol Appl Biochem,2004, 40(2):157-165.
    [171]Mori T., Mineta Y., Aoyama Y., et al. Efficient secretion of the herpes simplex virus tegument protein VP22 from living mammalian cells[J]. Arch Virol,2008, 153(6):1191-1195.
    [172]Sciortino M. T., Taddeo B., Poon A. P., et al. Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection[J]. Proc Natl Acad Sci U S A, 2002,99(12):8318-8323.
    [173]Boenicke L., Chu K., Pauls R., et al. Efficient dose-dependent and time-dependent protein transduction of pancreatic carcinoma cells in vitro and in vivo using purified VP22-EGFP fusion protein[J]. J Mol Med (Berl),2003,81(3):205-213.
    [174]熊符,张成,于美娟.蛋白转导在基因治疗中的应用[J].国际生物医学工程杂志,2006,29(4):250-254.
    [175]Phelan A., Elliott G., O'Hare P. Intercellular delivery of functional p53 by the herpesvirus protein VP22[J]. Nat Biotechnol,1998,16(5):440-443.
    [176]Lian B., Xu C., Cheng A., et al. Identification and characterization of duck plague virus glycoprotein C gene and gene product[J]. Virol J,2010,7:349.
    [177]Chang H., Cheng A., Wang M., et al. Complete nucleotide sequence of the duck plague virus gE gene[J]. Arch Virol,2009,154(1):163-165.
    [178]Chang H., Cheng A., Wang M., et al. Cloning, expression and characterization of gE protein of duck plague virus[J]. Virol J,2010,7:120.
    [179]Zhang S., Xiang J., Cheng A., et al. Characterization of duck enteritis virus UL53 gene and glycoprotein K[J]. Virol J,2011,8:235.
    [180]Zhang S., Xiang J., Cheng A., et al. Production, purification and characterization of polyclonal antibody against the truncated gK of the duck enteritis virus[J]. Virol J,2010,7:241.
    [181]Zhang S., Ma G, Xiang J., et al. Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis[J]. Virol J,2010,7: 168.
    [182]Li H., Liu S., Kong X. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV):a proof for the classification of DEV[J]. Virus Genes,2006,33(2):221-227.
    [183]Xiang J., Ma G., Zhang S., et al. Expression and intracellular localization of duck enteritis virus pUL38 protein[J]. Virol J,2010,7:162.
    [184]Shen A. M., Ma G. P., Cheng A. C., et al. Transcription phase, protein characteristics of DEV UL45 and prokaryotic expression, antibody preparation of the UL45 des-transmembrane domain[J]. Virol J,2010,7:232.
    [185]Lu L., Cheng A., Wang M., et al. Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate[J]. Virol J,2010,7:83.
    [186]Shen C., Cheng A., Wang M., et al. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks[J]. Avian Dis,2010, 54(2):939-947.
    [187]Shen C. J., Cheng A. C., Wang M. S., et al. Identification and characterization of the duck enteritis virus UL51 gene[J]. Arch Virol,2009,154(7):1061-1069.
    [188]Shen C., Guo Y., Cheng A., et al. Characterization of subcellular localization of duck enteritis virus UL51 protein[J]. Virol J,2009,6:92.
    [189]Wu Y., Cheng A., Wang M., et al. Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene[J]. Virol J,2011,8:266.
    [190]Wu Y., Cheng A., Wang M., et al. Characterization of the duck enteritis virus UL55 protein[J]. Virol J,2011,8:256.
    [191]Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001, 25(4):402-408.
    [192]Weber C. F., Kuske C. R. Comparative assessment of fungal cellobiohydrolase I richness and composition in cDNA generated using oligo(dT) primers or random hexamers[J]. J Microbiol Methods,2012,88(2):224-228.
    [193]Fleige S., Pfaffl M. W. RNA integrity and the effect on the real-time qRT-PCR performance[J]. Mol Aspects Med,2006,27(2-3):126-139.
    [194]李金明.实时荧光PCR技术[M],2007年,第一版,北京:人民军医出版社.
