用户名: 密码: 验证码:
多个体线性系统的一致性分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多个体系统来源于实际控制系统,对其研究不仅是现代控制理论发展的需要,而且是解决大量实际问题的迫切要求.对多个体系统一致性问题的探索和研究是协调控制问题的一个基本问题,并已成为学术界的研究热点.本文在前人工作的基础上,借助线性系统理论、奇异系统理论、控制理论、代数图论和矩阵理论等理论和方法,研究了多个体线性正常状态空间系统和多个体线性奇异系统的一致性条件和控制设计问题.本文的主要研究工作如下.
     研究了加速一致性问题.针对固定拓扑结构下离散多个体正常状态空间系统,基于一个修正的代数Riccati方程,提出了一种不需要非线性协议的解决方法,得出了以指定趋同速度因子实现一致的充分条件,并给出了期望趋同函数和指定趋同速度联合设计的协议算法.针对切换拓扑结构下连续和离散多个体系统,首先将通讯拓扑结构的切换特性转化为系统之间的切换,给出了多个体闭环系统实现一致的充分条件,并证明此时的趋同状态为零.最后推出并分析与趋同状态范数相等的一个向量范数的显式表达式,得出了趋同状态有界的条件,并且给出了提高趋同速度的协议算法.虽然已有很多文献研究切换拓扑结构下多个体系统能实现一致的充分条件,但是却鲜有文献讨论此通讯拓扑下高阶多个体系统趋同状态的形式和趋同速度提高的问题.研究发现趋同速度过快,可能会影响多个体闭环系统的稳定性,即印证了高增益对系统的不良影响,过分追求速度是不可取的.
     研究了同质多个体奇异系统的协同控制问题.基于受限等价系统,采用了修正型一致性协议.针对连续系统和离散系统两种情形,基于包含有向生成树的通讯拓扑结构,得出了连续多个体奇异系统能实现容许一致的充要条件和离散多个体奇异系统能实现容许一致的充分条件,并给出了趋同状态的显式表达式以及能实现容许一致的趋同协议的算法.与已有的关于连续多个体奇异系统的结果相比较,本文给出的是充要条件,而非充分条件,本文给出的条件是非常容易进行事先验证的,而非待定的线性矩阵不等式.针对连续多个体奇异系统,探讨了单个首领的跟踪问题,得出了能实现跟踪的充要条件为奇异系统个体强能稳,并给出了协议增益的设计算法;提出了多个首领的牵制控制问题,得出了能实现该问题的充要条件仍是个体强能稳,然后给出了协议算法.与已有的多个体奇异系统跟踪问题的结果相比较,本文给出了充要条件,而非充分条件.与多个体正常状态空间系统的多首领牵制控制问题的结果类似,本文推出奇异系统个体的状态收敛于多个首领的动态状态的凸组合.
     研究了异质多个体奇异系统的容许一致性问题.针对连续和离散两种情形,为异质个体设计了结构形式相同、参数不同的修正型一致性协议.借助趋同误差向量必须正则、无脉冲(或因果)和渐近稳定的特性,得出了能实现容许一致的充分条件,并构造了一种求解一致性协议增益的算法.本部分给出的控制协议,本质上实现了单个首领的跟踪问题,与同质多个体奇异系统的首领跟踪问题相比较,这里给出的首领和跟随者的动态系统是不同的.与已有的关于异质多个体奇异系统的结果相比较,有三点优势:一是本文给出的充分条件便于验证,且容易满足;二是对输入矩阵的要求为列满秩,而非非奇异矩阵,大大降低了对个体系统的苛刻要求;三是本文所构造的协议解决了已有文献的两个缺陷:一是奇异系统个体可以含有脉冲,二是消除了趋同误差向量动态特性中的脉冲项.另外,针对异质多个体奇异系统的容许一致性问题,本文所给出的理论结果和控制设计算法具有一般性,既适用于同质多个体奇异系统的跟踪首领问题,也适用于异质多个体正常状态空间系统的跟踪首领问题.
