用户名: 密码: 验证码:
13种鹭科(Aves:Ardeidae)鸟类系统关系及黄嘴白鹭遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别通过线粒体的14个基因和粒体控制区5'端的DNA序列研究13种鹭类(白鹭Egrett garzetta、黄嘴白鹭E.eulophotes、岩鹭E.sacra、白脸鹭E.novaehollandiae、苍鹭Ardea cinerea、大白鹭A.alba、牛背鹭Bubulcusibis、池鹭Ardeola bacchus、夜鹭Nycticorax nycticorax、海南(?)Gorsachiusmagnificus、黄苇(?)Ixobrychus sinensis、黑(?)flavicollis和大麻(?)Botaurus stellaris)的系统关系和黄嘴白鹭的遗传多样性。
     设计通用引物直接从总DNA中PCR扩增线粒体DNA,获得的12种鹭类从12SrRNA基因到Cytb基因的DNA片段,序列长度在14737-14764 bp之间,基因排列顺序和已知的其他鸟类线粒体基因组的一致。结合来自GenBank的白脸鹭、黑脸琵鹭Platalea minor和朱鹮Nipponia nippon的序列,2个rRNA基因和12个蛋白编码基因的DNA序列分别进行比对后拼接用于系统关系分析。15种鸟类DNA序列的比对结果显示,13325个位点中共有4875个变异位点,其中3384个为简约信息位点,平均转换和颠换分别为1186和463,R值为2.6。外群和内群之间的未校正的遗传距离在0.153-0.166之间,内群中未校正的遗传距离在0.018-0.139。
     不同分析方法构建的系统树中,NJ树、ML树和BI树拓扑结构完全一致,13种鹭科鸟类最早分化成两支,一支由大麻(?)、黑(?)和黄苇(?)组成,其中黑(?)和黄苇(?)先聚在一起。剩下的10种鹭类组成另一支,其中池鹭最早分化出来独自形成一个分支。海南(?)、白脸鹭、白鹭、黄嘴白鹭和岩鹭聚成一个分支,其中黄嘴白鹭和岩鹭先聚在一起,然后依次是白鹭、白脸鹭和海南(?)。夜鹭、牛背鹭、大白鹭及苍鹭聚成一个分支,其中大白鹭和苍鹭先聚在一起,然后依次是牛背鹭和夜鹭。
     3种MP树中,非加权MP树和密码子第3位点赋权0.5的MP树拓扑结构一致,和NJ树、ML树及BI树的差别是大白鹭和牛背鹭先聚在一起,然后才和苍鹭形成姐妹群,而海南(?)则和池鹭聚在一起。第3位点转换和颠换赋权1:2.2的MP树也是大白鹭和牛背鹭先聚在一起,但池鹭和其他两个分支是平行关系。
     在黄嘴白鹭遗传多样性研究方面,以线粒体控制区DNA5'端433 bp长的DNA序列进行分析,90个个体序列的比对结果共检测到30个变异位点,定义了31种单倍型,其中3种为3个种群所共有,11种为两个种群所共有,17种为各个种群所特有。单倍型之间的序列差异(p-distance)变化范围为0.0023-0.0208,平均为0.0111。最简约网络图分析结果表明单倍型之间的关系和各自种群没有明显的相关。
     小菜屿、日屿和杏仁砣的单倍型多样性分别为0.860±0.057、0.878±0.036和0.961±0.022,核苷酸多样性分别为0.0076±0.0010、0.0096±0.0008和0.0086±0.0006,核苷酸差异均数分别为3.274、4.138和3.720。和白鹭(h=0.954±0.022、π=0.0145±0.0014、k=6.297)比较,两者之间单倍型多样性差异不大,但黄嘴白鹭3个种群的核苷酸多样性和核苷酸差异均数显然都低于白鹭,最低的(小菜屿)都只有白鹭的52%左右,最高的(日屿)也都只有66%左右。中性检验和歧点分布检验(SSD=0.0081,P=0.12)均表明黄嘴白鹭历史上曾发生过显著的种群扩张,时间约在13000至64000年前。
     分子变异分析(analysis of molecular variance, AMOVA)的结果表明,黄嘴白鹭的遗传变异95%以上发生在种群内,种群间的遗传差异小于5%,但差Φ异显著(distance-basedΦ_(ST)=0.0419,P<0.05;haplotype-basedΦ_(ST)=0.03267,P<0.01)。成对比较分析的结果表明小菜屿和杏仁砣的种群遗传分化显著(distance-based Fst=0.0743,P<0.01;haplotype-based Fst=0.0316,P<0.05),而小菜屿和日屿的种群遗传分化不显著(distance-based Fst=0.0148,P>0.05;haplotype-based Fst=0.0212,P>0.05)。日屿和杏仁砣的种群只有在基于单倍型频率的分析方法中才显示遗传分化显著(Fst=0.0444,P<0.01),基于遗传距离的分析方法中则不显著(Fst=0.0397,P>0.05)。
     综上所述,(1)本文对13种鹭类系统关系研究的结论是:(?)类为单系发生,并最早分化出来;夜鹭类不是单系发生,其中海南(?)和白鹭属关系最近,夜鹭和鹭属的关系最近;支持白脸鹭置于白鹭属的分类结果,4种白鹭属鹭类中黄嘴白鹭和岩鹭的关系最近,白脸鹭最早分化出来;大白鹭和牛背鹭都与鹭属系统关系最近,支持把大白鹭和牛背鹭置于鹭属的分类观点;池鹭是10种鹭类中最早分化出来的一支,但支持度较低,因此需要更进一步的研究。(2)黄嘴白鹭线粒体控制区遗传多样性的研究结论为:黄嘴白鹭种群的遗传多样性相对较低;种群历史上曾发生过扩张;不同繁殖种群之间存在显著的遗传结构,但没有明显的地理结构;建议制定保护策略时将小菜屿和日屿种群作为共同的管理单元,杏仁砣种群作为另一个管理单元。
The present study studied the phylogenetic relationships among 13 ardeids (Little Egret E. garzetta, Chinese Egret E. eulophotes, Eastern Reef Egret E. sacra, White-faced Egret E. novaehollandiae, Grey Heron A. cinerea, Great Egret A. alba, Cattle Egret B. ibis, Chinese Pond-Heron A. bacchus, Black-crowned Night-Heron N. nycticorax, White-eared Night-Heron G. magnificus, Yellow Bittern I. sinensis、BlackBittern I. flavicollis and Great Bittern B. stellaris) and the genetic diversity of the E. eulophotes, based on the 14 mitochondrial genes and 5'-end of the mitochondrial control region, respectively.
     Mitochondrial fragments from 12S rRNA to Cytb of each ardeids were amplified directly from the total DNA using 13 pairs of universal primers designed by present study. The obtained mtDNA sequences of the 12 ardeids were ranged from 14737 to 14764 bp in length and had gene order consistent with those of other avian. After downloaded sequences of White-faced Egret E. novaehollandiae, Black-faced Spoonbill P. minor and Crested Ibis N. nippon from Genbank, the sequences of two rRNA genes and 12 protein coding genes were aligned individual before used in phylogenetic analysis. The results of the alignment of 13325 bp sequences of all the 15 species indicated that there were 4875 variable sites, of which 3384 were parsimony-informative sites. The average transition (Ts) and transversion (Tv) were 1186 and 463, respectively, with value of R (Ts/Tv) being 2.6. The uncorrected p distances ranged from 0.153 to 0.166 between outgroup and ingroup, and from 0.018 to 0.139 among the ingroup species.
     In the phylogenetic trees of 13 ardeids, the NJ, ML and BI tree were identical in tree topologies, which all indicated that 13 ardeids first spilt into two clades, one was formed by B. stellaris, I. Jlavicollis and I. sinensis and the later two grouped firstly. The remaining ten ardeids formed anther clade and A. bacchus spilt at the base. G. magnificus, E. novaehollandiae, E. garzetta, E. eulophotes, and E. sacra formed a cluster and the later two grouped firstly and then the E. garzetta, E. novaehollandiae, G .magnificus in turn. N. nycticorax, B. ibis, A. alba and A. cinerea formed another cluster and the later two grouped firstly and then B. ibis, A. cinerea in turn.
     In the three MP trees, the tree with equally weighted and the tree weighted 0.5 of third position were identical in tree topologies, which different to NJ, ML and BI trees in A. alba grouping with B. ibis, G magnificus grouping with A. bacchus firstly.The MP tree with Ts:Tv in the third position weighted 1:2.2 also indicated that support A. alba grouped with B. ibis firstly, but A. bacchus and the other two clusters were parallel relationships.
