用户名: 密码: 验证码:
低碳钢中奥氏体向铁素体等温转变的相场法模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入铁器时代以来,钢铁一直是人类社会所需的重要材料。近年来钢铁材料面临着陶瓷材料、高分子材料、有色金属材料等的挑战,但钢铁在材料领域仍扮演着重要角色,广泛应用于国民经济建设的各个领域。钢铁在材料行业中所占据的统治地位,在今后很长时期内不会改变,对钢铁材料性能的研究仍具有十分重要的意义。
     对相变的研究在钢铁材料性能研究方面具有极其重要的作用,相变影响着材料的物理、化学等各项性能指标。研究奥氏体-铁素体相变的热力学和动力学,建立材料制备加工工艺与其组织状态间的定量关系,对于设计材料成分和制备加工工艺以获得所需要的材料性能具有十分重要的意义。
     近年来,相场作为一种模拟材料微观组织演变的方法,越来越受到人们的重视,它是目前较为理想的相变组织模拟手段。本文通过所建立的相变模型成功模拟了奥氏体-铁素体转变中的等温扩散转变和块状转变。
     在等温扩散转变过程中,铁素体晶核逐渐长大,从铁素体相析出的过饱和碳原子不断向奥氏体相一侧转移,使铁素体-奥氏体界面处有明显的碳堆积,碳浓度不断升高,在奥氏体一侧建立了碳原子的浓度梯度。在此浓度梯度的驱动下,奥氏体相中界面处的碳原子向其内部扩散,导致远离界面的奥氏体相内部的碳原子浓度随相变的进行而不断升高。
     温度影响单晶核的等温扩散转变过程,同一转变时间时,奥氏体中碳浓度梯度随温度升高而减小;低温范围内,铁素体晶核长大速度随温度升高而加快,而高温范围内恰相反。
     在所模拟的等温块状转变过程中,碳在奥氏体-铁素体相界面处聚集,并且在界面移动过后,新形成的铁素体碳浓度并没有急剧的降低,而是与母相奥氏体中碳浓度相当,说明转变过程中两相界面处发生了碳的短程扩散,此转变为块状转变。
     所建相场模型及其应用程序具有较好的物理机制,其模拟结果所揭示的碳浓度变化规律和铁素体晶核长大规律与相变理论一致,为进一步采用相场理论进行奥氏体-铁素体转变的模拟研究奠定了基础。
Since coming into steel age, steel has always to be important materials needed by human society. Recently steel has been challenged by ceramics, high polymer and nonferrous metals, but it still plays an important part in material fields and is widely used to various fields in our national economy. In material fields, steel holds the dominant position, which will exist for a long time, and it's also very important to study the property of steel materials.
     Research in phase transformation which influences the physical and chemical properties of materials has an important effect on steel properties' study. To study the thermodynamics and kinetics of austenite-ferrite transformation, establish the quantitative relationship between processing technology and microstructure, has important significance for designing material composition and making processing technology to obtain the needed material properties.
     In recent years, as one of the methods of simulating materials' microstructure, phase-field simulation which becoming more and more important is an ideal method to simulate phase transformation at present. This paper successfully simulates the isothermal transformation and massive transformation of austenite-ferrite by establishing the phase-field simulation model.
     In process of isothermal transformation, the ferrite nuclear grows up gradually. The supersaturate carbon atoms in ferrite phase are rejected to austenite continuously so that they are obvious stacking in the interface of austenite and ferrite where the carbon concentration keeps rising, then it makes a gradient of carbon concentrate in austenite. Under the concentrate gradient drive, the carbon atoms in interface transfer to the inside of austenite so that the carbon concentration of austenite where is far away from the interface increase high continuously with the phase transformation developing.
     Temperature has some effect on the isothermal transformation of single ferrite nuclear. At the same time, the carbon concentration gradient in austenite decreases with the temperature rising. At the range of low temperature the growth speed of the ferrite nuclear accelerate with the temperature increasing, but contrary at the high temperature.
     In process of massive transformation, carbon accumulates in the interface of austenite-ferrite and after the interface moving the carbon concentration of newly formed ferrite does not show rapid decrease, but almost equal to mother austenite phase. It shows that shot-range diffusion of carbon happens in the interface during transformation which is massive transformation.
     The phase-field model which we build in this paper and the application program show a better physical mechanism, and the result of simulation also reveals that the change law of carbon concentration and the growth law of ferrite nuclear accord with the theory of phase transformation. Our research lays the foundation for the further study in simulation of austenite-ferrite transformation using phase-field method.
引文
[1]兰勇军.低碳钢奥氏体-铁素体相变介观模拟计算[D].博士学位论文.沈阳:中国科学院金属研究所,2005:1-40.
    [2]Bradley JR,Rigsbee JM and Aaronson HI.Growth kinetics of grain boundary ferrite allotrio-morphs in Fe-C alloys[J].Metall Trans A,1977(8A):323.
