用户名: 密码: 验证码:
升平油田扶余油层储层特征与有利区块预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
升平油田区域构造位置处于松辽盆地中央凹陷的东北部。本论文在层序地层学、沉积学理论指导下,着重研究了扶余组的沉积相和沉积微相,并且弄清了研究区目的层的油水分布规律,明确了砂体的空间展布,并预测了有利储集体的分布,取得了以下主要的认识和成果:
     (1)通过对研究区100余口钻井录井数据、测井曲线等资料分析,在对单井沉积相及各个微相分析研究的基础上,发现扶余3、扶余2油层主要发育了曲流河沉积,而扶1油层主要发育了三角洲平原亚相。
     (2)研究区未被断层分化的地段内,油水垂向上基本按重力分异作用分布,剖面上是上油、中同、下水,平面上则是高部位含油、低部位含水。由于油、水层层位不一致,砂体分布的不连续性,断层的切割和错动作用而造成升平构造鼻顶的构造—岩性油气藏内油水界面不连续和高低不一的现状,全油田没有统一的油水界面。
     (3)利用Jason方法对研究区扶余油组分油层进行了全区反演,结果表明该区上下存在速度差异,并采用了不同的波阻抗门槛值进行砂岩估算。空白区储层物性非均质性很强,北部砂岩厚度及孔渗明显好于东部和西部。
     (4)在沉积相对比划分、储层预测的砂体厚度以及有效厚度的展布规律、孔隙度、渗透率等非均质性研究以及成藏规律和油水界面的识别的基础上,采用多层次模糊数学与PetreL软件平台相结合的方法,综合利用沉积微相、砂岩总厚、有效砂厚、孔隙度、渗透率及含砂率等6项指标,将研究区储层有利分布区划分4个区块:升66区块、升深6区块、芳29区块、升163区块,并对有利区块进行了综合分析。
Shengping oilfield is located in the northeast of central depression of Songliao basin. Under the guide of sedimentology and sequence stratigraphy, this paper studies the sedimentary facies and sedimentary micro-facies and makes it clear that the oil-water distribution and sand boy distribution, and forecasts the favorable reservoir distribution. Research results are achieved as following.
     1. Based on the analysis of the data of drilling and logging curves more than 100 wells and researching on the sedimentary facies and microfacies of single well, the reservoir of Fuyu 3 and Fuyu 2 oil layers deposited in meandering river, while Fuyu 1 oil layer accumulated in delta plain facies.
     2. In the section undivided by faults, the distribution of oil and water is controlled by gravitational differentiation. The oil lies on the top and the water is at bottom and oil-water layer in the middle of oil reservoir profile. Because of inconsistency of the oil and water layers, the sand body distribution and fault cutting, the oil-water interface in the structure is discontinuous as well. There is not uniform oil-water interface in the oil field.
     3. Jason software was used to inverse the Fuyu oil layers in the whole region. The results show there exists speed difference between the upper and the lower in the area and the threshold value of sandstone estimated by using the different acoustic impedance. The reservoir heterogeneity is very high. The thickness, porosity and permeability of sandstone in the north are significantly better than those in the east and west.
     4. Based on the analysis of sedimentary microfacies, sand body thickness and effective thickness, porosity, permeability, heterogeneity and oil-water distribution using analytic hiberarchy fuzzy mathematics and PetreL software platform, the favorable reservoir areas have been divided into four blocks: Block Sheng 66, Block Shengshen 6, Block Fang 29 and Block Sheng 163.
引文
[1]贾承造,刘德来,赵文智.层序地层学研究新进展[J].石油勘探与开发, 2002,Vol29, No 5:1~4.
    [2]纪友亮,张世奇.层序地层学原理及层序成因机制模式[M].北京:地质出版社,1998。
    [3]解习农,李思田.陆相盆地层序地层研究特点[J].地质科技情报,1993,12(1):22~26。
    [4]邓宏文,王洪亮,祝永军等.高分辨率层序地层学-原理及应用[M].北京:地质出版社,2002。
    [5]纪友亮,张世奇.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996。
    [6]升平、徐家围子、肇州油田储层预测研究[R].大庆油田八厂内部资料,2005年
    [7]赵澄林.沉积学原理[M].北京:石油工业出版社,2001
    [8]张福林.松辽盆地南部扶新地区油气藏综合研究[R].吉林油田管理局勘探开发研究院,1992
    [9]张一伟,熊琦华.陆相油藏描述.北京:石油工业出版社,1997
    [10]李庆忠.走向精细勘探的道路―高分辨地震勘探系统工程剖析.北京:石油工业出版社. 1993年6月
    [11]黄志龙.松辽盆地南部中浅层油气系统及资源潜力研究[R].石油大学、吉林油田勘探开发研究院,2000
    [12]谭保祥,侯德艳,林景晔.三肇地区扶杨油层油气藏分布规律及勘探前景分析[J].石油勘探与开发,1995,22(1):1-4
    [13]楼章华,谢鸿森,蔡希源等.松辽盆地扶杨油层(K1q3+4)沉积环境[J].石油实验地质,1997,19(1):71-75
    [14]蔡希源.松辽两江地区石油地质分析[M].北京:石油工业出版社,1992
    [15]沈安江、王艳清.松辽盆地南部区域岩相古地理与岩性油藏勘探目标评价—扶新隆起带下部组合沉积相及目标评价[R].杭州石油地质研究所、吉林油田分公司勘探开发研究院,2002。
    [16]沈安江、王艳清.松辽盆地南部沉积相及成藏控制因素研究(中部组合)[R].杭州石油地质研究所、吉林油田分公司勘探开发研究院,2000。
    [17]林畅松,张燕梅,刘景彦等.高精度层序地层与储层预测[J].地学前缘,2000,7(3):111~117
    [18]杨万里.松辽陆相盆地石油地质[M].北京:石油工业出版社,1985
    [19]高瑞祺.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997