     In genetic diversity of E eulophotes, a 433 bp DNA fragment at 5' end of the mitochondrial control region was surveyed. Among 90 individual samples, 31 haplotypes were defined by 30 polymorphic sites, of which three were found across all populations, eleven were shared by two populations and seventeen were unique for single population. The p-distances among haplotypes ranged from 0.0023 to 0.0208, with average of 0.0111. The parsimony network indicated the relationships among haplotypes were not apparent correlated to their populations.
     Haplotype diversity (h) of populations in Xiaocaiyu, Riyu and Xingrentuo were 0.860±0.057、0.878±0.036 and 0.961±0.022, respectively, while nucleotide diversity (π) were 0.0076±0.0010、0.0096±0.0008 and 0.0086±0.0006, respectively. Average number of nucleotide differences (k) of populations in Xiaocaiyu, Riyu and Xingrentuo were 3.27、4.138 and 3.720, respectively. With respect to those in E. garzetta population (h = 0.954±0.022,π= 0.0145±0.0014 and k = 6.297), haplotype diversity was no significant different between them but theπand k were related low in E. eulophotes, the lowest n and k in E. eulophotes (Xiaocaiyu) were both only about 52% of that in E. garzetta and the highst n and k in E. eulophotes (Xiaocaiyu) were both only about 66% of that in E. garzetta. The result of neutrality test and mismatch distribution analysis (SSD = 0.0081, P = 0.12) both revealed population expansion in E. eulophotes, which happened in about 13000 -64000 year ago.
     Analysis of molecular variance (AMOVA) revealed that more than 95% variation was within populations, and differentiation among populations was less than 5% but statistic significant (distance-basedΦ_(st) = 0.0419, P < 0.05; haplotype-basedΦ_(st) = 0.03267, P < 0.01). Pairwise comparisons indicated that significant differentiation was between populations of Xiaocaiyu and Xingrentuo (distance-based F_(st) = 0.0743, P<0.01; haplotype-based Fst = 0.0316, P < 0.05), but no between Xiaocaiyu and Riyu (distance-based Fst = 0.0148, P > 0.05; haplotype-based Fst = 0.0212, P > 0.05). Significant differentiation was found between populations of Riyu and Xingrentuo only based on haplotype frequence estimated (Fst = 0.0444, P < 0.01) but no based on distance estimated (Fst = 0.0397, P > 0.05).
     In conclusion, (1) the phylogenetic relationships among 13 ardeids in present study were: bitterns were monophyletic and first divergen; night herons were not monophyletic, of which G. magnificus had close related to the genus of Egretta and N. nycticorax had close related to the genus of Ardea; E. novaehollandiae belonging to the genus of Egretta was supported; among the four egrets, E. sacra had close related to E. eulophotes and E. novaehollandiae was more diverge; A. alba and B. ibis had close related to the genus of Ardea and they belonged to the genus of Ardea was supported; A. bacchus was the first divergen from the ten ardeinae but needed further researches, because of low support values. (2) The genetic divergences of E. eulophotes were relatively low; population expansion ever happened in demographic history of E. eulophotes; E. eulophotes had a significant population genetic structure but limited geographic structure; implications for conservation strategies were that the populations of Xiaocaiyu and Riyu formed a management unit and the population of Xingrentuo formed another management unit.
引文
[1] 郑作新等.中国动物志,鸟纲(第一卷)[M].北京:科学出版社,1997,116-117.
    [2] Peters JL. Check-list of Birds of the World (vol. 1)[M]. Harvard Univ. Press, Cambridge, Massachusetts, 1931.
    [3] Bock WJ. A generic review of the family Ardeidae (Aves)[J]. American Museum Novitates, 1779, 1956: 1-49.
    [4] Payne RB and Risley CJ. Systematic and evolutionary relationships among the herons (Ardeidae)[J]. Miscellaneous Publications of the University of Michigan, Museum of Zoology, 1976, 150: 1-115.
    [5] Howard R and Moore A. A complete checklist of the birds of the world [M]. Academic Press, 1991, 13-16.
    [6] Sibley CG and Monroe BL. Distribution andtaxonomy of birds of the world[M]. Yale University Press, New Heaven and London, 1990.
    [7] Monroe BL and Sibley CG. A World Checklist of Birds[M]. Yale Univeristy Press, 1993, 128-13.
    [8] Kuahlan J and Hancock J. The herons[M]. Oxford University Press, 2005.
    [9] 郑光美等.世界鸟类分类与分布名录[M].北京:科学出版社,2002,11-12.
    [10] 郑作新等.中国鸟类种和亚种分类名录大全[M].北京:科学出版社,1994,9-11.
    [11] 郑光美等.中国鸟类分类与分布名录[M].北京:科学出版社,2005,9-15.
    [12] Ericson PG, Anderson CL, Britton T, et al. Diversification of Neoaves: integration of molecular sequence data and fossils[J]. Biol Lett, 2006, 2(4): 543-547.
    [13] Cottam PA. The pelecaniform characters of the skeleton of the Shoebill Stork Balaeniceps rex[J]. Bull Brit Mus (Nat Hist) Zool, 1957, 5(3): 51-72.
    [14] Ligon JD. Relationships of the cathartid vultures[J]. Occ Pap Mus Zool Univ Michigan, 1967, 651: 1-26.
    [15] Feduccia A. Osteological evidence for the shorebird affinities of the flamingos[J]. Auk, 1976, 93(3): 587-601.
    [16] Cracraft J. Toward a phylogenetic classification of the recent birds of the world (class aves)[J]. Auk, 1981, 98: 681-714.
    [17]Clarke JA, Tambussi CP, Noriega JI, et ah Definitive fossil evidence for the extant avian radiation in the Cretaceous[J]. Nature, 2005, 433: 305-308.
    
