用户名: 密码: 验证码:
山西省太岳山油松人工林光合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文利用Li-6400便携式光合测定仪对太岳山油松人工林进行以下研究:一、生长季不同时期影响油松光合作用的关键生态因子;二、油松人工林冠层针叶光合特性的空间异质性;三、人工抚育干扰对油松人工林针叶光合作用的影响。研究结果表明:
     (1)在生长季不同时期影响油松光合作用的关键生态因子不同。关键生态因子生长季前期是大气相对湿度、光合有效辐射和气孔导度影响,生长季中期是气孔导度,生长季后期是胞间CO2浓度。
     (2)油松针叶的光响应曲线和CO2响应曲线表明:受到冠层部位、叶龄以及坡向等因素影响,净光合速率(Pn)、光饱和点(PLS)、光补偿点(PLC)、暗呼吸(Rd)、表观量子效率(α)存在差异。随着冠层部位下降,大多数光合生理特征指标表现出递减的趋势;叶龄增加,表现出相同趋势。阴坡油松,针叶表现出表观量子效率、最大净光合速率(Pmax)较阳坡油松高;阳坡油松,针叶表现出较高的光饱和点、光补偿点、暗呼吸和CO2羧化效率。
     (3)油松人工林叶片光合特征对环境因子变化的生理响应表明:抚育干扰后环境因子(光照强度、空气相对湿度、大气温度、大气CO2浓度)日变化均呈现“单峰”曲线,研究表明光照是限制油松净光合速率的关键因子(p<0.01)。人工抚育干扰后,最大净光合速率、净光合速率日均值、暗呼吸、光饱和点、光补偿点均大于对照组,其中光饱和点、最大净光合速率、净光合速率日均值中等强度抚育干扰下最大,且暗呼吸值、光补偿点中等强度抚育干扰下变化最小。表观量子效率、叶绿素a和叶绿素b含量、总叶绿素含量三种强度干扰下均小于对照组,并且中等强度干扰下最大。人工抚育对油松人工林光合作用影响的研究,对研究不同的森林经营方式下,实现人工林经济效益最大化和生态效益最大化具有重要意义。冠层光合特性的空间异质性研究,对于在冠层水平上揭示植物固碳能力和估算植物生产力具有很重要的意义。
Using Li-6400portable photosynthesis to study on Photosynthetic of Pinus tabulaeformis plantation of Taiyue Mountain, the study content as follow:First, The key ecological factors that have affect on photosynthetic of Pinus tabulaeformis during different periods; Second, spatial heterogeneity of photosynthetic characteristics of Pinus tabulaeformis canopy; Third, The Artificial tending effect on photosynthesis of Pinus tabulaeformis plantation. The results of studies show:
     (1) The key ecological factors that have affect on photosynthetic of Pinus tabulaeformis were different within different periods, the prior period was mainly impacted by atmospheric relative humidity, photosynthetic available radiation and stomatal conductance; stomatal conductance was the key factor in the middle term, the late period was mainly restricted by the CO2concentration of Intercellular.
     (2) Pinus tabulaeformis needles of different canopy positions and leafages were measured and relevant light and CO2response curves were produced, the results showed that canopy positions, leafages and sides had effects on the physiological indices including net photosynthetic rate (Pn), light saturation point (LSP), light compensation point(LCP), dark respiration(Rd) and apparent quantum efficiency (a).Moreover, with the drop of the canopy position, the majority of indices decreased; the increase of leaf age, the majority of indices also decreased. Pinus tabulaeformis on the shady slope showed higher a, Pmax than those on the sunny slope; while those on the sunny slope indicated greater LSP, LCP, Rd and CO2carboxylation efficiency.