    [3]Oferman SE,Dijk NH van,Sietsma J,Grigull S,Lauridsen EM,Margulies L,Poulsen HF,Rekveldt MTh and Zwaag S van der.Grain nucleation and growth during phase transformations[J].Science,2002(298):1003-1005.
    [4]Cotrina E,Iza-mendia A,Lopez B,Gutierrez I.Study of the ferrite grain coarsening behind the transformation front by electron backscattered diffraction techniques[J].Metall Mater Trans A,2004,35A:93-102.
    [5]林国顺,黄梯云,邢月华.计算机模拟发展综述[J].交通与计算机,1998年,第1卷,第5期:1-6.
    [6]Raabe D编著.项金钟,吴兴惠译.计算材料学[M].北京化学工业出版社,2002:4.
    [7]张继祥.基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D].博士学位论文.济南:山东大学,2006:1-20.
    [8]Johnson WA and Mehl RF.Reaction kinetics in processes of nucleation and growth[J].Trans AIME,1939(135):416-458.
    [9]Avrami M.Kinetics of phase change.Ⅰ general theory[J].J Chem Phys,1939(7):1103-1112.
    [10]Avrami M.Kinetics of phase change.Ⅱ transformation-time relations for random distribution of nuclei[J].J Chem Phys,1940(8):212-224.
    [11]Avrami M.Granulation,Phase Change and Microstructure Kinetics of Phase Change[J].Ⅲ.J Chem Phys,1941(9):177-184.
    [12]Zener C.Theory of growth of spherical precipitates from solid solution[J].J Appl Phys,1949(20):950-953.
    [13]Vandermeer RA.Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-C alloys[J].Acta Metall Mater,1990(38):2461-2470.
    [14]Enomoto M and Atkinson C.Diffusion-controlled growth of disordered interphase boundaries in finite matrix[J].Acta Metall Mater,1993(41): 3237-3244.
    [15] Kolodner Ⅱ. Instability of liquid surfaces and the formation of drops [J]. Comm Pure Appl Math, 1956(6): 1.
    [16] Agren J. Computer simulations of difusional reactions in complex steels [J]. ISIJ Int, 1992(32): 291-296.
    [17] Krielaart GP, Sietsma J and Zwaag S van der. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions [J].Mater Sci Eng A, 1997(237A): 216-223.
    [18] Enomoto M and Aaronson HI. Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-C-X alloys [J]. Metall Trans A, 1986(17A):1385-1397.
    [19] Militzer M, Pandi R and Hawbolt EB. Ferrite nucleation and growth during continuous cooling [J]. Metall Mater Trans A, 1996(27A): 1547-1555.
    [20] Varma MR, Sasikumar R, Pillai SGK and Nair PK. Cellular automaton simulation of microstructure evolution during austenited ecomposition under continuous cooling conditions [J]. Bull Mater Sci, 2001(3): 305-312.
    [21] Zhang L, Zhang CB, Wang YM, Liu XH and Wang GD. Cellular automaton model to simulate nucleation and growth of ferrite grains for low-carbons teels [J]. 130J Mater Res, 2002(17): 2251-2259.
    [22] Zhang L, Wang YM, Zhang CB, Wang SQ and Ye HQ. Acellular automaton model of the transformation from austenite to ferrite in low carbon steels [J].Model Simul Mater Sci Eng, 2003(11): 791-802.
    [23] Anderson MP, Srolovitz DJ, Grest GS and Sahni PS. Computer simulation of grain growth-Ⅰ. Kinetics [M]. Acta Mater, 1984(32): 783-791.
    [24] Srolovitz DJ, Anderson MP, Sahni PS and Grest GS. Computer simulation of grain growth-Ⅱ. Grain size distribution, topology and local dynamics [M]. Acta Mater, 1984(32): 793-802.
    [25] Srolovitz DJ, Anderson MP, Grest GS and Sahni PS. Computer simulation of grain growth-Ⅲ. Influence of aparticle dispersion [M]. Acta Mater, 1984(32):1429-1438.
    [26] Grest GS, Srolovitz DJ and . Anderson MP. Computer simulation of growth -Ⅳ.Anisotropic grain boundary energies [M]. Acta Mater, 1985(33): 509-520.
    [27] Srolovitz DJ, Grest GS and Anderson MP. Computer simulation of grain growth -Ⅴ. Abnormal grain growth [M]. Acta Mater, 1985(33): 2233-2247.
    [28]Sista S and Debroy T.Three dimensional Monte Carlo simulation of grain growth in zone refined iron[J].Metall Mater Trans B,2001(32B):1195-1201.
    [29]宋小燕,刘国权,何一柱.一种改进的晶粒长大Monte Carlo模拟方法[J].自然科学进展,1998(8):337-341.
    [30]宋小燕,刘国权,谷南驹.第二相粒子尺寸对基体晶粒长大影响的仿真研究[J].金属学报,1999(35):565-568.
    [31]Detert K.Recrystallization of Metallic Materials[M].Edited by Haessner F.Stutgart:Riederer,1987:97.
    [32]Rollet DA,Luton MJ and Srolovitz DJ.Microstructural simulation of dynamic recrystallization[J].Acta Mater,1992(40):43-55.