    [18]Nitzsch CL. Nitzsch's Pterylography[M]. P. L. Sclater, ed. English translation of 1840 edition. Rayal Society, London, 1867.
    
    [19]Chandler AC. A study of the structure of feathers, with reference to their taxonomic significance[J]. Univ California Publ Zool, 1916, 13(11): 243-446.
    [20]Lowc PR. On the anatomy and systematic position of the Madagascan bird Mevltes (Mesoenas), with a preliminary note on the osteology of Monias[J]. Proc Zool Soc Lond, 1924, 1924: 1131-1152.
    
    [21]Olson SL. Multiple Origins of the Ciconiiformes[J]. Proceedings of the Colonial Waterbird Group, 1979, 2: 165-170.
    
    [22]Cracraft J. The major clades of birds[A]. In: The phylogeny and classifications of the tetrapods. Oxford UK: Clarendon press, 1988, 339-361.
    
    [23]Sibley CG, Ahlquist J E and Monroe BL. A Classification of the living birds of the world based on DNA-DNA hybridizations studies[J]. Auk, 1988, 105: 409-423.
    
    [24]Tuinen MV, Butvill DB, Kirsch JAW and Hedges SB. Convergence and divergence in the evolution of aquatic birds[J]. The Royal Sociaty, 2001, 268: 1345-1350.
    
    [25]Curry-Lindahl K. Systematic relationships in herons (Ardeidae), based on comparative studies of behavior and ecology [J]. Ostrich Supplement, 1971, 9:53-70.
    
    [26]Parkes KC. A review of the classification of the Ciconiiformes[A]. In: Wading Birds (A. Sprunt nr, J. Ogden and S. U'inckler, Eds.). National Audubon Society Research Report No. 7, NewYork, 1978, 7-15.
    
    [27]Sheldon FH. Phylogeny of herons estimated from DNA-DNA hybridization data. Auk, 1987, 104: 97-108.
    
    [28]Sheldon FH, McCracken KG and Stuebing KD. Phylogenetic relationships of the Zigzag Heron (Zebrilus undulatus) and White-crested Bittern (Tignornis leucolqbhus) estimated by DNA-DNA hybridization[J]. Auk, 1995, 112: 672-679.
    
