用户名: 密码: 验证码:
ACE2-Ang(1-7)-Mas轴介导的胰岛内皮功能对β细胞功能的调节及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以血管紧张素转换酶2(ACE2)基因敲除小鼠为实验对象,探讨ACE2-Ang(1-7)-Mas轴对长期高脂喂养小鼠胰岛微循环及β细胞功能的影响。
     方法:野生型C57小鼠(WT)及ACE2基因敲除(KO)小鼠均分为普通饮食(WT, KO)和高脂饮食(WH,KH)两组,16周后,对四组小鼠行葡萄糖耐量实验(IPGTT)及葡萄糖刺激后胰岛素释放实验(IPIRT)检测胰岛功能,行胰岛素耐量实验(IPITT)检测外周组织胰岛素敏感性,以免疫组化法检测胰岛细胞内胰岛素相对含量(IRC),胰岛素阳性细胞密度(ICD),以胰岛内CD31染色检测胰岛内微血管密度(MVD),TUNEL法检测胰岛内细胞凋亡水平。胶原酶法分离四组小鼠胰岛细胞并进行体外静态培养,以硝酸还原酶法检测上清NO水平,以RT-PCR法检测胰岛组织内eNOS,ICAM-1,VCAM-1mRNA的相对表达量。
     结果:正常饮食条件下,与WT组相比,KO组IPGTT葡萄糖曲线下面积(AUCG)无明显差异,葡萄糖刺激后第一时相胰岛素分泌呈下降趋势,胰岛组织内胰岛素相对含量(IRC)、胰岛素阳性细胞核密度(ICD)略减低,胰岛组织内微血管密度(MVD)也有减少趋势,但均未达到统计学差异。高脂饮食条件下,WH组较WT组IPGTT葡萄糖曲线下面积(AUCG)显著增加(P<0.05),葡萄糖刺激后第一时相胰岛素分泌减少,胰岛内胰岛素相对含量(IRC)下降(P<0.05),胰岛组织内单位面积TUNEL阳性细胞数增加(P<0.05)。而与WH组相比,KH组IPGTT葡萄糖曲线下面积(AUCG)进一步上升(P<0.05),葡萄糖刺激后第一时相胰岛素分泌显著减少(P<0.05),胰岛内胰岛素相对含量(IRC)、胰岛组织内微血管密度(MVD)明显下降(P<0.05),胰岛组织内单位面积TUNEL阳性细胞数显著增加(P<0.05)。WT组与KO组胰岛内皮细胞NO合成释放无显著差异,与WT组相比,WH组胰岛内皮细胞NO含量降低(P<0.05),KH组较WH组胰岛内皮细胞NO进一步下降(P<0.05)。与WT组相比,KO组胰岛组织eNOS mRNA的相对表达量呈下降趋势,但未达到统计学差异,ICAM-1及VCAM-1mRNA的相对表达量无明显差异。WH组较WT组胰岛组织内ICAM-1,VCAM-1mRNA的相对表达量增加(P<0.05),eNOSmRNA的相对表达量下降(P<0.05)。 KH组胰岛组织内ICAM-1(P<0.05),VCAM-1mRNA(P<0.05)的相对表达量较WH组进一步上升,eNOSmRNA的相对表达量显著下降(P<0.05)。
     结论:ACE2基因敲除加重长期高脂诱导小鼠胰岛内皮功能损伤、糖代谢异常及胰岛β细胞功能障碍。
     目的:探讨Mas下调对胰岛微血管内皮细胞(MS-1)脂性凋亡的影响及其对β细胞的调节效应。
     方法:利用小干扰RNA(siRNA)下调MS-1细胞Mas受体的表达,棕榈酸(PA)干预24h后,分别对四组细胞(MS-1,MS-1siRNA,MS-1PA, MS-1siRNA+PA)以流式检测细胞凋亡率,以Western blot法检测Akt-eNOS信号通路、JNK、p38磷酸化水平及bcl-2,bax,caspase3蛋白水平的表达,以RT-PCR法检测FoxO1, p22phox,TNF-mRNA的表达,以硝酸酶还原法法检测上清中NO水平。用siRNA及棕榈酸(PA)干预获得不同功能状态的MS-1细胞,并与小鼠胰岛β细胞(MIN6)共培养,以GSIS法检测MIN6细胞的胰岛素分泌功能。
     结果:siRNA转染体外培养的MS-1细胞,可以显著降低MS-1细胞Mas mRNA的表达。与MS-1组相比,MS-1siRNA组细胞凋亡率无差异;p-Akt,p-eNOS,p-JNK,p-p38,及caspase3蛋白表达水平及bax/bcl-2无差别;TNF-mRNA的表达呈上升趋势,但未达到统计学差异;FoxO1, p22phox mRNA的表达无明显差异;上清中NO水平呈下降趋势,但未达到统计学差异。与MS-1组相比,MS-1PA及MS-1siRNA+PA组细胞凋亡率显著上升;p-Akt,p-eNOS蛋白表达下降;bax/bcl-2,p-JNK,p-p38,及caspase3蛋白表达明显上升;TNF-,p22phox mRNA的表达增加;上清NO水平下降。FoxO1mRNA的表达无差异。与MS-1PA相比,MS-1siRNA+PA组细胞凋亡率进一步增加,p-Akt,p-eNOS下降, bax/bcl-2,caspase3蛋白及TNF-mRNA表达增加,p-p38,p-JNK蛋白表达及p22phox,FoxO1mRNA的表达无差异,上清NO水平下降。MIN6-MS-1组与MIN6-MS-1siRNA组基础胰岛素及GSIS均无差异。MIN6-MS-1PA组和MIN6-MS-1siRNA+PA组基础胰岛素分泌分别较MIN6-MS-1组和MIN6-MS-1siRNA组呈下降趋势,但均未达到统计学差异。MIN6-MS-1PA组与MIN6-MS-1siRNA+PA组GSIS较MIN6-MS-1组和MIN6-MS-1siRNA组均明显下降(均P<0.05)。MIN6-MS-1siRNA+PA组较MIN6-MS-1PA组GSIS呈下降趋势,但未达到统计学差异(P>0.05)。
     结论:Mas沉默通过下调Akt-eNOS信号通路,加重PA诱导的胰岛微动脉内皮细胞的凋亡,促进了PA诱导的内皮细胞功能障碍,进而导致胰岛β细胞功能受损。
Objective The aim of this study was to evaluate the effects of Angiotensin-convertingenzyme2(ACE2) on glucose homeostasis and islet function in mice.Methods Male wildtype (WT) and ACE2knockout (ACE2KO) mice were divided intochow diet group and long-term high-fat diet (HFD) group for16weeks.