     (3) That leaf photosynthetic of Pinus tabulaeformis plantation response to the change of environment show:after artificial tending interference, the environmental factors(photosynthetic active radiation (PAR), air temperature (Ta), air relative humidity (RH) and atmospheric CO2concentration (Ca)) daily presente dsingle peak change, and the key factor to limit the net photosynthetic rate of Pinus tabulaeformis is light(p<0.01).Moreover, light saturation point (LSP), maximum net photosynthetic rate, the mean value of net photosynthetic rate, light compensation point(LCP) and dark respiration(Rd) of the experimental groupare greater than the control group, and under the medium level of artificial tending interference, the daily means of the first three indices are maximum, but the change of light compensation point(LCP) and dark respiration(Rd) are minimum. In addition, apparent quantum efficiency (a), Chlorophyll a, Chlorophyll b and total chlorophyll of the experimental group are less affected than the control group, but the artificial tending interference is the most obvious one under the medium level. In summary, the study of the artificial tending interference effect on photosynthesis of Pinus tabulaeformis plantation in Taiyue Mountain is significance in the maximization of economic benefit and ecological benefit of plantation under different ways of forest management, the research on the spatial heterogeneity of photosynthetic characteristics of the canopy could significantly contribute to reveal carbon sequestration capacity of the plant and estimate plant productivity.
引文
[1]陈德祥,李意德,骆士寿等.短期CO2浓度升高对雨林树种盘壳栎光合特性的影响[J].生态学报,2004,24(8):1622-1628.
    [2]曹军胜,刘广全.油松光合特性的研究[J].安徽农业科学,2005,33(4):608-609.
    [3]池喜梅.不同油松种源光合作用、蒸腾作用和耐旱性的研究[D].山西大学,2006.
    [4]杜宁,张秀茹,王炜,等.荆条叶性状对野外不同光环境的表型可塑性[J].生态学报,2011,31(20)6049-6059.
    [5]刁俊明,曾宪录,陈桂珠.无瓣海桑幼苗对不同遮光度的生理生态响应[J].生态学杂志,2010,29(7):1289-1294.
    [6]丁晓纲,何茜,李吉跃,等.毛乌素沙地樟子松和油松人工林光合生理特性[J].水十保持研究,2011,18(1):215-219.
    [7]刁俊明,陈桂珠.盆栽桐花树对不同遮光度的生理生态响应[J].生态学杂志,2011,30(4):656-663.
    [8]狄晓燕,池喜梅,陈建文,等.5中油松种源光合特性的比较研究[J].植物研究,2012,32(2):165-170.
    [9]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-910.
    [10]郭明春,于澎涛,王彦辉,等.林冠截持降雨模型的初步研究[J].应用生态学报,2005,16(9):1633-1637.
    [11]何平,高荣孚,汪振儒.光状况对油松苗生长和特性的影响[J].生态学报,1993,13(1):91-95.
    [12]韩忠明,赵淑杰,刘翠晶,等.遮荫对3年生东北铁线莲生长特性及品质的影响[J].生态学报,2011,31(20):6005-6012.
    [13]胡启鹏,郭志华,李春燕,等.不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的也形态和光合生理特征[J].生态学报,2008,28(7):3261-3270.
    [14]霍常富,孙海龙,王政权,等.光照和氮营养对水曲柳苗木光合特性的影响[J].生态学杂志,2008,27(8):1255-1261.
    [15]霍宏,王传宽.冠层部位和叶龄对红松光合蒸腾特性的影响[J].应用生态学报,2007,18(6):1181-1186.
    [16]霍宏.气候暖化对兴安落叶松光合和生长影响的研究[D].哈尔滨:东北林业大学,2007.
    [17]焦娟玉,尹春英,陈珂,等.土壤水、氮供应对麻疯树幼苗光合特性的影响[J].植物生态学报,2011,35(1):91-99.
    [18]简在友,王文全,孟丽,等.芍药组内不同类群间光合特性及叶绿素荧光特性比较[J].植物生态学报,2010,34(12):1463-1471.
    [19]姜志林,叶镜中,周本琳.杉木林的抚育间伐[M].北京:中国林业出版社,1982.
    [20]姜凤岐.现有防护林合理经营与改造技术研究[M].北京:中国林业出版社,1996.
    [21]姜海风.三种落叶松光合生理生态学特性比较研究[D].哈尔滨:东北林业大学,2003.