Multi-agent systems come from the actual control system. Research on them not only is the need of the development of modern control theory, and is urged to solve a large number of actual demands. The consensus problem of multi-agent systems is a fundamental problem of cooperative control problem, which is currently research hotspot. In the dissertation, combining the linear system theory, singular system theory, control theory, algebraic graph theory and matrix analysis, the consensus problems for both linear normal and linear singular multi-agent systems are investigated systemat-ically. The innovative work and key points of this dissertation can be summarized as follows:
     The accelerated consensus problem of linear normal multi-agent systems is stud-ied. Based on a modified algebraic Riccati equation, an approach without nonlinear protocol is proposed and investigated for discrete-time case under time-invariant topolo-gies. A sufficient condition is derived, which guarantees that the multi-agent system solves consensus with prescribed consensus speed index. The algorithm is given to achieve the joint design of an expected consensus function and a prescribed consen-sus speed. For the consensus problems of continuous-time and discrete-time normal multi-agent systems with directed switching topologies, the switched behavior of com-munication topologies is transmitted to the dynamic systems which are transformed into switched subsystems. Then the consensus problem is solved under the assumption that each agent is stabilizable. Finally, it is shown that the consensus state is zero state. The sufficient condition to get bounded consensus state is derived by analyzing a vector whose norm is equal to consensus state's. The algorithms of improving the consensus speed have been given. Although many references have discussed the consensualization problem of multi-agent systems under switching topologies, few gave the expression of the consensus state and improved the consensus speed. It is found that the overquick consensus speed may destroy the stability of the closed-loop multi-agent system, i.e., high gain has bad effect for dynamic system and it is not advisable to only pursue speed.
     Cooperative control problem for homogeneous singular multi-agent systems is discussed. Under the restricted system equivalence, the modified consensus proto-cols are proposed. The admissible consensus problems of both continuous-time and discrete-time multi-agent singular systems are investigated. Based on the communica-tion topologies containing a spanning tree, the sufficient and necessary conditions are presented for continuous-time multi-agent singular systems, and the sufficient condi-tions are presented for discrete-time multi-agent singular systems. The formulas of the consensus states are given and the algorithms of constructing the protocols for achieving admissible consensualization are provided. In contrast with the previous results which gave sufficient conditions that are composed of linear matrix inequalities to be deter-mined, this dissertation gives the sufficient and necessary conditions and the conditions are easy to be checked, verified and satisfied for the continuous-time multi-agent sys-tems. On the other hand, for continuous-time multi-agent singular systems, the tracking problem of single leader is discussed, and it is proved that the strong stabilization of each agent is a sufficient and necessary condition, and the algorithm to construct the protocol is given. The containment control problem of multiple leaders is studied. It is also shown that a sufficient and necessary condition of solving the above problem is strong stabilizable. The algorithms of the protocols are given. Compared with the ex-isting results which gave sufficient conditions for the tracking problem of single leader, the condition here is sufficient and necessary. Compared with the consensus state for multi-agent normal systems in the presence of multiple leader, the states of the follow-ers for multi-agent singular systems asymptotically converge to the convex hull formed by the dynamic states of the leaders.
     The admissible consensus problem of heterogeneous singular multi-agent systems is investigated. The modified protocols with identical models and different gains are designed for individual agent. The consensus error vector must be regular, impulse free (causal) and asymptotically stable. The above request is applied to obtain the sufficient conditions and construct the algorithms of consensus protocols. In essence, the consen-sus protocols given here solve the tracking problems of single leaders. Compared with the tracking problem for homogeneous singular multi-agent system, here the leader and the followers are heterogeneous. In contrast with the existing references about hetero-geneous singular multi-agent systems, this dissertation has three advantages:First, the sufficient conditions given are mild and easy to be verified. Second, the input matrix which is nonsingular in previous results is only requested to be column full rank here, and this reduces the rigorous condition greatly. Finally, the consensus protocols con-structed here eliminate two shortcomings:singular agent may have impulse term and the impulse term in the dynamics of consensus error vector is removed. Furthermore, the results given here are general, and they may be applied to leader-following con-sensus of multi-agent homogeneous singular systems, and they also may be applied to leader-following consensus of multi-agent heterogeneous normal systems.
引文
[1]Major, P. F., and Dill, L. M. (1978). The three-dimensional structure of airborne bird flocks. Behavioral Ecology and Sociobiology,4(2):111-122.
    [2]Reynolds, C. (1987). Flocks, herds and schools:a distributed behavioral model. ACM SIG-GRAPH Computer Graphics,21(4):25-34.
    [3]Buck, J. (1976). Synchronous fireflies. Scientific American,234:74-85.