     (1)Islet function of the animals was evaluated by intraperitoneal glucose tolerance test(IPGTT) and intraperitoneal insulin releasing test (IPIRT). The insulin sensitivity waspresented by intraperitoneal insulin tolerance test (IPITT).
     (2)The pancreas was immunohistochemically stained to analyze the relative content ofinsulin (IRC), insulin-positive cell density (ICD), microvessel density (MVD) in islets. Theapoptosis of islet was evaluated by TUNEL.
     (3)Pancreatic islets isolated by handpicking following collagenase digestion. NOproduction was detected by nitrate reductase assay. Insulin levels were measured with themouse insulin ELISA kit.
     (4)The eNOS, ICAM-1, VCAM-1mRNA in islet were observed by RT-PCR.
     Results
     (1)There was no significant difference of AUCG between WT mice and KO mice. TheAUCG in WH mice was significantly elevated than that in WT mice (p<0.05). The AUCGin KH group was obviously increased than that in KO (p<0.05). Compared with WH mice,increased AUCG in KH mice was observed (p<0.05).
     (2)The AUCI0-30and AUCI0-5were not different between WT and KO group. Decrease AUCI0-5and increased AUCI0-30were observed in WH group compared with those in WTgroup (both p<0.05). The AUCI0-30in KH group was not increased when compared withthat in KO group.
     (3)In IPITT, similar glucose disappearance rate was observed in WT and KO mice as wellas between KH and WH mice.
     (4)The IRC, ICD, MVD and NO concentration of islet were slightly decreased in KOmice than those in WT mice, but the difference was not significant. Decreased IRC,NOconcentration and increased apoptosis in islet were noted in WH group in comparison withWT group (p<0.05). In comparison with WH mice, KH mice exhibited a decreasedIRC,MVD,NO concentration and increased apoptosis in islet (p<0.05).
     (5)The expression of eNOS, ICAM-1and VCAM-1between WT and KO mice was notsignificant. WH mice exhibited increased ICAM-1,VCAM-1expression and decreasedeNOS expression (all P<0.05). In comparison with WH mice, reduced eNOS and increasedICAM-1and VCAM-1were observed in KH mice (all P<0.05).
     Conclusions Loss of ACE2deteriorates impairment of islet β cell function and pancreaticislet endothelial function in mice with long-term high-fat diet.
     Objective The aim of this study was to evaluate the apoptosis effects of palmitate on MS-1cells. Examine the role of Mas on lipoapoptosis of MS-1cells.
     Methods(1)We down-regulated Mas expression by siRNA in mice islet microvessel cellsMS-1. After transfected with Mas-siRNA, Mas mRNA expression was detected byreal-time quantitative reverse transcription-polymerase chain reaction (RT-PCR).(2)Culturing the MS-1cells which were transfected by Mas-siRNA at125uMconcerntration of PA for24h. MS-1cells apoptosis was analyzed by Annexin V-FITC/PIflow cytometry. MS-1cells which were induced by siRNA and/or PA was co-cultured withMIN6for24h. Glucose-stimulated insulin secretion (GSIS) in MIN6was examined afterco-culturing.(3)Akt-eNOS, JNK, p38-MAPK signaling pathways activation and bcl-2, bax, caspase-3expression in MS-1cells were observed by Western-blotting.(4)NO production from MS-1cells was detected by nitrate reductase assay.(5)The FoxO1, p22phox,TNF-mRNA in MS-1cells were detected by RT-PCR.