    [22]康宏樟,朱教君,徐美玲.沙地樟子松人工林营林技术研究进展[J].生态学杂志,2005,24(7):799-806.
    [23]李轩然,刘琪,蔡哲,等.湿地松林叶面积指数测算[J].生态学报,2006,26(12):4099-4105.
    [24]林娜,刘勇,李国雷,等.抚育间伐对人工林凋落物分解的影响[J].世界林业研究,2010,23(3):44-47.
    [25]蔺琛,马钦彦,韩海荣,等.山西太岳山辽东栎的光合特性[J].生态学报,2002,22(9):1399-1406.
    [26]刘小伟,郑文教,孙娟.全球气候变化与红树林[J].生态学杂志,2006,25(11):1418-1420.
    [27]刘悦秋,孙向阳,王勇,等.遮荫对异株荨麻光合特性和荧光参数的影响[J].生态学 报,2007,27(8):3457-3464.
    [28]林业部造林经营司主编.杉木林丰产技术[M].北京:中国林业出版社,1982,12:126-129.
    [29]孟陈,徐明策,李俊祥,等.栲树冠层光和生理特性的空间异质性[J].应用生态学报,2007,18(9):1932-1936.
    [30]毛子军,赵溪竹,刘林馨,等.3种落叶松幼苗对CO2升高的光合生理响[J].应生态学报.2010,30(3):0317-0323.
    [31]马履一,李春义,王希群.不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J].林业科学,2007,5:1-9.
    [32]马毓泉.内蒙古植物志[M].呼和浩特:内蒙古人民出版社,1985.
    [33]欧立军,陈波,邹学校.干旱对辣椒光合作用及相关生理特性的影响[J].生态学报,2012,32(8):2612-2619.
    [34]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.
    [35]师生波,李慧梅,王学英,等.青藏高原几种典型高山植物的光合特性比较[J].植物生态学报,2006,30(1):40-46.
    [36]孙谷畴,曾小平,刘晓静等适度高温胁迫对亚热带森林3种建群树种幼树光合作用的影响[J].生态学报.2007,27(4):1283-1290.
    [37]孙谷畴,赵平,曾小平等.倍增CO2分压对水稻和矶子草冠层光合潜力的影响[J].生态学杂志,2003,22(4):1-5.
    [38]盛炜彤.沙木林的密度管理与长期生产力研究[J].林业科学,2011,37(5):2-9.
    [39]谭永芹,柏新富,朱建军等.渗盐分与水分胁迫对三角叶滨藜和玉米光合作用的影响[J].生态学杂志,2010,29(5):881-886.
    [40]吴长山,于先洲,吴延平.樟子松不同强度间伐试验初报[J].吉林林业科技,1998(2):22-23.
    [41]王云贺,韩忠明,韩梅等.遮阴处理对东北铁线莲生长发育和光合特性的影响[J].生态学报,2010,30(24):6762-6770.
    [42]王建林,温学发,赵凤华等.CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响[J].植物生态学报,2012,36(5):438-446.
    [43]王安志,裴铁璠,金昌杰,等.长白上阔叶红松林降雨截留量的估算[J].应用生态学报,2006,17(8):1403-1407.
    [44]王满莲,蒋水元,李锋,等.不同立地条件罗汉果组培苗的光合特性[J].广西植物,2010,30(4):507-512.
    [45]王振兴,朱锦懋,王健等.闽楠幼树光合特性及生物量分配对光环境的响应[J].生态学报,2012,32(12):3841-3848.
    [46]王静,丛日晨,王中华等.不同供铁水平对油松幼苗光合特性的影响[J].河北农业大学学报,2010,33(3):57-61.
    [47]王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应[J].植物生态学报,2005,29(5):697-705.
    [48]王秀伟,毛子军.兴安落叶松人工林冠层气体交换的时空特性[J].林业科学,2007,43(11):43-49.
    [49]王建华,任士福,史宝胜等.遮阴对连翘光合特性和叶绿素荧光参数的影响[J].生态学报,2011,31(7):1811-1817.