    [29]McCracken KG and Sheldon FH. Avian vocalizations and phylogenetic signal[J]. Evolution, 1997, 94(8): 3833-3836.
    [30] Sheldon FH, Jones CE and McCraken KG. Relative patterns and rates of evolution in heron nuclear and mitohchondrial DNA[J]. Mol Biol Evol, 2001, 7(3): 437-450.
    [31] SheldonFH. Rates of Single-Copy DNA Evolution in Herons[J]. Mol Biol Evol, 1987, 4(1): 56-69.
    [32] McCracken KG and Sheldon FH. Molecular and osteolgical heron phylogenies: sources of incongruence[J]. Auk, 1998, 115(1): 127-141.
    [33] 常青,张保卫,金宏.从12SrRNA基因序列推测鹭科13种鸟类的系统发生关系[J].动物学报,2003,49(2):205-210
    [34] 张保卫,常青,朱立峰,魏辅文.基于线粒体Cyt b 基因(?)亚科部分鸟类的系统进化与黑(?)的分类地位初探[J].动物学杂志,2004,39(5):105-108.
    [35] 李庆伟,卞小庄,张恒庆.羽毛角蛋白凝胶电泳在鹭科属间关系探讨的应用[J].辽宁动物学会会刊,1989,7(1):1-5.
    [36] IUCN. 2006 IUCN Red List of Threatened Species. Available online at http://www. iucnredlist.org, 2006-10-9.
    [37] Heron Specialist Group. Heron Population Estimates. Available online at http://www. tourduvalat. org/hsg. htm, 2002-11-20.
    [38] Collar NJ and Andrew P. Threated birds of Asia: the Birdlife International Red Data Book[M]. Cambridge: Bird Life International, 2001, 111-135.
    [39] 郑光美,王歧山.中国濒危动物红皮书(鸟类)[M].北京:科学出版社,1998,1-346.
    [40] Swinhoe R. On the ornithology of Amoy (China) [J]. Ibis, 1863, 2: 45-68.
    [41] Litvinenko NM and Shibaev YV. Importance of Furugelm Island in the Sea of Japan for wetland birds: the first record of a breeding colony of the Chinese egret Egretta eulophotes[J]. Oryx, 2000, 34(4): 335-337.
    [42] 尹祚华,雷富民,丁长青等.长山列岛发现黄嘴白鹭的繁殖种群[J].动物学杂志,2000,35(5):39-41.
    [43] 顾美华,华元渝,李悦民等.涟水县鸟类自然保护区黄嘴白鹭资源现状调查[J].南京林业大学学报,2000,24(2):43-46.
    [44] 田德启.黄嘴白鹭在葫芦岛地区栖息的调查初报[J].野生动物,2002,2:28-29.
    [45] 刘欣,张凤江,刘淑华,王书凯.中国最大的黄嘴白鹭繁殖群调查报告[J].林业资源管理,2002,3:66-68.
    [46] 尹祚华,雷富民.黄嘴白鹭的繁殖生物学[J].动物学报,2002,48(6):824-827.
    [47] Wei GA, Yin ZH and Lei FM. Copulations and Mate Guarding of the Chinese Egret[J]. Waterbirds, 2005, 28: 527-530.
    [48] 梁斌,陈水华,王忠德.浙江五峙山列岛黄嘴白鹭的巢位选择研究[J].生物多样性,2007,15(1):92-96.
    [49] 麻常昕,周晓平,陈小麟。李琪,林清贤.黄嘴白鹭卵壳超微结构及组成元素的初步研究[J].厦门大学学报(自然科学版),2005,44:861-864.
    [50] 江杉,陈小麟.扩增性别基因片段的鹭类性别鉴定方法的研究[J].厦门大学学报(自然科学版),2006,45:152-155.
    [51] Scheffler IE. Mitochondria[M]. New York: John Wiley and Sons, Inc., 1999.
    [52] Brown WM, George M and Wilson AC. Rapid evolution of animal mitochondrial DNA[J]. Genetics, 1979, 76(4): 1967-1971.
    [53] Gibb GC, Kardailsky O, Kimball R, Braun EL and Penny D. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations[J]. Mol Biol Evol, 2007, 24: 269-280.
    [54] Desjardins P and Morais R. Sequence and gene organisation of the chicken mitochondrial genome: A novel gene order in higher vertebrates [J]. J Mol Biol, 1990, 212: 599-634.
    [55] Abbott C, Double MC, Trueman JWH, Robinson A and Cockburn A. An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses[J]. Mol Ecol, 2005, 14: 3605-3613.
    [56] Eberhard JR, Wright TF and Bermingham E. Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona[J]. Mol Biol Evol, 2001, 18: 1330-1342.
    [57] Mindell DP, Sorenson MD and Dimcheff DE. Multiple independent origins of mitochondrial gene order in birds [J]. Proc Natl Acad Sci USA, 1998, 95: 10693-10697.
    [58] Haddrath O and Baker A J. Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis[J]. Biol Sci, 2001, 268: 939-945.
    [59] Glaus KR. The structure, organization, evolution of avian mitochondrial DNA[D]. Ohio St Univ Columbus, 1980.
    [60] Sheldon FH. Avian molecular systematics, 1970s to 1990s[J]. Annu Rev Ecol Syt, 1993, 24: 243-78.
    [61] Shields GF and Wilson AC. Calibration of mitochondrial DNA evolution in geese [J]. Mol Evol, 1987, 24: 212-17.
    [62] Avise JC and Zink RM. Molecular genetic divergence between avian sibling species: king and clapper rails, long-billed and short-billed dowitchers, boat-tailed and great-tailed grackles, and tufted and black-crested titmice[J]. Auk, 1988, 105: 516-528.
    [63] Ball RM, Freeman S, James FC et al. Phylogeographic population structure of red-winged blackbirds assessed by mitochondrial DNA[J]. Evolution, 1988, 85: 1558-1562.