    [4]Neda, Z., Ravasz, E., and Brechet, Y, et al. (2000). Self-organizing processes:the sound of many hands clapping. Nature,403:849-850.
    [5]Mirollo, R. E., and Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscil-lators. SlAM Journal on Applied Mathematics,50(6):1645-1662.
    [6]杨福泉.(1998).基于Multiagent技术的计算机市场协同咨询专家系统.计算机工程与科学,2:40-45.
    [7]姜国涛,贾清泉,袁野等.(2008).基于Multi-Agent的分布式发电系统监控方案.中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(中册),2008:1548-1551.
    [8]李宏贵,刘福成.(2006).基于Multi-Agent的企业决策支持系统构建.经济问题,11:47-49.
    [9]Vicsek, T., Czirok, A., and Ben-Jacob, E., et al. (1995). Novel type of phase transitions in a system of self-driven particles, Phys. Rev. Lett.,75:1226-1229.
    [10]Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control,48(6):988-1001.
    [11]刘志新,郭雷.(2007)Vicsek模型的连通与同步.中国科学(E辑),37(8):979-988.
    [12]王炳昌,张纪峰.(2009).非平衡拓扑和随机干扰情形下多自主体系统的趋同条件.系统科学与数学,29(10):1353-1365.
    [13]Han, J., Li, M., and Guo, L. (2006). Soft control on collective behavior of a group of au-tonomous agents by a shill agent. Journal of Systems Science and Complexity,19(1):54-62.
    [14]Consolini, L., Morbidi, F., and Prattichizzo D., et al. (2008). Leader-follower formation con-trol of nonholonomic mobile robots with input constraints. Automatica,44(5):1343-1349.
    [15]Vidal, R., Shakenia, O., and Sastry, S. (2003). Formation control of nonholonomic mobile robots omnidirectional visual servoing and motion segmention. Proc. IEEE Conf. Robotics and Automation,2003:584-589.
    [16]Ren, W., and Beard, R. (2008). Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. London:Springer-Verlag.
    [17]Bender, J. G. (1991). An overview of systems studies of automated highway systems. IEEE Transactions on Vehicular Technology,40(1):82-99.
    [18]Menon, P. P., and Edwards C. (2011). Observer-based distributed controller for formation flying of satellites, Proc.2011 Amer. Contr. Conf., San Francisco, CA,2011:196-201.
    [19]Smith, R. S., and Hadaegh, F. Y. (2005). Control of deep-space formation-flying spacecraft; Relative sensing and switched information.J. Guid. Control Dyn.,28:106-114.
    [20]Ma, S., Hackwood, S., and Beni, G. (1994). Multi-agent supporting systems(MASS):control with centralized estimator of disturbance. Proc. lst IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Munich,1994:679-686.
    [21]Tomlin, C., Pappas, G. J., and Sastry, S. (1998). Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Trans. Autom. Control,43(4):509-521.
    [22]Yamaguchi, H. (2003). A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robotics and Autonomous Systems,43(4): 257-282.
    [23]Hughes, S. P., and Bauer, F. H. (2002). Preliminary optimal orbit design for the laser in-terferometer space antenna (LISA).25th Annual AAS Guidance and Control Conference, Breck-enridge, USA:Rocky Mountain Section,2002:61-78.
    [24]Pascoal, A., Oliveira, P., and Silvestre, C., et al (2000). Robotic ocean vehicles for marine science applications:the european asimov project. Proc. of the Oceans MTS/IEEE Conference and Exhibition,2000:409-415.
    [25]Wu, C. W., and Chua, L. O. (1994). A unified framework for synchronization and control of dynamical systems. Int. J. Bifurcation Chaos,4(4):979-998.
    [26]Wu, C. W., and Chua, L. O. (1995). Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits and Systems-1,42:430-447.
    [27]Kang, W., Xi, N., and Sparks, A. (2000). Formation control of autonomous agents in 3D workspace. Proc. of IEEE International Conference on Robotics and Automation, San Fran-cisco, CA,2000:1755-1760.
    [28]Jadbabaie, A., Lin, J., and Morse, A.S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contr.,48(6):988-1001.
    [29]Ren, W., and Beard, R. W. (2005). Consensus seeking in multiagent systems under dynami-cally changing interaction topologies. IEEE Trans. Autom. Control,50(5):655-661.