     Results (1)Mas mRNA expression in Mas-siRNA transfected MS-1cells showed amarked reduction, compared with the negative control.(p<0.05).(2)No significant difference of the percentage of apoptosis cell were indicated betweennormal MS-1cells and Mas-siRNA transfected MS-1cells. PA induced the MS-1cellsapoptosis (p<0.05). The cell apoptosis rates induced by PA increased after beingtransfected by Mas-siRNA (p<0.05).(3)PA promoted the expression of p-JNK, p-p38, caspase-3,Bax and inhibited theexpression of p-Akt, p-eNOS, bcl-2in MS-1cells (all p<0.05). The up-regulation ofcaspase-3,Bax and down-regulation of p-Akt,p-eNOS, bcl-2were greater after Mas-siRNA transfection (all p<0.05).(4)There was no difference of NO concentration between MS-1cells with and withoutMas-siRNA transfection. PA reduced the NO concentrations in MS-1cells (both p<0.05).After transfected by Mas-siRNA, the reduction of NO concentration induced by PA wasgreater (p<0.05).(5)The expression of FoxO1mRNAwas not significant among different MS-1cells. Thep22phox,TNF-mRNA expression were not significant between MS-1cells with andwithout Mas-siRNA transfection. PA stimulated p22phox,TNF-mRNA expression inMS-1cells (all p<0.05). The p22phox mRNA expression between MS-1cells with andwithout Mas-siRNA transfection induced by PA was not significant. TransfectionMas-siRNA markedly increased the TNF-mRNA expression in MS-1cells induced by PA(P<0.05).(6)After co-cultured, the basic insulin among four group was not significant. The GSIS inMIN6cells co-cultured with MS-1cells with and without Mas-siRNA was not different. Incomparison with MIN6cells co-cultured with MS-1which was not stimulated by PA, theMIN6cells co-cultured with MS-1cells induced by PA exhibited a reduction of GSIS (bothp<0.05). With the intervention by PA, the MIN6cells co-cultured with MS-1cellstransfected by Mas-siRNA showed a slightly reduced GSIS compared with the MIN6cellsco-cultured with normal MS-1cells,but the difference was not significant (P>0.05).
     Conclusions Mas-siRNA transfection promoted MS-1cells lipoapoptosis induced by PAthrough down-regulation of Akt-eNOS signaling pathways, bcl-2expression andup-regulation of caspase-3, bax expression.
引文
[1] Holman RR. Assessing the potential for-glucosidase inhibitors in prediabetic states.Diabetes Res Clin Pract,1998,(suppl40):S21-S25.
    [2] Johansson M, Jansson L and Carlsson P. O. Improved vascular engraftment andfunction of autotransplanted pancreatic islets as a result of partial pancreatectomy in themouse and rat. Diabetologia,2007,50(6):1257-1266.
    [3] Vasavada R. C, Wang L, Fujinaka Y, et al. Protein Kinase C-Activation MarkedlyEnhances-Cell Proliferation: An Essential Role in Growth Factor Mediated-CellMitogenesis. Diabetes,2007,56(11):2732-2743.
    [4] Li X, Zhang L, Meshinchi S, et al. Islet Microvasculature in Islet Hyperplasia andFailure in a Model of Type2Diabetes. Diabetes,2006,55(11):2965-2973.
    [5] Iwase Masanori, Nakamura Udai, Uchizono Yuji, et al. Nateglinide, a non-sulfonylurearapid insulin secretagogue, increases pancreatic islet blood flow in rats. Eur J Pharmacol,2005,518(2-3):243-250.
    [6]李新和袁莉.胰岛微循环与胰岛功能.国际内科学杂志,2008,35(12):709-712.
    [7] Chappell MC, Millsted A, Diz DI, et al. Evidence for an intrinsic angiotensin system inthe canine pancreas. J Hypertens,1991,9(8):751-759.
    [8] Lau T., Carlsson P. O. and Leung P. S. Evidence for a local angiotensin-generatingsystem and dose-dependent inhibition of glucose-stimulated insulin release by angiotensinII in isolated pancreatic islets. Diabetologia,2004,47(2):240-248.
    [9] Bovenzi Veronica, Savard Martin, Morin Josée, et al. Bradykinin protects against brainmicrovascular endothelial cell death induced by pathophysiological stimuli. J Cell Physiol,2010,222(1):168-176.
    [10]Yuan Li, Li Xin, Li Jin, et al. Effects of renin–angiotensin system blockade on the isletmorphology and function in rats with long-term high-fat diet. Acta Diabetol,2010.
    [11] Tikellis C, Cooper M. E and Thomas M. C. Role of the renin–angiotensin system in theendocrine pancreas: Implications for the development of diabetes. Int J Biochem Cell Biol,2006,38(5-6):737-751.
    [12]Bindom Sharell M. and Lazartigues Eric. The sweeter side of ACE2: Physiologicalevidence for a role in diabetes. Mol Cell Endocrinol,2009,302(2):193-202.
    [13]Xu P, Costa-Goncalves A. C, Todiras M, et al. Endothelial Dysfunction and ElevatedBlood Pressure in Mas Gene-Deleted Mice. Hypertension,2008,51(2):574-580.
    [14]Rabelo Luiza A, Xu Ping, Todiras Mihail, et al. Ablation of angiotensin (1-7) receptorMas in C57Bl/6mice causes endothelial dysfunction. J Am Soc Hypertens,2008,2(6):418-424.
    [15]Yang Hui-Yu, Bian Yun-Fei, Zhang Hua-Ping, et al. Angiotensin-(1-7) treatmentameliorates angiotensin II-induced apoptosis of human umbilical vein endothelial cells.Clin Exp Pharmacol Physiol,2012,39(12):1004-1010.