    [64] Rising JD and Avise JC. An application of genealogical concordance principles to the taxonomy and evolutionary history of the sharp-tailed sparrow (Ammodramus caudacutus)[J]. Auk, 1993, 110: 844-856.
    [65] 李庆伟,陈宜峰,张恒庆.隼形目鹰科四种鸟类线粒体DNA研究[J].动物学研究,1996,17(4):477-482.
    [66] 李庆伟,李爽,田春宇等.雀形目10种鸟类线粒体的DNA变异及分子进化[J].动物学报,2002,48(5):625-632.
    [67] Houde P. Phylogeny and evolution of 12SrDNA in Gruiformes (Aves) [A]. In: Avian Molecular Evolution and Systematics, 1997, 121-158.
    [68] Spicer GS and Dunipace L. Molecular phylogeny of songbirds (Passeriformes) inferred from mitochondrial 16S ribosomal RNA gene sequences[J]. Mol Phyl Evol, 2004, 30: 325-335.
    [69] 陈晓芳,王翔,袁晓东等.(?)形目15种鸟类线粒体ND6基因序列差异及其系统进化关系[J].动物学报,2003,49(1):61-67.
    [70] 雷忻,廉振民,雷富民等.基于线粒体COI基因探讨(?)亚科部分属和种的分类地位[J]. 动物学研究,2007,28(3):291-296.
    [71] Kornegay JR. Pathways of lysozyme evolution inferred from the sequence of cytochrome b in birds[J]. Mol Evol, 1993, 37: 367-379.
    [72] Helm-Bychowski K and Cracraft J. Recovering phylogenetic signal from DNA sequence: relationships within the Corvine assemblage (class Aves) as inferred from complete sequence of the mitochondrial DNA cytochrome b gene[J]. Mol Biol Evol, 1993, 6: 1196-1214.
    [73] Seibold I and Helbig AJ. Evolutionary history of new and old world Vultaresinferred nucleotide sequence of the mitochondrial cytochrome b gene[J]. Phi Trans R Soc Lond, 1996, 1332: 163-178.
    [74] 潘巧娃,雷富民,杨淑娟等.基于细胞色素b的鸫亚科部分鸟类的系统进化[J].动物学报,2006,52(1):87-98.
    [75] 国会艳,李玲,马玉堃等.基于线粒体细胞色素b基因序列的雀形目18种鸟系统发育关系[J].动物学杂志,2007,42(2):32-38.
    [76] Moum T, Arnason U and Arnason E. Mitochondrial DNA sequence evolution and phylogeny of the Atlantic Alcidae, including the extinct Great Auk (Pinguinus impennis)[J]. Mol Biol Evol, 2002, 19(9): 1434-1439.
    [77] Carson RJ and Spicer GS. A phylogenetic analysis of the emberizid sparrows based on three mitochondrial genes[J]. Mol Phyl Evol, 2003, 29:43-57.
    [78] Kennedya M and Spencer HG. Phylogenies of the Frigatebirds (Fregatidae) and Tropicbirds (Phaethonidae), two divergent groups of the traditional order Pelecaniformes, inferred from mitochondrial DNA sequences[J]. Mol Phyl Evol, 2004, 31: 31-38.
    [79] Paton TA and Baker AJ. Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree[J]. Mol Phyl Evol, 2006, 39: 657-667.
    [80] Olson SL. The fossil record of birds[J]. Avian Biology, 1985, 8: 79-252.
    [81] Hedges SB, Parker PH, Sibley, CG and Kumar S. Continental breakup and the ordinal diversification of birds and mammals[J]. Nature, 1996, 381: 226-229.
    [82] Feduccia A. Explosive evolution in Tertiary birds and mammals[J]. Science, 1995, 267: 637-638.
    [83]Feduccia A. The Origin and Evolution of Birds[M]. New Haven and London: Yale Univ Press, 1996, 313-373.
    [84]Cooper A, Lalueza-Fox C, Anderson S, et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution[J]. Nature, 2001, 409: 704-707.
    [85]Paton T, Haddrath O and Baker AJ. Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds[J]. Proc R Soc Lond B, 2002, 269: 839-846.
    [86]Harrison GL, McLenachan PA, Phillips MJ et al. Four new avian mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous[J]. Mol Biol Evol, 2004, 21(6): 974-983.
    [87]Watanabe M, Nikaido M, Tsuda TT et al. New candidate species most closely related to penguins[J].Gene, 2006, 378: 65-73.
    [88]Slack KE, Delsuc F, Mclenachan PA et al. Resolving the root of the avian mitogenomic tree by breaking up long branches[J]. Mol Phyl Evol, 2007, 42: 1-13.
    [89]Harlid A, Janke A and Arnason U. The mtDNA sequence of the ostrich and the divergence between Paleognathous and Neognathous birds[J]. Mol Biol Evol, 1997, 14(7): 754-761.
    [90]Harlid A, Janke A and Arnason U. The complete mitochondrial genome of Rhea americana and early avian divergences[J]. Mol Evol, 1998, 46: 669-679.
    [91]Mindell DP, SorensonMD, Dimcheff DE. et al. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes[J]. Syst Biol, 1999, 48(1): 138-152.
    [92]Slack KE, Janke A, Penny D and Arnason U. Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features[J]. Gene, 2003, 302: 43-52.