    [30]Olfati-Saber, R., and Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control,49(9):1520-1533.
    [31]Kingston, D. B., and Beard, R. W. (2006). Discrete-time average-consensus under switch-ing network topologies. American Control Conference, Minneapolis, Minnesota, USA,2006: 3551-3556.
    [32]Xiao, L., and Boyd, S. (2004). Fast linear iterations for distributed averaging. Systems & Control Letters,53(1):65-78.
    [33]Xie, G., and Wang, L. (2007). Consensus control for a class of networks of dynamic agents. International Journal of Robust and Nonlinear Control,17(10-11):941-959.
    [34]Ren, W., and Atkins, E. (2007). Distributed multi-vehicle coordinated control via local infor-mation exchange. International Journal of Robust and Nonlinear Control,17(10-11):1002-1033.
    [35]Zhang, Y., and Tian, Y. P. (2009). Consentability and protocol design of multi-agent systems with stochastic switching topology. Automaaica,45(5):1195-1201.
    [36]Sun, Y, and Wang, L. (2009). Consensus of multi-agent systems in directed networks with nonuniform time-varying delays. IEEE Trans. Autom. Control,2009,54(7):1607-1613.
    [37]Lin, P., and Jia, Y. (2009). Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automarica,45(9):2154-2158.
    [38]Yan, J., Guan, X., and Luo, X., et al. (2011). Formation and obstacle avoidance control for multiagent systems. J. Control Theory Appl.,9(2):141-147.
    [39]Tuna, S. E. (2008). Synchronizing linear systems via partial-state coupling. Automaica, 44(8):2179-2184.
    [40]Kuang, J., and Zhu, J. (2010). On consensus protocols for high-order multiagent systems. J. Control Theory Appl.,8(4):406-412.
    [41]Seo, J. H., Shim, H., and Back, J. (2009). Consensus of high-order linear systems using dynamic output feedback compensator:low gain approach. Automatica,45(11):2659-2664.
    [42]Cheng, L., Hou, Z. G., and Lin, Y., et al. (2011). Solving a modified consensus problem of linear multi-agent systems. Automatics,47(10):2218-2223.
    [43]Li, Z., Duan, Z., and Chen, G. (2011). Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems-Series B,16(2): 489-505.
    [44]You, K., and Xie, L. (2011). Consensusability of discrete-time multi-agent systems over directed graphs. Proceedings of the 30th Chinese Control Conference, Yanti, China,2011: 6413-6418.
    [45]Ma, C. Q., and Zhang, J. F. (2010). Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Autom. Control,55(5):1263-1268.
    [46]Yang, X. R., and Liu, G. P. (2012). Output consensus of linear multi-agent systems. UKACC International Conference on Control,2012:1094-1099.
    [47]Jiang, F., Wang, L., and Xie, G. (2010). Consensus of high-order dynamic multi-agent systems with switching topology and time-varying delays. J. Control Theory Appl.,8(1):52-60.
    [48]Li, T., and Zhang, J. F. (2010). Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Trans. Autom. Control,55(9):2043-2057.
    [49]Qin, J., Gao, H., and Zheng, W. X. (2010). On average consensus in directed networks of agents with switching topology and time delay. International Journal of Systems Science, 42(12):1947-1956.
    [50]Su, Y., and Huang J. (2012). Two consensus problems for discrete-time multi-agent systems with switching network topology. Automatica,48:1988-1997.
    [51]Liu, B., Lu, W., and Chen, T. (2012). Synchronization in complex networks with stochastically switching coupling structures, IEEE Trans. Autom. Contr.,57(3):754-760.
    [52]Ni, W., and Cheng D. (2010). Leader-following consensus of multi-agent systems under fixed and switching topologies, Systems& Control Letters,59:209-217.
    [53]Meng, Z., Ren, W., and You, Z. (2010). Distributed finite-time attitude containment control for multiple rigid bodies. Automatica,46(12):2092-2099.
    [54]Liu, S., Xie, L., and Zhang, H. (2013). Containment control of multi-agent systems by exploit-ing the control inputs of neighbors. International Journal of Robust and Nonlinear Control, (In press, DOI:10.1002/mc.3026).
    [55]Xu, X., Chen, S., and Huang, W., et al. (2013). Leader-following consensus of discrete-time multi-agent systems with observer-based protocols. Neurocomputing,118:334-341.