    [16]Zhong J. C., Yu X. Y., Lin Q. X., et al. Enhanced angiotensin converting enzyme2regulates the insulin/Akt signalling pathway by blockade of macrophage migrationinhibitory factor expression. Br J Pharmacol,2008,153(1):66-74.
    [17]Niu Ming-Jia, Yang Jin-Kui, Lin Shan-Shan, et al. Loss of angiotensin-convertingenzyme2leads to impaired glucose homeostasis in mice. Endocrine,2008,34(1-3):56-61.
    [18]Takeda M, Yamamoto K, Takemura Y, et al. Loss of ACE2exaggerates high-caloriediet induced insulin resistance by reduction of GLUT4. Diabetes,2013,62(1):223-233.
    [19]Wong Denise W, Oudit Gavin Y, Reich Heather, et al. Loss of Angiotensin-ConvertingEnzyme-2(Ace2) Accelerates Diabetic Kidney Injury. Am J Pathol,2007,171(2):438-451.
    [20]Bindom S. M, Hans C. P, Xia H, et al. Angiotensin I-Converting Enzyme Type2(ACE2) Gene Therapy Improves Glycemic Control in Diabetic Mice. Diabetes,2010,59(10):2540-2548.
    [1] Chappell MC, Millsted A, Diz DI, et al. Evidence for an intrinsic angiotensin system inthe canine pancreas. J Hypertens,1991,9(8):751-759.
    [2] Lau T., Carlsson P. O. and Leung P. S. Evidence for a local angiotensin-generatingsystem and dose-dependent inhibition of glucose-stimulated insulin release by angiotensinII in isolated pancreatic islets. Diabetologia,2004,47(2):240-248.
    [3] Tikellis C, Cooper M. E and Thomas M. C. Role of the renin–angiotensin system in theendocrine pancreas: Implications for the development of diabetes. Int J Biochem Cell Biol,2006,38(5-6):737-751.
    [4] Investigators DREAM Trial, Bosch J, Yusuf S, et al. Effect of ramipril on the incidenceof diabetes. N Engl J Med.,2006,355(15):1551-1562.
    [5] Leung PS. Mechanisms of protective effects induced by blockade of therenin-angiotensin system: novel role of the pancreatic islet angiotensin-generating systemin Type2diabetes. Diabet Med,2007,24(2):110-116.
    [6] Cheng Y, Liu YF, Zhang JL, et al. Elevation of vascular endothelial growth factorproduction and its effect on revascularization and function of graft islets in diabetic rats.World J Gastroenterol,2007,13(20):2862-2866.
    [7] Zmuda Erik J, Powell Catherine A and Hai Tsonwin. A Method for Murine IsletIsolation and Subcapsular Kidney Transplantation. J Vis Exp,2011,13(50):pii:2096. doi:10.3791/2096.
    [8] O'Dowd JF. The Isolation and Purification of Rodent Pancreatic Islets of Langerhans.Methods Mol Biol,2009,560:37-42.
    [9] Li Dong-Sheng, Yuan Ya-Hong, Tu Han-Jun, et al. A protocol for islet isolation frommouse pancreas. Nat Protoc,2009,4(11):1649-1652.
    [10]Buchwald Peter, Wang Xiaojing, Khan Aisha, et al. Quantitative Assessment of IsletCell Products: Estimating the Accuracy of the Existing Protocol and Accounting for IsletSize Distribution. Cell Transplant.2009,2009,18(10):1223-1235.
    [11] Bovenzi V, Savard M, Morin J, et al. Bradykinin protects against brain microvascularendothelial cell death induced by pathophysiological stimuli. J Cell Physiol,2010,222(1):168-176.
    [12]Li X, Zhang L, Meshinchi S, et al. Islet Microvasculature in Islet Hyperplasia andFailure in a Model of Type2Diabetes. Diabetes,2006,55(11):2965-2973.
    [13]Yuan L, Li X, Li J, et al. Effects of renin–angiotensin system blockade on the isletmorphology and function in rats with long-term high-fat diet. Acta Diabetol,2010.
    [14]Scheen A. J. Renin-angiotensin system inhibition prevents type2diabetes mellitus.Diabetes Metab,2004,30(6):487-496.
    [15]Donoghue M, Hsieh F, Baronas E, et al. A Novel Angiotensin-ConvertingEnzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin1-9.Circ Res,2000,87(5):e1-e9.
    [16]Tipnis S. R. A Human Homolog of Angiotensin-converting Enzyme. CLONING ANDFUNCTIONAL EXPRESSION AS A CAPTOPRIL-INSENSITIVECARBOXYPEPTIDASE. Journal of Biological Chemistry,2000,275(43):33238-33243.
    [17]Hamming I, Timens W, Bulthuis M. L. C, et al. Tissue distribution of ACE2protein,the functional receptor for SARS coronavirus. A first step in understanding SARSpathogenesis. J Pathol,2004,203(2):631-637.
    [18]谢旭东,陈君柱和王兴祥.小鼠ACE2基因的克隆和体外表达序列分析与组织分布浙江大学学报(医学版),2005,34(1):48-54.
    [19]Tikellis C, Wookey PJ, Candido R, et al. Improved islet morphology after blockade ofRAS in ZDF rat. Diabetes,2004,53(4):989-997.
    [20]季秀娟,徐剑,张雪莲,等.血管紧张素转化酶相关性羧肽酶在人及啮齿动物胰腺的表达首都医科大学学报2007,28(3):278-282.