    [93]Johnson KP. Taxon Sampling and the Phylogenetic Position of Passeriformes: Evidence from 916 Avian Cytochromeb Sequences [J]. Syst Biol, 2001, 50(1): 128-136.
    [94]Edwards SV, Jennings WB and Shedlock AM. Phylogenetics of modern birds in the era of genomics[J]. Proc R Soc Lond B, 2005, 272: 979-992.
    [95]Phillips MJ, Delsuc F and Penny D. Genome-scale phylogeny and the detection of systematic biases[J]. Mol Biol Evol, 2004, 21: 1455-1458.
    [96]CaoY, Adachi J, Janke A, Pubo S and Hasegawa M. Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene[J]. Mol Evol, 1994, 39: 519-527.
    [97]Russo CAM, Takezaki N and Nei M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny[J]. Mol Biol Evol, 1996, 13: 525-536.
    [98]Zardoya R and Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates [J]. Mol Biol Evol, 1996, 13(7): 933-942.
    [99]Griffiths CS. Barrowelouhg GF, Groth JG and Mertz L Phylogcny of the Faleonidae (Aves): a comparison of the effieacy of moprhologieal, mitochondrial. and nuelear data[J]. Mol Phyl Evol, 2004, 32(1): 101-109.
    [100] Hoelzel AR, Hancock JM and Dover GA. Evolution of the cetacean D-loop region [J]. Mol Biol Evol, 1991, 8: 475-493.
    [101] Baker AJ and Marshall HD. Mitochondrial control region sequences as tools for understanding evolution[A]. In: Mindell DP (ed) Avian molecular evolution and systematics. London: Academic Press, 1997, 51-82.
    [102]Crochet PA and Desmarais E. Slow rate of evolution in the mitochondrial control region of Gulls (Aves: Laridae)[J]. Mol Biol Evol, 2000, 17(12): 1797-1806.
    [103]Ruokonen M and Kvist L Structure and evolution of the avian mitochondrial control region[J]. Mol Phyl Evol, 2002, 23: 422-432.
    [104]Brown GG, Gadaleta G, Pepe G et al. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA[J]. J Mol Biol, 1986, 192: 503-511.
    [105]Quinn TW. The genetic legacy of mother goose-phylogeographic patterns of lesser snow goose Chen caerulescens maternal lineages[J]. Mol Ecol, 1992, 1: 105-117.
    [106]Drovetski SV. Plio - Pleistocene climatic oscilations, Holarctic biogeography and speciation in an avian subfamily[J]. J Biogeography, 2003, 30: 1173-1181.
    [107]Wenink PW, Baker AJ and Tilanus MGJ. Mitochondrial control-region Sequences in two shorebird species, the Turnstone and the Dunlin, and their utility in population genetic studies[J]. Mol Biol Evol, 1994, 11(1): 22-31.
    [108] Bensch S and Hasselquist D. Phylogeographic population structure of great reed warblers: an analysis of mtDNA control region sequences[J]. Biol J Linn Soc, 1999, 66: 171-185.
    [109] Milot E, Gibbs HL and Hobson KA. Phylogeography and genetic structure of northern populations of the yellow warbler (Dendroica petechia)[J]. Mol Ecol, 2000, 9: 667-681
    [110] Melo M and O' Ryan C. Genetic differentiation between Principe Island and mainland populations of the grey parrot (Psittacus erithacus), and implications for conservation[J]. Mol Ecol, 2007, 16: 1673-1685.
    [111] 徐宏发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(3):41-46.
    [112] 王亚明,周开亚.PCR介导的DNA序列分析系统在系统动物学中的应用[J].动物学杂志,1996。31(3):54-59.
    [113] Li WH. Molecular Evolution [M] . Sunderland (Massachusetts): Sinauer Associates, 1997.
    [114] Giribet G and Wheeler WC. On gaps[J]. Mol Phyl Evol, 1999, 13(1): 132-143.
    [115] Swofford D, 01sen G, Waddel P and Hillis D. Phylogenetic inference[A]. In: Molecular Systematics (2nd ed). Hillis D, Moritz C and Mable B. Sunderland (MA): Sinauer Associates, 1996, 407-514.
    [116] 姜自锋,窦向梅,黄大卫.系统发育研究中多重序列比对常见问题分析[J].动物分类学报,2006,31(1):81-87.
    [117] Saitou N and Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4: 406-425.
    [118] Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology[J]. Syst Zool, 1971, 20: 406-416.
    [119] Nei M. Phylogenetic analysis in molecular evolutionary genetics[J]. Annu Rev Genet, 1996, 30: 371-403.
    [120] Felsenstein J. Evolutionary trees from DNA sequences: a maximum approach[J]. Mol Evol, 1981, 17: 368-376.
    [121] Page RDM and Holmes EC. Molecular Evolution: A Phylogenetic Approach[J]. Syst biol, 1998, 51(3): 536-538.
    [122]Rannala B and Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference[J]. Mol Evol, 1996, 43: 304-311.
    