    [56]Liu, X., Lu, W., and Chen, T. (2010). Consensus of multi-agent systems with unbounded time-varying delays. IEEE Trans. Autom. Control,55(10):2396-2401.
    [57]Hu, J., and Lin, Y. S. (2010). Consensus control for multi-agent systems with double-integrator dynamics and time delays. IET control theory & applications,4(1):109-118.
    [58]Zhou, B., and Lin, Z. (2014). Consensus of high-order multi-agent systems with large input and communication delays. Automatica,50:452-464.
    [59]Xu, J., Zhang, H., and Xie, L. (2013). Input delay margin for consensusability of multi-agent systems. Automatica,49(6):1816-1820.
    [60]Yan, J., Guan, X. P., and Luo, X. Y., et al. (2012). Consensus and trajectory planning with input constraints for multi-agent systems. Acta Automatica Sinica,38(7):1074-1082.
    [61]Zhu, S., Wang, D., and Low, C. B. (2013). Ground target tracking using UAV with input constraints. Journal of Intelligent & Robotic Systems,69(1-4):417-429.
    [62]Wan, Y, Dong, W, and Ye, H. (2012). Distributed Hoo filtering with consensus strategies in sensor networks. Acta Automatica Sinica,38(7):1211-1217.
    [63]Fang, H., Chen, H. F., and Wen, L. (2012). On control of strong consensus for networked agents with noisy observations. Journal of Systems Science and Complexity,25(1):1-12.
    [64]Xie, L., Huang, C., and Hu, H. (2013). Distributed filter with consensus strategies for sensor networks. Journal of Applied Mathematics, (In press, DOI:10.1155/2013/683249).
    [65]Sundaram, S., and Hadjicostis, C. N. (2007). Finite-time distributed consensus in graphs with time-invariant topologies. American Control Conference,2007:711-716.
    [66]Wang, L., and Xiao, F. (2010). Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control,55(4):950-955.
    [67]Wang, L., Sun, S., and Xia, C. (2012). Finite-time stability of multi-agent system in disturbed environment. Nonlinear Dynamics,67(3):2009-2016.
    [68]Shang, Y. (2011). Finite-time consensus for multi-agent systems with fixed topologies. Int. J. Syst. Sci.,42(10):1831-1842.
    [69]Wang, L., Chen, Z., and Liu, Z., et al. (2009). Finite-time agreement protocol design of multi-agent systems with communication delays. Asian Journal of Control,11(3):281-286.
    [70]Li, M., Li, Q., and Gao, H. (2013). Improved consensus speed for discrete-time multi-agent systems. Journal ofDonghua University(Eng. Ed.),30(6):461-465.
    [71]Kim, H., Shim, H., and Seo, J. H. (2011). Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Autom. Control,56(1):200-206.
    [72]Wieland, P., Sepulchre, R., and AllgOwer, F. (2011). An internal model principle is necessary and sufficient for linear output synchronization. Automatica,47(5):1068-1074.
    [73]Liu, C. L., and Liu, F. (2011). Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica,47(9):2130-2133.
    [74]Tian, Y. P., and Zhang, Y. (2012). High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica,48(6):1205-1212.
    [75]Wang, X. (2013). Distributed formation output regulation of switching heterogeneous multi-agent systems. Int. J. Syst. Sci.,44(11):2004-2014.
    [76]Sun, F., and Zhu, W. (2013). Finite-time consensus for heterogeneous multi-agent systems with mixed-order agents. Int. J. Syst. Sci., (In press, DOI:10.1080/00207721.2013.843732).
    [77]Xi, J., Meng, F., and Shi, Z., et al. (2012). Admissible consensualization for singular swarm systems with time delays. Proc.31th Chinese Contr. Conf., Hefei, China,2012:6285-6291.
    [78]Xi, J., Shi, Z., and Zhong, Y. (2012). Admissible consensus and consensualiztion of high-order linear time-invariant singular swarm systems. Physica A,39(7):5389-5849.
    [79]Meng, F., Xi, J., and Shi, Z., et al. (2012). Leader-following consensus for singular swarm systems. Proc.31th Chinese Contr. Conf., Hefei, China,2012:6357-6362.
    [80]Yang, X. R., and Liu, G. R (2012). Necessary and sufficient consensus conditions of descriptor multi-agent systems. IEEE Transactions on Circuits and Systems I,59(11):2669-2677.