    [21]Bindom SM and Lazartigues E. The sweeter side of ACE2: Physiological evidence fora role in diabetes. Mol Cell Endocrinol,2009,302(2):193-202.
    [22]Wysocki J. ACE and ACE2Activity in Diabetic Mice. Diabetes,2006,55(7):2132-2139.
    [23]Tikellis C. Characterization of Renal Angiotensin-Converting Enzyme2in DiabeticNephropathy. Hypertension,2003,41(3):392-397.
    [24]Tikellis C, Bialkowski K, Pete J, et al. ACE2Deficiency Modifies RenoprotectionAfforded by ACE Inhibition in Experimental Diabetes. Diabetes,2008,57(4):1018-1025.
    [25]Wong DW, Oudit GY, Reich H, et al. Loss of Angiotensin-Converting Enzyme-2(Ace2)Accelerates Diabetic Kidney Injury. Am J Pathol,2007,171(2):438-451.
    [26]Mizuiri S, Hemmi H, Arita M, et al. Expression of ACE and ACE2in Individuals WithDiabetic Kidney Disease and Healthy Controls. Am J Kidney Dis,2008,51(4):613-623.
    [27]Liu C, Hu Q, Wang Y, et al. Angiotensin-converting enzyme (ACE)2overexpressionameliorates glomerular injury in a rat model of diabetic nephropathy: a comparison withACE inhibition. Molecular Medicine,2011,17(1-2):1.
    [28]Shao Y, He M, Zhou L, et al. Chronic angiotensin (17) injection acceleratesSTZ-induced diabetic renal injury. Acta Pharmacologica Sinica,2008,29(7):829-837.
    [29]Niu MJ, Yang JK, Lin SS, et al. Loss of angiotensin-converting enzyme2leads toimpaired glucose homeostasis in mice. Endocrine,2008,34(1-3):56-61.
    [30]Takeda M, Yamamoto K, Takemura Y, et al. Loss of ACE2exaggerates high-caloriediet induced insulin resistance by reduction of GLUT4. Diabetes,2013,62(1):223-233.
    [31]Bindom S. M, Hans C. P, Xia H, et al. Angiotensin I-Converting Enzyme Type2(ACE2) Gene Therapy Improves Glycemic Control in Diabetic Mice. Diabetes,2010,59(10):2540-2548.
    [32]Ballian N and Brunicardi FC. Islet Vasculature as a Regulator of Endocrine PancreasFunction. World J Surg,2007,31(4):705-714.
    [33]Huang Z, Jansson L and Sj holm. Pancreatic islet blood flow is selectively enhancedby captopril, irbesartan and pravastatin, and suppressed by palmitate. Biochem Biophys ResCommun,2006,346(1):26-32.
    [34]Kampf C, Lau T, Olsson R, et al. Angiotensin II type1receptor inhibition markedlyimproves the blood perfusion, oxygen tension and first phase of glucose-stimulated insulinsecretion in revascularised syngeneic mouse islet grafts. Diabetologia,2005,48(6):1159-1167.
    [35]Moldovan S, Livingston E, Zhang RS, et al. Glucose induced islet hyperemia ismediated by nitric oxide. Am J Surg,1996,171(1):16-20.
    [36]Olsson R and Carlsson P. The pancreatic islet endothelial cell: Emerging roles in isletfunction and disease. Int J Biochem Cell Biol,2006,38(4):492-497.
    [37]Su Y, Liu X. M, Sun Y. M, et al. The relationship between endothelial dysfunction andoxidative stress in diabetes and prediabetes. Int J Clin Pract,2008,62(6):877-882.
    [38]Su Y, Liu XM, Sun YM, et al. Endothelial Dysfunction in Impaired Fasting Glycemia,Impaired Glucose Tolerance, and Type2Diabetes Mellitus. Am J Cardiol,2008,102(4):497-498.
    [1] Johansson M, Jansson L and Carlsson P. O. Improved vascular engraftment andfunction of autotransplanted pancreatic islets as a result of partial pancreatectomy in themouse and rat. Diabetologia,2007,50(6):1257-1266.
    [2]李新和袁莉.胰岛内皮细胞与胰岛功能.国际内分泌代谢杂志,2009,29(1):14-16.
    [3] Vasavada R. C, Wang L, Fujinaka Y, et al. Protein Kinase C-Activation MarkedlyEnhances-Cell Proliferation: An Essential Role in Growth Factor Mediated-CellMitogenesis. Diabetes,2007,56(11):2732-2743.
    [4] Potenza MA, Gagliardi S, Nacci C, et al. Endothelial dysfunction in diabetes: frommechanisms to therapeutic targets. Curr Med Chem,2009,16(1):94-112.
    [5] Li X, Zhang L, Meshinchi S, et al. Islet Microvasculature in Islet Hyperplasia andFailure in a Model of Type2Diabetes. Diabetes,2006,55(11):2965-2973.
    [6] Bader M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch,2012,465(1):79-85.
    [7] Santos RAS, Ferreira AJ, Verano-Braga T, et al. Angiotensin-converting enzyme2,angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol,2013,216(2):R1-R17.
    [8] Ferrario Carlos M. ACE2: more of Ang-(1–7) or less Ang II? Curr Opin NephrolHypertens,2011,20(1):1-6.