    [123]Huelsenbeck JP, Ronquist F, Nielsen R and Bollback JP. Bayesian inference of phylogeny and its impact on evolutionary biology[J]. Science, 2001, 294(5550): 2310-2314.
    
    [124] 李涛,赖旭龙,钟扬.利用DNA序列构建系统树的方法[J].遗传,2004,26(2):205-210.
    
    [125]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucl Acids Res, 1997, 25: 4876-4882.
    [126]Lowe TM and Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucl Acids Res, 1997, 25: 955-964.
    [127]Kumar S, Tamura K and Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Brief Bioinform, 2004, 5: 150-163.
    [128]Schmidt HA, Strimmer K, Vingron M and von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing[J]. Bioinformatics, 2002, 18: 502-504.
    [129]Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods)[Z]. Sunderland (MA): Sinauer Associates, 1998.
    [130]Huelsenbeck JP and Ronquist F. MrBayes: Bayesian inference of phylogenetic trees[J]. Bioinformatics, 2003, 17: 754-755.
    [131]Posada D and Crandall KA. Modeltest: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14: 817-818.
    [132]Kishino H and Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea[J]. J Mol Evol, 1989, 29:170-179.
    [133]Shimodaira H and Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference[J]. Mol Biol Evol, 1999, 16: 1114-1116.
    [134]Rozas J, Sanchez-DelBarrio JC, Messeguer X and Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19: 2496-2497.
    
    [135]Clement M, Posada D and Crandall KA. TCS: a computer program to estimate gene genealogies[J]. Mol Ecol, 2000, 9: 1657-1659.
    
    [136]Templeton AR, Crandall KA and Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation[J]. Genetics, 1992, 132: 619-633.
    [137]Excoffier L, Laval G and Schneider S. Arlequin version 3.0: an integrated software package for population genetics data analysis[J]. Evol Bioinform Online, 2005, 1: 47-50.
    [138]Excoffier L, Smouse PE and Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131: 479-491.
    [139]Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations[J]. Evolution, 1993, 47: 264-279.
    [149]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123: 585-595.
    [141]Fu YX and Li WH. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133: 693-709.
    [142]FU YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147: 915-925.
    [143]Rogers A and Harpending H. Population growth makes waves in the distribution of pairwise genetic differences [J]. Mol Biol Evol, 1992, 9: 552-569.
    [144]Schneider S and Excoffier L. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA[J]. Genetics, 1999, 152: 1079-1089.
    [145]Marshall H and Baker A. Rates and patterns of mitochondrial DNA evolution in fringilline finches (Fringilla spp.) and the green-finch (Carduelis chloris)[J]. Mol Biol Evol, 1998, 15: 638-646.
    [146] Idaghdour Y, Broderick D, korrida A and Chbel F. Mitochondrial control region diversity of the houbara bustard, Chlamydotis undulata complex and genetic structure along the Atlantic seaboard of North Africa[J]. Mol Ecol, 2004, 13: 43-54.
    [147] Kocher TD, Thomas WK, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: Amplication and sequencing with conserved primers[J]. Proc Natl Acad Sci USA, 1989, 86: 6196-6200.
    [148] Sorenson MD, Ast JC, Dimcheff DE et al. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates[J]. Mol Phyl Evol, 1999, 12: 105-114.
    [149] Allende LM and Rubio I. The old world sparrows (Genus Passer) phylogeography and their relative abundance of nuclear mtDNA pseudogenes[J]. Mol Evol, 2001, 53: 144-154.
    [150] Moyle R G, Schilthuizen M, Rahman M A, et al. Molecular phylogenetic analysis of the white-crowned forktail Enicurus leschenaulti in Borneo[J]. J Avian Biol, 2005, 36: 96-101.
    [151] Sorenson MD and Quinn TW. Numt, a challenge for avian systematics and population biology[J]. Auk, 1998, 115(1): 214-221.
    [152] Bensasson D, Zhang DX, Hartl DL and Hewitt GM. Mitochondrial pseudogenes: evolution' s misplaced witnesses[J]. Trends Ecol Evol, 2001, 16(6): 314-321.
    [153] Arctander P. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene[J]. Biol Sci, 1995, 262: 13-19.
    [154] Collura RV, Auerbach MR and Stewart CB. A quick, direct method that can differentiate expressed mitochondrial genes from their nuclear pseudogenes[J]. Current Biol, 1996, 6(10): 1337-1339.
    [155] Haring E, Kruckenhauser L, Gamauf A, et al. The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) Indicates an early split in the phylogeny of raptors[J]. Mol Biol Evol, 2001, 18(10): 1892-1904.
    [156] 孙毅,马飞,肖冰等.(?)形目两种鸟类线粒体基因组全序列测定与比较研究[J].中国科学,2004,34(6):527-536.
    [157] Mindell DP, Sorenson MD and Dimcheff DE. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles[J]. Mol Biol Evol, 1998, 15: 1568-1571.
    
    [158]Graur Dand Li WH. Fundamentals of Molecular Evolution[M]. Sunderland: Sinauer Associates, 1999.
    
    [159]Lecointre G, Philippe H, Le HLV and Le Guyader H. Species sampling has a major impact on phylogenetic inference[J]. Mol Phyl Evol, 1993, 2: 205-224.
    [160]Zwickl DJ and Hillis DM. Increased taxon sampling greatly reduces phylogenetic error[J]. Syst Biol, 2002, 51: 588-598.
    [161]Pollock DD, Zwickl DJ, Mcguire JA and Hillis DM. Increased taxon sampling is advantageous for phylogenetic inference[J]. Syst Biol, 2002, 51: 664-671.
    [162]Rosenberg MS and Kumar S. Taxon sampling, bioinformatics, and phylogenomics[J]. Syst Biol, 2003, 52(1): 119-124.
    [163]Rokas A and Carroll SB. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy[J]. MBE Advance Access published, 2005, 1-32.
    [164]Rosenberg MS and Kumar S. Incomplete taxon sampling is not a problem for phylogenetic inference[J]. PNAS, 2001, 98(19): 10751-10756.
    [165]Hillis DM, Pollock DD, Mcguire JA and Zwickl DJ. Is sparse taxon sampling a problem for phylogenetic inference?[J]. Syst Biol, 2003, 52(1): 124-126.
    [166]Hedtke SM, Townsend TM and Hillis DM. Resolution of phylogenetic conflict in large data sets by increased taxon sampling[J].Syst Biol, 2006, 55(3): 522-529.
    [167]Tateno Y, Takezaki N and Nei M. Relative efficiencies of the Maximum-Likelihood, Neighbor-joining, and Maximum-Parsimony methods when substitution rate varies with site[J]. Mol Biol Evol, 1994, 11(2): 261-277.
    [168]Kuhner MK and Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates[J]. Mol Biol Evol, 1994, 11(3): 459-468.
    [169]Huelsenbeck JP. The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of the maximum likelihood over neighbor joining[J]. Mol Biol Evol, 1995, 12(5): 843-849.
    [170]Gadagkar SR and Kumar S. Maximum likelihood outperforms maximum parisony even when evolutionary rates are heterotachous[J]. Mol Biol Evol, 2005, 22(1): 2139-2141.
    [171]Philippe H, Zhou Y, Brinkmann H et al.. Heterotachy and long-branch attraction in phylogenetics[J]. BMC Evol Biol, 2005, 5: 50.
    