    [81]Yang, X. R., and Liu, G. R (2011). Consensus conditions of linear descriptor multi-agent systems.2nd International Conference on Intelligent Control and Information Processing, Harbin, China,2011:169-11 A.
    [82]Li, M., and Li, Q. (2013). Admissible consensus of multi-agent singular systems. Asian Jour-nal ofControl,16(5):1-10.
    [83]Wang, J., Cheng, D., and Hu, X. (2008). Consensus of multi-agent linear dynamic systems. Asian Journal of Control,10(2):144-155.
    [84]Li, Z., Duan, Z., and Chen, G. (2011). Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems-Series B,16(2): 489-505.
    [85]Scardovi, L., and Sepulchre, R. (2009). Synchronization in networks of identical linear sys-tems. Automatica,45(11):2557-2562.
    [86]Li, Z., Liu, X., and Lin, P., et al. (2011). Consensus of linear multi-agent systems with reduced-order observer-based protocols. Systems & Control Letters,60(7):510-516.
    [87]Li, Z., Duan, Z., and Chen, G., et al. (2010). Consensus of multiagent systems and synchro-nization of complex networks:a unified viewpoint. IEEE Trans. Circuits. Syst. I, Reg. Papers, 57(1):213-224.
    [88]Tuna, S. E. (2008). LQR-based coupling gain for synchronization of linear systems. Available: http://arxiv.org/abs/0801.3390.
    [89]You, K., and Xie, L. (2011). Coordination of discrete-time multi-agent systems via relative output feedback. International Journal of Robust and Nonlinear control,21(13):1587-1605.
    [90]Li, T., Fu, M., and Xie, L., et al. (2011). Distributed consensus with limited communication data rate. IEEE Trans. Autom. Control,56(2):279-292.
    [91]Olshevsky, A., and Tsitsiklis, J. N. (2009). Convergence speed in distributed consensus and averaging. SIAM Journal on Control and Optimization,48(1):33-55.
    [92]Kuang, J., and Zhu, J. (2010). On consensus protocols for high-order multiagent systems. Journal of Control Theory and Applications,8(4):406-412.
    [93]You, K., and Xie, L. (2011). Consensusability of discrete-time multi-agent systems over di-rected graphs. Proceedings of the 30th Chinese Control Conference, Yantai, China,2011: 6413-6418.
    [94]Xiao, F., and Wang, L. (2007). Consensus problems for high-dimensional multi-agent sys-tems. IET Control Theory & Applications,1(3):830-837.
    [95]Hu, T. S., and Qiu, L. (1998). Controllable regions of linear systems with bounded inputs. Systems & Control Letters,33(1):55-61.
    [96]施颂椒,陈学中,杜秀华.(2009).现代控制理论基础(第二版).北京:高等教育出版社.
    [97]Hewer, G. A. (1973). Analysis of a discrete matrix Riccati equation of linear control and Kalman filtering. J. Math. Anal. Appl.,42(1):226-236.
    [98]You, K., and Xie, L. (2011). Network topology and communication data rate for consensus-ability of discrete-time multi-agent systems. IEEE Trans. Autom. Control,56(10):2262-2275.
    [99]Chen, C. (1999). Linear System Theorem and Design. New York:Oxford University Press.
    [100]Liu Y, and Jia Y. (2010). Hoo consensus control of multi-agent systems with switching topol-ogy:a dynamic output feedback protocol. International Journal of Control,83(3):527-537.
    [101]Cheng, L., Wang, Y, and Hou, Z. G., et al. (2013). Sampled-data based average consensus of second-order integral multi-agent systems:switching topologies and communication noises. Automatica,49(5):1458-1464.
    [102]Ji, Z., Wang, Z., and Lin, H. (2010). Controllability of multi-agent systems with time-delay in state and switching topology. International Journal of Control,83(2):371-386.
    [103]Wen, G., Hu, G.,and Yu, W. (2013). Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs. Systems & control letters,62(12):1151-1158.
    [104]Li, M., Li, Q., and Liu, H. (2013). Consensus of multi-agent systems with observer-based protocols under switching topologies. Proceeding of the IEEE International Conference on Information and Automation, Yinchuan, China,2013:1032-1037.
    [105]Lu, X., Chen, S., and Lii, J. (2013) Finite-time tracking for double-integrator multi-agent systems with bounded control input. IET Control Theory & Applications,7(11):1562-1573.