    [9] Chappell MC, Millsted A, Diz DI, et al. Evidence for an intrinsic angiotensin system inthe canine pancreas. J Hypertens,1991,9(8):751-759.
    [10]Bindom SM and Lazartigues E. The sweeter side of ACE2: Physiological evidence fora role in diabetes. Mol Cell Endocrinol,2009,302(2):193-202.
    [11] Xu P, Costa-Goncalves A. C, Todiras M, et al. Endothelial Dysfunction and ElevatedBlood Pressure in Mas Gene-Deleted Mice. Hypertension,2008,51(2):574-580.
    [12]Rabelo Luiza A, Xu Ping, Todiras Mihail, et al. Ablation of angiotensin (1-7) receptorMas in C57Bl/6mice causes endothelial dysfunction. J Am Soc Hypertens,2008,2(6):418-424.
    [13]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811.
    [14]Eberhard Daniel, Kragl Martin and Lammert Eckhard.‘Giving and taking’: endothelialand β-cells in the islets of Langerhans. Trends in Endocrinology&Metabolism,2010,21(8):457-463.
    [15]Olsson R and Carlsson P. The pancreatic islet endothelial cell: Emerging roles in isletfunction and disease. Int J Biochem Cell Biol,2006,38(4):492-497.
    [16]Nikolova G, Jabs N, Konstantinova I, et al. The Vascular Basement Membrane: ANiche for Insulin Gene Expression and β Cell Proliferation. Dev Cell,2006,10(3):397-405.
    [17]Otonkoski T, Banerjee M, Korsgren O, et al. Unique basement membrane structure ofhuman pancreatic islets: implications for β-cell growth and differentiation. Diabetes ObesMetab,2008,10:119-127.
    [18]Kaido T, Yebra M, Cirulli V, et al. Regulation of Human-Cell Adhesion, Motility, andInsulin Secretion by Collagen IV and Its Receptor11. J Biol Chem,2004,279(51):53762-53769.
    [19]Johansson M. Islet Endothelial Cells and Pancreatic-Cell Proliferation: Studies inVitro and during Pregnancy in Adult Rats. Endocrinology,2006,147(5):2315-2324.
    [20]Crawford LA, Guney MA, Oh Y A, et al. Connective Tissue Growth Factor (CTGF)Inactivation Leads to Defects in Islet Cell Lineage Allocation and-Cell Proliferationduring Embryogenesis. Mol Endocrinol,2008,23(3):324-336.
    [21]Olsson R. and Carlsson P. The pancreatic islet endothelial cell: Emerging roles in isletfunction and disease. The International Journal of Biochemistry&Cell Biology,2006,38(4):492-497.
    [22]Ballian N and Brunicardi FC. Islet Vasculature as a Regulator of Endocrine PancreasFunction. World J Surg,2007,31(4):705-714.
    [23]Henningsson R, Salehi A and Lundquist I. Role of nitric oxide synthase isoforms inglucose-stimulated insulin release. Am J Physiol Cell Physiol,2002,283(1):C296-3C04.
    [24]Piro Salvatore, Spampinato Daniela, Spadaro Luisa, et al. Direct apoptotic effects offree fatty acids on human endothelial cells. Nutr Metab Cardiovasc Dis,2008,18(2):96-104.
    [25]Artwohl M, Roden M, Waldh usl W, et al. Free fatty acids trigger apoptosis and inhibitcell cycle progression in human vascular endothelial cells. FASEB J,2004,18(1):146-148.
    [26]Urbich C, Knau A, Fichtlscherer S, et al. FOXO-dependent expression of theproapototic protein Bim-pivotal role for apoptosis signaling in endothelial progenitor cells.FASEB J,2005,19(8):974-976.
    [27]Heitsch H, Brovkovych S, Malinski T, et al. Angiotensin-(1-7)-Stimulated Nitric Oxideand Superoxide Release From Endothelial Cells. Hypertension,2001,37(1):72-76.
    [28]Sampaio WO, Souza dos Santos RA, Faria-Silva R, et al. Angiotensin-(1-7) ThroughReceptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-DependentPathways. Hypertension,2006,49(1):185-192.
    [29]Zhang Hanrui, Dellsperger Kevin C. and Zhang Cuihua. The link between metabolicabnormalities and endothelial dysfunction in type2diabetes: an update. Basic Res Cardiol,2012,107(1):237.
    [30]Yang Feiyan, Cai Wei, Yang Kai, et al. PKC knockdown inhibits free fatty acidinduction of endothelial cell apoptosis. Cell Biochemistry and Function,2012, doi:10.1002/cbf.2908.:.
    [31]Dersch K., Ichijo H., Bhakdi S., et al. Fatty acids liberated from low-densitylipoprotein trigger endothelial apoptosis via mitogen-activated protein kinases. Cell DeathDiffer,2005,12(8):1107-1114.
    [32]Yamagishi S, Okamoto T, Amano S, et al. Palmitate-induced apoptosis ofmicrovascular endothelial cells and pericytes. Mol Med,2002,8(8):179-184.
    [33]Staiger K., Staiger H., Weigert C., et al. Saturated, but Not Unsaturated, Fatty AcidsInduce Apoptosis of Human Coronary Artery Endothelial Cells via Nuclear Factor-BActivation. Diabetes,2006,55(11):3121-3126.