    [172]Martinez-Cruz B, Godoy JA and Negro JJ. Population genetics after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti) [J]. Mol Ecol, 2004, 13: 2243-2255.
    [173]Roques S and Negro JJ. MtDNA genetic diversity and population history of a dwindling raptorial bird, the red kite (Milvus milvus)[J]. Biol Conserv. 2005, 126: 41-50.
    [174]Cadahia L, Negro JJ and Urios V. Low mitochondrial DNA diversity in the endangered Bonelli' s Eagle (Hieraaetus fasciatus) from SW Europe (Iberia) and NW Africa[J]. J Ornithol, 2007, 148: 99-104.
    [175]Glenn TC Stephan W and Braun MJ. Effects of a population bottleneck on Whooping Crane mitochondrial DNA variation[J]. Conserv Biol, 1999, 13: 1097-1107.
    [176]Godoy JA, Negro JJ, Hiraldo F and Dondzar JA. Phylogeography, genetic structure and diversity in the endangered bearded vulture (Gypaetus barbatus, L.) as revealed by mitochondrial DNA[J]. Mol Ecol, 2004, 13: 371-390.
    [177]Hewitt G. Some genetic consequences of ice ages, and their role in divergence and speciation[J]. Biol J Linn Soc, 1996, 58: 247-276.
    [178]Hewitt G. Post-glacial re-colonization of European biota[J]. Biol J Linn Soc, 1999, 68: 87-112.
    [179]Avise J and Walker D. Pleistocene phylogeographic effects on avian populations and the speciation process[J]. Proc R Soc Lond B, 1998, 265: 457-463.
    [180]Taberlet P, Fumagalli L, Wust-Saucy A and Cossons J. Comparative phylogeography and postglacial colonization routes in Europe[J]. Mol Ecol, 1998, 7: 453-464.
    [181]Moum T and Arnason E. Genetic diversity and population history of two related seabird species based on mitochondrial DNA control region sequences[J]. Mol Ecol, 2001, 10: 2463-2478.
    [182]Bulgin NL, Gibbs HL, Vickery P and Baker AJ. Ancestral polymorphisms in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida grasshopper sparrow (Ammodramus savannarum floridanus)[J]. Mol Ecol, 2003, 12: 831-844.
    
    [183]Veit ML, Robertson RJ, Hamel PB and Friesen VL. Population genetic structure and dispersal across a fragmented landscape in cerulean warblers (Dendroica cerulea)[J]. Conserv Genet, 2005, 6: 159-174.
    
    [184]Davis LA, Roalson EH, Cornell KL, et al. Genetic divergence and migration patterns in a North American passerine bird: implications for evolution and conservation[J]. Mol Ecol, 2006, 15: 2141-2152
    
    [185]Francisco MR, Gibbs HL, Galetti M, et al. Genetic structure in a tropical lek-breeding bird, the blue manakin (Chiroxiphia caudata) in the Brazilian Atlantic Forest[J]. Mol Ecol, 2007, 16: 4908-4918.
    
    [186]Jones KL, Krapu GL, Brandt DA and Ashley MV. Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations[J]. Mol Ecol, 2005, 14: 2645-2657.
    
    [187]Helbig AJ. Evolution of bird migration: a phylogenetic and biogeographic perspective[A]. In Avian Migration, (eds Berthold P, Gwinner E, Sonnonschein E), Springer, 2003, 3-20.
    [188]Boulet M and Gibbs HL. Lineage origin and expansion of a Neotropical migrant songbird after recent glaciation events[J]. Mol Ecol, 2006, 15: 2505-2525.
    [189]Wade MJ and McCauley DE. Extinction and recolonization: their effects on the genetic differentiation of local populations[J]. Evolution, 1988, 42: 995-1005.
    [190]Porter AH. Refugees from lost habitat and reorganization of genetic population structure[J]. Conserv Biol, 1999, 13: 850-859.
    [191]Posada D and Crandall KA. Intraspecific gene genealogies: trees grafting into networks[J]. Trends Ecol Evol, 2001, 16(1): 37-45.
    [192]Hedrick Pff. Highly variable loci and their interpretation in evolution and conservation[J]. Evolution, 1999, 53(2): 313-318.
    [193]World Conservation Monitoring Center. Global Biodiversity: Status of the Earth' s Living Resources[R]. London: Chapman Hall, 1992.
    [194]Moritz C. Applications of mitochondrial DNA analysis in conservation: a critical review[J]. Mol Ecol, 1994, 3: 401-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700