    [106]Franceschelli, M., Giua, A., and Pisano, A., et al. (2013). Finite-time consensus for switching network topologies with disturbances. Nonlinear Analysis:Hybrid Systems,10:83-93.
    [107]Geromel, J. C., and Colaneri, P. (2006). Stability and stabilization of continuous-time switched linear systems. SIAM J. Control Optim.,2006,45(5):1915-1930.
    [108]Geromel, J. C., and Colaneri, P. (2006). Stability and stabilization of discrete time switched systems. International Journal of Control,79(7):719-728.
    [109]Cheng, L., Hou, Z., and Tan, M. (2008). Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. Proc.2008 IEEE Int. Conf. on Systems, Man and Cybernetics, Singapore,2008:2712-2717.
    [110]Schilling, R. J. (1998). Fundamentals of Robotics:Analysis and Control. Hoboken, NJ:Pren-tice Hall.
    [111]Mills, J. K., and Goldenberg, A. A. (1989). Force and position control of manipulators during constrained motion tasks. IEEE Trans. Robot. Automat.,5(1):30-46.
    [112]McClamroch, N., (1986). Singular systems of differential equations as dynamic models for constrained robot systems. Proc.3rd IEEE Int. Conf. Robotics and Automation,1986:21-28.
    [113]Lewis, F. L. (1986). A survey of linear singular systems, circuits. Systems and Signal Pro-cessing,5(1):3-36.
    [114]Stevens, B. L. (1984). Modeling, simulation, and analysis with state variables. Report LG84RR002, Lockheed-Georgia Co., Marietta, GA.
    [115]Fu, M., Wang, S., and Cong, Y. (2013). Swarm stability analysis of high-order linear time-invariant singular multiagent systems. Mathematical Problems in Engineering, (In press, DOI: 10.1155/2013/469747).
    [116]Dai, L. (1989). Singular Control Systems. New York:Springer-Verlag.
    [117]Arzelier, D., Bernussou, J., and Garcia, G. (1991). About quadratic stabilizability of general-ized linear systems. Proc.30th IEEE C. D. C, Brighton,1991:914-920.
    [118]Lewis, F. L. (1985). Preliminary notes on optimal control for singular systems. Proc.24th IEEE C. D. C, Ft. Lauderdale, Florida,1985:266-272.
    [119]Iwasaki, T., and Skelton, R. E. (1994). All controllers for the general H^ control problem: LMI existence conditions and state space formulas. Automatica,30(8):1307-1317.
    [120]Xu, S., Lam, J., and Zhang, L. (2002). Robust D-stability analysis for uncertain discrete singular systems with state delay. IEEE Trans. Circuits. Syst. I. Fundamental Theory Appli-cations,49(4):551-555
    [121]Ni, W., and Cheng, D. (2010). Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems & control letters,59(3-4):209-217.
    [122]Li, Z., Ren, W., and Liu, X., et al. (2013). Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. International Journal of Robust and Nonlinear Control,23(5):534-547.
    [123]Lou, Y., and Hong, Y. (2012). Target containment control of multi-agent systems with random switching interconnection topologies. Automatica,48(5):879-885.
    [124]Liu, H., Xie, G., and Wang, L. (2012). Necessary and sufficient conditions for containment control of networked multi-agent systems. Automatica,48(7):1415-1422.
    [125]Lin, Z., Ding, W., and Yan, G., et al. (2013). Leader-follower formation via complex Lapla-cian. Automatica,49(6):1900-1906.
    [126]Wieland, P., Kim, J. S., and Allgower, F. (2011). On topology and dynamics of consensus among linear high-order agents. International Journal of Systems Science,42(10):1831-1842.
    [127]Dong, X., Xi, J., and Lu, G., et al. (2012). Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays. International Journal of Robust and Nonlinear Control, (In press, DOI:10.1002/rnc.2933).
    [128]Cheng, S., Ji, J. C, and Zhou, J. (2012). Second-order consensus of multiple non-identical agents with non-linear protocols. IET control theory & applications,6(9):1319-1324.
    [129]Ben-Israel, A., and Greville, T. N. E. (1974). Generalized Inverses:Theory and Applications. New York:John Wiley.
    [130]程兆林,马树萍.(2006).线性系统理论.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700