    [33]Radhakrishnan B,Sarma GB and Zacharia T.Monte Carlo simulation of deformation substructure evolution during recrystallization[J].Scripta Mater,1998(39):1639-1645.
    [34]Radhakrishnan B,Sarma GB and Zacharia T Modeling the kinetics an microstructural evolution during static recrystallization Monte Carlo simulation of recrystallization[J].Acta Mater,1998(46):4415-4433.
    [35]Song XY,Retenmayr M,Muller C and Exner HE.Modeling of recrystallization after inhomogeneous deformation[J].Metall Mater Trans A,2001(32):2199-2206.
    [36]Sarma GB,Radhakrishnan B and Dawson PR.Mesoscale modeling of microsture and texture evolution during deformation processing of metals[J].Adv Eng Mater,2002(4):509-514.
    [37]佟铭明,莫春立,李殿中,李依依.纯铜动态再结晶的Monte Carlo法模拟[J].金属学报,2002(38):745-749.
    [38]佟铭明.形变诱导铁素体相变的蒙特卡罗模拟及实验研究[D].博士学位论文.沈阳:中国科学院金属研究所,2004.
    [39]Tong MM,Li DZ,Li YY and Ni J.Modeling the austenite-ferrite isothermal transformation in an Fe-C binary system and experimental verification[J].Metall Mater Trans A,2002(33A):3111-3115.
    [40]Li DY,Chen LQ.Shape of a rhombohedral coherent Ti11 Ni14 precipitate in a cubic matrix and its growth and dissolution during constrained aging[J].Acta Metall,1997(45):2435.
    [41]Krill CE Ⅲ and Chen LQ.Computer simulation of 3D grain growth using a phase-field model[J].Acta Mater,2002(50):3057-3073.
    [42]Pariser G,Schaffnit P,Steinbach I and Bleck W.Simuation of the γ-αtransformation using the phase-field method[J].Steel Res,2001(72):354-359.
    [43]Loginova I,Odqvist J,Amberg G and Agren J.The phase-field approach and solute drag modeling of the transition to massive γ-α transformation in binary Fe-C alloys[J].Acta Mater,2003(51):1327-1339.
    [44]Gustafson P.Themodynamic evaluation of the Fe-C system[J].Scand J Metall,1985(14):259.
    [45]Loginova I.Phase-field modeling of diffusion controlled phase transformations [J].Swenden:Technical Reports from Royal In statute of Technology,2003:83-99.
    [46]Chen-Jiang Huang.David J.Browe.Shaun McFadden.A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels[J].Acta Materialia 2006(54):11-21.
    [47]Mecozzi M.G,Sietsma J,Zwaag S van def.Analysis of γ-α transformation in a Nb microalloyed C-Mn steel by phase field modeling[J].Acta Materialia 2006(54):1431-1440.
    [48]Militzer M,Mecozzi M.G,Sietsma J,Zwaag S van def.Three-dimensional phase fild modeling of the austenite-to-ferrite transformation[J].Acta Materialia 2006(54):3961-3972.
    [49]Kim SG.Kim WT.Suzuki T.Phase-field model for binary alloys[J].Phys Rev E 1999(60):7186(12).
    [50]Warren JA.Kobayashi R.Lobkovsky AE.Extending phase field models of solidification to polycrystalline materials[J].Carter WC.Acta Mater 2003(51):6035.
    [51]康煜平等.金属固态相变及应用[M].北京化学工业出版社,2007.4:1-40.
    [52]刘宗昌等.金属固态相变教程[M].北京冶金工业出版社,2003.9:1-40.
    [53]Kumar M,Sasikumar R and Nair PK.Competition between nucleation and early growth of ferrite from austenite-Studies using cellular automaton simulations.Acta Mater,1998(17):6291-630.
    [54]Umemoto M,Guo ZH and Tamura I.Effect of Cooling rate on grain size of ferrite in a carbon steel[J].Mater Sci Technol,1987(3):249-255.
    [55]Krielaart GP,Sietsma J and Zwaag S van der.Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J].Mater Sci Eng A,1997(237A):216-223.
    [56]刘小刚.Al-Cu合金等温凝固的相场法模拟[D].硕士学位论文.沈阳:沈阳工业学院,2000.
    [57]张玉妥.热轧带钢冷却过程中的相变模拟[D].博士学位论文.沈阳:中国科学院金属研究所,2003.
    [58]肖荣振.二元合金定向凝固的相场法数值模拟[D].硕士学位论文.兰州:兰州理工大学,2006.
    [59]王帆.基于KKS模型Al-Cu合金等温凝固过程相场法模拟[D].硕士学位论文.兰州:兰州理工大学,2006.
    [60]田卫星.纯金属凝固过程枝晶生长的相场法研究[D].博士学位论文.济南:山东大学,2007.
    [61]于艳梅.过冷熔体中枝晶生长的相场法数值模拟[D].博士学位论文.西北工业大学,2002.
    [62]谭浩强.C程序设计[M].清华大学出版社,1998:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700