    [20]邓海成,刘洪涛,许洪东.大庆台肇地区低渗透砂岩储层裂缝动态研究[J].石油天然气学报,2005,27(1):233-236
    [21]张尔华,宋永忠,陈树民等.松辽盆地扶杨油层河道砂体地震识别方法[J].大庆石油地质与开发,2004,23(5):113-117。
    [22]楼章华,金爱民,朱蓉等.松辽盆地北东区扶杨油层孔隙流体地球化学与砂岩成岩相研究[J].地质学报,2002,76(4):557-564。
    [23]杨喜贵,付广.松辽盆地北部扶杨油层油气成藏与分布的主控因素[J].特种油气藏,2002,9(2):8-11。
    [24]王玉学,丛玉梅,黄见等.地震波形分类技术在河道预测中的应用[J].资源与产业,2006,8(2):71-74。
    [25]邓宏文,王红亮,阎伟鹏等.河流相层序地层构成模式探讨[J].沉积学报,2004,22(3),373-379。
    [26]闫伟鹏.济阳坳陷滩海地区新近系冲积-河流相层序地层研究与有利成藏区带预测[D].[博士学位论文].北京:中国地质大学, 2005。
    [27]吴丽艳.济阳坳陷新近系层序地层与储层分布规律研究[D].[博士学位论文].北京:中国地质大学, 2006。
    [28] Cross T.A. Stratigraphic controls on reservoir attributes in continental strata[J]. Earth Science Frontiers. 2000,Vol. 7, No. 4, 322-350.
    [29] Cross T.A. Application of high resolution sequence stratigraphy to reservoir analysis [A]. Subsurface Reservoir Characterization from Outcrop Observations Proceedings of the 7th E&P R search Conference Paris, Tecchni, 1993. 11- 33.
    [30] Cross T.A Stratigraphic Architecture、Correlation Concepts、Volumetric Partioning,Facies Differentiation,and Reservoir Compartmentalization from the Perspective of High Resolution Sequence Stratigraphy[R]. Research report of the genetic stratigrphy research group, DGGE, CSM, 1994: 28-41.
    [31] Cross, T.A. Applications of High-Resolution Sequence Stratigraphy in Petroleum Exploration and Production[J]. Short Course Notes: Canadian Society of PetroleumGeologists, Calgary, August 15, 1993,290 p.
    [32] Galloway, W.E. Genetic stratigraphic sequences in basin analysis II: architecture and genesis of flooding-surface bounded depositional units:AAPG,1989b,v,73,p.143~154.
    [33] Mitchum, R.M. Seismic stratigraphy and global changer of sea level. Prat 1: Glossary of terms used of in seismic stratigraphy, in C.E.Payton,ed., Seismic stratigraphy-applications to hydrocarbon exploration: AAPG,1977, 26:205~212.
    [34] J.C.Van Wagoner, R.M.Mitchom, K.M.Campion,and V.D.Rahmanian. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts of High-Resolution Correlation of Time and Facies: AAPG Methods in Exploration Series, 1990.
    [35] Vail,P.R.,Hardenbol, and R.G.Todd, Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy, in J.S.Schlee, ed. Inter-regional unconformities and hydrocarbon accumulation: AAPG, 1984,p.129~144.
    [36] Cross T A. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western Interior, U.S.A. In:Wilgaus C K et al. Sea-level changes:An integrated approach. SEPM Special Publication, 1988, 42:371~380.
    [37] Vail P R.Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: seismic stratigraphy interpretation procedure. In: Bally A W, ed. Atlas of seismic stratigraphy. American Association of Petroleum Geologists, Studies in Geology,1987.27:1~10.
    [38] Galloway W E. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. AAPG Bull., 1989, 73: 125~142.
    [39] Johnson J G, Klapper G, Sandberg C A. Devonian eustatic fluctuations in Euramerica. Bull[J]. Amer.Assoc.Petrol.Geologists,1982, 99: 567~587.
    [40] Cross T A. Stratigraphic controls on reservoir attributes in continental strata[J]. Earth Science Frontiers. 2000,7(4): 322~350.
    [41] Cross T A , Baker M R, Chapin M A, et al . Application of high resolution sequence stratigraphy to reservoir analysis. In: Eschard R and Doligez B, Subsurface reservoir characterization from outcrop observation, Editions Technip, Pairs , 1994.11~33.
    [42] Mitchum Jr R M and Van Wagoner J C. High frequency eustatic cycles: Sedimentary Geology, 1991,70:131~160.
    [43] Henry W Possmentier Paul Weimer. Siliciclastic sequence stratigraphy and petroleumgeology-where to from here[J ]. AAPG, 1993, 77(5): 731~742.
    [44] Galloway W E. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. AAPG,1989,73: 125~142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700