    [50]王博轶,冯玉龙.生长环境光强对两种热带雨林树种幼苗光合作用的影响[J].生态学报.2005,25(1):23-30.
    [51]韦莉莉,张小全,侯振宏等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报,2005,29(3):394-402.
    [52]徐佳佳,张建军,王清玉等.油松和侧柏的光合蒸腾特性及其与环境因子的关系[J].东北林业大 学学报,2011,39(7):15-18.
    [53]徐化成.油松[M].北京:中国林业出版社,1993:18-25.
    [54]徐兴利,金则新,何维明等.不同增温处理对夏蜡梅光合特性和叶绿素荧光参数的影响[J].生态学报,2012,32(20):6343-6353.
    [55]许大全.光合作用效率[M].上海:上海科学技术出版社.2002.
    [56]徐炳成,山仑,黄瑾.黄土丘陵区不同立地条件下沙棘光合生理口变化特征比较[J].西北植物学报,2003,23(6):949-95.
    [57]徐振锋,胡庭兴,张力等.青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应[J].植物生态学报,2010,34(3):263-270.
    [58]肖文发,徐德应,刘世荣等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46.
    [59]薛伟,李向,朱军涛等.遮阴对疏叶骆驼刺叶形态和光合参数的影响[J].植物生态学报,2011,35(1):82-90.
    [60]闫晨曦,唐光金.侧柏与油松幼树光合效率的研究[J].天水师范学院学报.2008,28(5):31-33.
    [61]杨莹,王传华,刘艳红.光照对鄂东南2种落叶阔叶树种幼苗生长、光合特性和生物量分配的影响[J].生态学报.2010,30(22)::6082-6090.
    [62]于立忠,朱教君,孔祥文等.人为干扰(间伐)对红松人工林林下植物多样性的影响[J].2006,26(11):3757-3764.
    [63]叶子飘,则海.光对三叶鬼针草光合作用和叶绿素含量的影响[J].生态学杂志,2009,28(1):19-22.
    [64]张卫强,贺康宁,王正宁等.辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响[J].中国水土保持科学,2006,4(2):108-113.
    [65]张水松,陈长发,吴克选等.木林间伐强度试验20年生长效应生物研究[J].林业科学,2005,41(5):56-65.
    [66]张国平,伟军.植物生理生态学[M].浙江:江大学出版社,1998.
    [67]郑元,赵忠,周慧等.刺槐树冠光合作用的空间异质性[J].生态学报,2010,30(23):6399-6408.
    [68]张小全,徐德应,赵茂盛.林冠结构、辐射传输与冠层光合作用研究综述[J].林业科学研究,1999,12(4):411-421.
    [69]张国平,周伟军.植物生理生态学[M].杭州:江大学出版.1998.
    [70]张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,2000,36(3):9-26.
    [71]张小全,徐德应.18年生杉木不同部位和叶龄针叶光响应研究[J].生态学报,2001,21(3):409-414
    [72]钟全林,程栋梁,胡松竹等.刨花楠和华东润南叶绿素含量分异特征及与净光合速率的关系[J]l生态学报,2009,20(2):271-276.
    [73]周玉梅,韩士杰,胡艳玲等.高浓度CO2对红松针叶光合生理参数的影响[J].生态学报,2008,28(1):423-429.
    [74]张义,谢永生,鞠艳等.生产力调控对翌年苹果土壤水分和苹果叶片光合特性的影响[J].植物生态学报,2010,34(8):973-978.
    [75]赵平,孙谷畴,曾小平.适度高温下亚热带阔叶树种叶片的光合速率和吸收光能的分配[J].植物生态学报,2008,32(2):413-423.
    [76]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报,2007,18(1):16-22.
    [77]赵晓焱,王传宽,霍宏.兴安落叶松光合能力及相关因子的种源差异[J].生态学报,2008,28(8):3798-3807.
    [78]张弥,吴家兵,关德新等.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学 报,2006,17(9):1575-1578.
    [79]朱向涛.耐冬山茶光合生理生态特性研究[D].山东:青岛农业大学,2007.