    [195]Gutierrez L., Mauriat M., Guenin S., et al. The lack of a systematic validation of reference genes:a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnol J,2008,6(6): 609-618.
    [196]Li Y. P., Bang D. D., Handberg K. J., et al. Evaluation of the suitability of six host genes as internal control in real-time RT-PCR assays in chicken embryo cell cultures infected with infectious bursal disease virus[J]. Vet Microbiol,2005,110(3-4): 155-165.
    [197]沈婵娟,程安春,汪铭书,等.鸭瘟病毒UL51基因在感染宿主细胞中的定位和转录特征[J].中国兽医学报,2010,30(9):1160-1166.
    [198]Lundberg M., Johansson M. Is VP22 nuclear homing an artifact?[J]. Nat Biotechnol,2001,19(8):713-714.
    [199]Fagerlund R., Melen K., Kinnunen L., et al. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5[J]. J Biol Chem,2002,277(33):30072-30078.
    [200]Hoelz A., Debler E. W., Blobel G. The structure of the nuclear pore complex[J]. Annu Rev Biochem,2011,80:613-643.
    [201]赵元茵,王元忠,曹念,等.核定位信号及其分析策略[J].中国生物化学与分子生物学报,2009,25(8):683-689.
    [202]Lange A., McLane L. M., Mills R. E., et al. Expanding the definition of the classical bipartite nuclear localization signal[J]. Traffic,2010,11(3):311-323.
    [203]Rey S., Acab M., Gardy J. L., et al. PSORTdb:a protein subcellular localization database for bacteria[J]. Nucleic Acids Res,2005,33(Database issue):D164-168.
    [204]Yu N. Y., Laird M. R., Spencer C., et al. PSORTdb--an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea[J]. Nucleic Acids Res,2011,39(Database issue):D241-244.
    [205]Nair R., Carter P., Rost B. NLSdb:database of nuclear localization signals[J]. Nucleic Acids Res,2003,31(1):397-399.
    [206]Yuk I. H., Wildt S., Jolicoeur M., et al. A GFP-based screen for growth-arrested, recombinant protein-producing cells[J]. Biotechnol Bioeng,2002,79(1):74-82.
    [207]Valdivia R. H., Hromockyj A. E., Monack D., et al. Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions[J]. Gene,1996, 173(1 Spec No):47-52.
    [208]Hack N. J., Billups B., Guthrie P. B., et al. Green fluorescent protein as a quantitative tool[J]. J Neurosci Methods,2000,95(2):177-184.
    [209]姚琳,方六荣,肖少波,等.伪狂犬病毒VP22蛋白C-端系列缺失突变体的构建及亚细胞定位分析[J].中国病毒学,2006,21(4):358-363.
    [210]Zheng C., Brownlie R., Babiuk L. A., et al. Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22[J]. J Virol,2005, 79(18):11864-11872.
    [211]Zamore P. D., Tuschl T., Sharp P. A., et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell,2000, 101(1):25-33.
    [212]Hammond S. M., Bernstein E., Beach D., et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Nature,2000, 404(6775):293-296.
    [213]Mello C. C., Conte D., Jr. Revealing the world of RNA interference [J]. Nature, 2004,431(7006):338-342.
    [214]Meister G., Tuschl T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature,2004,431(7006):343-349.
    [215]Panjaworayan N., Brown C. M. Effects of HBV Genetic Variability on RNAi Strategies[J]. Hepat Res Treat,2011, do:10.1155/2011/367908.
    [216]Khaliq S., Khaliq S. A., Zahur M., et al. RNAi as a new therapeutic strategy against HCV[J]. Biotechnol Adv,2010,28(1):27-34.
    [217]Hamazaki H., Ujino S., Abe E., et al. RNAi expression mediated inhibition of HCV replication [J]. Nucleic Acids Symp Ser (Oxf),2004,48:307-308.
    [218]Lawrence D. RNAi could hold promise in the treatment of HIV[J]. Lancet,2002, 359(9322):2007.