    [34]孙慧琳,刘海明,张振,等.游离脂肪酸对猴胰岛微血管内皮细胞脂毒性的影响.广东医学,2012,33(8):1078-1081.
    [35]Jung Chang Hee, Lee Woo Je, Hwang Jenie Yoonoo, et al. Vaspin protects vascularendothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol3-kinase/Akt pathway. Biochem Biophys Res Commun,2011,413(2):264-269.
    [36]Erdogdu O, Eriksson L, Xu H, et al. Exendin-4protects endothelial cells fromlipoapoptosis by PKA, PI3K, eNOS, p38MAPK, and JNK pathways. J Mol Endocrinol,2013,50(2):229-241.
    [37]Gensch C, Clever YP, Werner C, et al. The PPAR-γ agonist pioglitazone increasesneoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis,2007,192(1):67-74.
    [38]Eriksson Linnéa, Erdogdu zlem, Nystr m Thomas, et al. Effects of some anti-diabeticand cardioprotective agents on proliferation and apoptosis of human coronary arteryendothelial cells. Cardiovasc Diabetol,2012,11(1):27.
    [39]Verano-Braga T, Schw mmle V, Sylvester M, et al. Time-Resolved QuantitativePhosphoproteomics: New Insights into Angiotensin-(1–7) Signaling Networks in HumanEndothelial Cells. J Proteome Res,2012,11(6):3370-3381.
    [40]徐华,李海龙,牛自勇,等. p38MAPK通路介导胰高血糖素样肽-1对人脐静脉内皮细胞凋亡的抑制.生理学报,2012,64(4):444–448.
    [41]Chai W. and Liu Z. p38Mitogen-Activated Protein Kinase Mediates Palmitate-InducedApoptosis But Not Inhibitor of Nuclear Factor-B Degradation in Human Coronary ArteryEndothelial Cells. Endocrinology,2006,148(4):1622-1628.
    [1] Taye Ashraf, Saad Adel H., Kumar Arun H. S., et al. Effect of apocynin on NADPHoxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cellsexposed to high glucose. Eur J Pharmacol,2010,627(1-3):42-48.
    [2] Potenza MA, Gagliardi S, Nacci C, et al. Endothelial dysfunction in diabetes: frommechanisms to therapeutic targets. Curr Med Chem,2009,16(1):94-112.
    [3] Artwohl M, Roden M, Waldh usl W, et al. Free fatty acids trigger apoptosis and inhibitcell cycle progression in human vascular endothelial cells. FASEB J,2004,18(1):146-148.
    [4] Zhang Hanrui, Dellsperger Kevin C. and Zhang Cuihua. The link between metabolicabnormalities and endothelial dysfunction in type2diabetes: an update. Basic Res Cardiol,2012,107(1):237.
    [5] Gao,X, LA Martinez-Lemus, and C Zhang,. Endothelium-derived hyperpolarizingfactor and diabetes. World J Cardiol,2011,26(31):25-31.
    [6] Gonzalez MA and Selwyn AP. Endothelial function, inflammation, and prognosis incardiovascular disease. Am J Med,2003Dec8(115):Suppl8A:99S-106S.
    [7] Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase inendothelial cells by Akt-dependent phosphorylation. Nature,1999,399(6736):601-605.
    [8] Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin1transcription is controlledby nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes,2000,49(9):1561-1570.
    [9] Belin de Chantemele E J and Stepp DW. Influence of obesity and metabolicdysfunction on the endothelial control in the coronary circulation. J Mol Cell Cardiol,2012,52(4):840-847.
    [10]肖芳,宋君和陈丽.脂毒性与胰岛微血管内皮细胞损伤的研究进展基础医学与临床,2012,32(10):1226-1229.
    [11] Yang Feiyan, Cai Wei, Yang Kai, et al. PKC knockdown inhibits free fatty acidinduction of endothelial cell apoptosis. Cell Biochemistry and Function,2012, doi:10.1002/cbf.2908.:.
    [12]Yamagishi S, Okamoto T, Amano S, et al. Palmitate-induced apoptosis ofmicrovascular endothelial cells and pericytes. Mol Med,2002,8(8):179-184.
    [13]Erdogdu O., Eriksson L., Xu H., et al. Exendin-4protects endothelial cells fromlipoapoptosis by PKA, PI3K, eNOS, p38MAPK, and JNK pathways. J Mol Endocrinol,2013,50(2):229-241.
    [14]Zhou H, Liu X, Liu L, et al. Oxidative stress and apoptosis of human brainmicrovascular endothelial cells induced by Free Fatty Acids. J Int Med Res,2009,37(6):1897-1903.
    [15]Dersch K., Ichijo H., Bhakdi S., et al. Fatty acids liberated from low-densitylipoprotein trigger endothelial apoptosis via mitogen-activated protein kinases. Cell DeathDiffer,2005,12(8):1107-1114.
    [16]Jung Chang Hee, Lee Woo Je, Hwang Jenie Yoonoo, et al. Vaspin protects vascularendothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol3-kinase/Akt pathway. Biochem Biophys Res Commun,2011,413(2):264-269.
    [17]Staiger K., Staiger H., Weigert C., et al. Saturated, but Not Unsaturated, Fatty AcidsInduce Apoptosis of Human Coronary Artery Endothelial Cells via Nuclear Factor-BActivation. Diabetes,2006,55(11):3121-3126.