    [80]赵溪竹,姜海凤,毛子军.长白落叶松、日本落叶松和兴安落叶松幼苗光合作用特性比较研究[J].植物研究,2007,27(3):361-364.
    [81]张永刚,韩梅,韩忠明等.不同生境朝鲜淫羊藿生长与光合特征[J].生态学报,2012,32(5):1442-1449.
    [82]Aubert M, Alard D, Bureau F. Diversity of plant assemblages in managed temperate forests:a case study in Normandy (France) [J]. Forest Ecology and Management,2003,175:321-337.
    [83]Amthor JS. Scaling CO2-photosynthesis relationship s from the leaf to canopy[J]. Photosynthesis Research,1994,39:321-350.
    [84]characterization variation and response to low light. Funct. Plant Biol[J].2004,31:491-503.
    [85]Dai Y J, Shen Z G, Liu Y, W ang L L, H annaw ay D, Lu H F. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetra stigm a hemsleyanum Diels et Gilg [J]. Environmental and Experimental Botany,2009,65:177-182.
    [86]Fukuzawa K, Shibata H, Takagi K, Nomura M, Kurima N, Fukazawa T, Satoh F, Sasa K. Effects of clear cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan[J]. Forest Ecology and Management,2006,225:257-261.
    [87]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33:317-345.
    [88]Givnish T J, Monigomery R A and Goldstein G. Adaptive radiation of photosynthetic physiology in the Hawaiian Lobeliads:light regimes, static light responses, and whole plant compensation points[J]. American Journal of Botany,2004,91 (2):228-246.
    [89]Liu Y Q, Sun X Y, Wang Y, Liu Y. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urticadioica [J]. Acta Ecologica Sinica,2007,27(8): 3457-3464.
    [90]Leuning R, Kelliher FM, De Pury DGG, et al. Leaf nitrogen, photosynthesis, conductance and transpiration:Scaling from leaves to canopies [J]. Plant, Cell and Environment,1995,18:1183-1200.
    [91]Lloyd J, Shibistova O, Zolotoukhine D, et al. lSeasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest[J].Tellus, 2002,54:590-610.
    [92]Lopez BC, Sabate S, Gracia CA. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest[J]. Tree Physiology,2003,23,1217-1224.
    [93]Noguchi K, Han QM, Araki MG, Kawasaki T, Kaneko S, Takahashi M, Chiba Y. Fine-root dynamics in a young Hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. Journal of Forest Research,2011,16,284-291.
    [94]Osone Y, Tateno M. Nitrogen absorption by roots as a cause of interspecific variations in leaf nitrogen concentration and photosynthetic capacity[J]. Functional Ecology,2005,19:460-470.
    [95]Ozanne CMP, Anhuf D, Boulter SL, et al. Biodiversity meets the atmosphere:A global view of forest canopies[J].Science,2003,301:183-186.
    [96]Response of plant growth to elevated CO2:a review on the chief methods and basic conclusions based on experiments in the external countries in past decade[J]. Acta Phytoecologica Sinica,,1997,21,489-502.
    [97]Sims DA, Seemann JR, Luo Y. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves[J]. Functional Ecology, 1998,12:185-194.
    [98]Stenberg P. Implications of shoot structure on the rate of photosynthesis at different levels in a coniferous canopy using a model incorporating grouping and penumbra[J].Functional Ecology, 1998,12:82-91.
    [99]Theodore T.K, Paul J.K, Stephen, G.P. The physiological ecology of woody plants [J].Academic press, Inc.1991.
    [100]Walters MB, Field CB. Photosynthesis light acclimation in two rainforest Piper species with different ecological amp litudes. Oecologia,1987,72:449-456.
    [101]Zhang Z A, Zhang M S, WeiRH. The Exprimental Guide for Phytophysiology [J]. Beijing:China Agricultural Scientech Press,2004:43-45.
    [102]Zhu J J, Liu Z G. A review on disturbance ecology of forest [J]. Chinese Journal of Applied Ecology, 2004,15:1703~1710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700