    [219]Liu Y. P., von Eije K. J., Schopman N. C., et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs[J]. Mol Ther,2009,17(10):1712-1723.
    [220]Chang Z., Hu Z. RNAi therapeutics:can siRNAs conquer SARS?[J]. Gene Ther, 2006,13(11):871-872.
    [221]Lipardi C., Wei Q., Paterson B. M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J]. Cell,2001,107(3):297-307.
    [222]缪德年,王秀花,封江南,等.马立克氏病病毒超强毒UL49基因siRNA表达质粒的构建与鉴定[J].南京农业大学学报,2005,28(3):137-139.
    [223]曾志锋,李月琴,唐冬生,等.应用载体介导的RNAi技术抑制HCMV的UL49基因表达[J].中国生物工程杂志,2005,25(1):39-43.
    [224]崔凯涛.DNA外引导序列抑制人巨细胞病毒UL49基因表达的研究[硕士学位论文].广州,暨南大学,2006.
    [225]Josefsen K., Lee Y. C. Validation of RNAi by real time PCR[J]. Methods Mol Biol,2011,703:205-217.
    [226]刘政,刘佳,邱广斌.实时荧光定量PCR法检测RNA干扰后的GES-1细胞中MYCT-1基因的表达[J].分子诊断与治疗杂志,2011,3(2):93-95.
    [227]曾索,丁显平,倪虹,等.荧光定量PCR法在人类宫颈癌RNA干扰中的应用[J].重庆大学学报(自然科学版),2007,30(12):64-67.
    [228]余娴,李卫中,刘龙丁,等.HSV-1间层蛋白VP22转录调控功能的分析[J].中国科学(C辑:生命科学),2008,38(9):787-793.
    [229]Maeda Y., Venzon D. J., Mitsuya H. Altered drug sensitivity, fitness, and evolution of human immunodeficiency virus type 1 with pol gene mutations conferring multi-dideoxynucleoside resistance [J]. J Infect Dis,1998,177(5): 1207-1213.
    [230]Chen M., Payne W. S., Hunt H., et al. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference [J]. Virology,2008,377(2): 265-272.
    [231]Chen M., Payne W. S., Dunn J. R., et al. Retroviral delivery of RNA interference against Marek's disease virus in vivo[J]. Poult Sci,2009,88(7): 1373-1380.
    [232]夏春祥,朱礼尧,李晶.三种小干扰RNA干扰VP16 mRN A对单纯疱疹病毒-1复制的影响研究[J].国际检验医学杂志,2006,27(11):974-978.
    [233]刘玉涛,宋波,王亚仑,等.靶向ICP4的小干扰RNA对HSV-1病毒复制能力的影响[J].病毒学报,2010,26(3):163-169.
    [234]Palliser D., Chowdhury D., Wang Q. Y, et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection[J]. Nature,2006,439(7072): 89-94.
    [235]冯海,张浩,屠静,等.敲减单纯疱疹病毒Ⅱ型(HSV-2)UL30蛋白表达可抑制HSV-2复制[J].中国生物化学与分子生物学报,2007,23(12):1025-1030.
    [236]Wiebusch L., Truss M., Hagemeier C. Inhibition of human cytomegalovirus replication by small interfering RNAs[J]. J Gen Virol,2004,85(1):179-184.
    [237]Zhen Z., Bradel-Tretheway B., Sumagin S., et al. The human herpesvirus 6 G protein-coupled receptor homolog U51 positively regulates virus replication and enhances cell-cell fusion in vitro[J]. J Virol,2005,79(18):11914-11924.
    [238]Yoon J. S., Kim S. H., Shin M. C., et al. Inhibition of herpesvirus-6B RNA replication by short interference RNAs[J]. J Biochem Mol Biol,2004,37(3):383-385.
    [239]Jia Q., Sun R. Inhibition of gammaherpesvirus replication by RNA interference[J]. J Virol,2003,77(5):3301-3306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700