    [18]Nobukata Hidefumi, Ishikawa Tsutomu, Obata Masaomi, et al. Long-termadministration of highly purified eicosapentaenoic acid ethyl ester improves thedysfunction of vascular endothelial and smooth muscle cells in male WBN/Kob rats.Metabolism,2000,49(12):1588-1591.
    [19]詹晓蓉,肖彧君,母义明,等.花生四烯酸对饱和脂肪酸的血管内皮细胞毒性的保护作用中华内分泌代谢杂志,2004,20(5):453-456.
    [20]Chai W. and Liu Z. p38Mitogen-Activated Protein Kinase Mediates Palmitate-InducedApoptosis But Not Inhibitor of Nuclear Factor-B Degradation in Human Coronary ArteryEndothelial Cells. Endocrinology,2006,148(4):1622-1628.
    [21]徐华,李海龙,牛自勇,等. p38MAPK通路介导胰高血糖素样肽-1对人脐静脉内皮细胞凋亡的抑制.生理学报,2012,64(4):444–448.
    [22]Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulatereactive oxygen species production through protein kinase C--dependent activation ofNAD(P)H oxidase in cultured vascular cells. Diabetes,2000,49(11):1939-1945.
    [23]Du Xueliang, Edelstein Diane, Obici Silvana, et al. Insulin resistance reduces arterialprostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. JClin Invest,2006,116(4):1071-1080.
    [24]Steinberg HO, Paradisi G, Hook G, et al. Free fatty acid elevation impairsinsulin-mediated vasodilation and nitric oxide production. Diabetes,2000,49(7):1231-1238.
    [25]Reiss K., Cornelsen I., Husmann M., et al. Unsaturated Fatty Acids Drive Disintegrinand Metalloproteinase (ADAM)-dependent Cell Adhesion, Proliferation, and Migration byModulating Membrane Fluidity. J Biol Chem,2011,286(30):26931-26942.
    [26]Chinen I., Shimabukuro M., Yamakawa K., et al. Vascular Lipotoxicity: EndothelialDysfunction via Fatty-Acid-Induced Reactive Oxygen Species Overproduction in ObeseZucker Diabetic Fatty Rats. Endocrinology,2006,148(1):160-165.
    [27]Piro Salvatore, Spampinato Daniela, Spadaro Luisa, et al. Direct apoptotic effects offree fatty acids on human endothelial cells. Nutr Metab Cardiovasc Dis,2008,18(2):96-104.
    [28]陈莉,王红祥,赵浞,等.高游离脂肪酸通过FOX01途径抑制内皮祖细胞增殖并促进其凋亡中国病理生理杂志,2011,27(8):1615-1618.
    [29]Bai X., Margariti A., Hu Y., et al. Protein Kinase C Deficiency Accelerates NeointimalLesions of Mouse Injured Artery Involving Delayed Reendothelialization and Vasohibin-1Accumulation. Arterioscler Thromb Vasc Biol,2010,30(12):2467-2474.
    [30]Zhu Penli, Chen Gang, You Tingting, et al. High FFA-induced proliferation andapoptosis in human umbilical vein endothelial cell partly through Wnt/β-catenin signalpathway. Mol Cell Biochem,2009,338(1-2):123-131.
    [31]游婷婷,陈刚,林旭,等.应用RNA干扰技术研究游离脂肪酸对人脐静脉内皮细胞凋亡的影响.中华糖尿病杂志,2010,2(1):53-57.
    [32]Johansson M, Jansson L and Carlsson P. O. Improved vascular engraftment andfunction of autotransplanted pancreatic islets as a result of partial pancreatectomy in themouse and rat. Diabetologia,2007,50(6):1257-1266.
    [33]Vasavada R. C, Wang L, Fujinaka Y, et al. Protein Kinase C-Activation MarkedlyEnhances-Cell Proliferation: An Essential Role in Growth Factor Mediated-CellMitogenesis. Diabetes,2007,56(11):2732-2743.
    [34]Li X, Zhang L, Meshinchi S, et al. Islet Microvasculature in Islet Hyperplasia andFailure in a Model of Type2Diabetes. Diabetes,2006,55(11):2965-2973.
    [35]Iwase Masanori, Nakamura Udai, Uchizono Yuji, et al. Nateglinide, a non-sulfonylurearapid insulin secretagogue, increases pancreatic islet blood flow in rats. Eur J Pharmacol,2005,518(2-3):243-250.
    [36]李新和袁莉.胰岛微循环与胰岛功能.国际内科学杂志,2008,35(12):709-712.
    [37]Tal Michael G. Type2diabetes: Microvascular ischemia of pancreatic islets? MedHypotheses,2009,73(3):357-358.
    [38]孙慧琳,刘海明,张振,等.游离脂肪酸对猴胰岛微血管内皮细胞脂毒性的影响.广东医学,2012,33(8):1078-1081.
    [39]谢芳英,陈宏,鲁辛,等.软脂酸诱导胰岛微血管内皮细胞凋亡的研究.广东医学,2009,30(6):883-885.
    [40]谢芳英,陈宏,张桦,等.非诺贝特对游离脂肪酸诱导的胰岛微血管内皮细胞株损害的干预作用.中华糖尿病杂志,2009,1(5):359-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700