用户名: 密码: 验证码:
致密碎屑岩储层地震预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着勘探程度的不断深入,针对以低孔、低渗为特征的致密碎屑岩储层的预测方法备受关注。多年来,前人做了大量卓有成效的工作,取得了丰硕成果,但鉴于问题的复杂性,目前还难以解决预测的准确性问题。为此,在地震波数值模拟研究地震波场特征、频率-空间域相位移法高频吸收-衰减补偿提高叠后地震资料垂向分辨率的基础上,利用地质、钻井、测井、录井和地震资料,通过精细构造描述、地震属性分析、聚类分析、波形地震相分析、叠后纵波阻抗反演、储层参数反演、叠前AVO反演、弹性阻抗反演等多种方法的综合应用,探索了官渡构造带致密碎屑岩储层的地震预测方法,并取得以下几点认识。
     1.通过数学模拟验证了频率-空间域高频吸收、衰减补偿方法的有效性,给出了特定地震地质条件下完全补偿疏松介质对地震波高频成分吸收衰减效应的条件。利用西部地区实验室测定和野外实际测量得到的品质因子与表层纵波速度的拟和关系,适当修改后首次应用于四川盆地,在官渡构造带,在不降低信噪比的前提下,有效地提高了三维地震数据体的垂向分辨率。
     2.综合利用测井信息和波阻抗反演结果建立地质模型,通过傅立叶有限差分地震波场模拟,结合井旁地震记录,总结了下沙溪庙组底砂岩的地震波场特征;利用官渡构造带纵、横波测井资料,针对须家河组四段和下沙溪庙组致密砂岩段进行弹性波正演,在分析AVO响应特征基础上,界定了该层段含气砂岩的类型。
     3.利用基于层面和基于层段的地震属性、属性聚类分析方法和波形地震相划分以及谱分解等各种技术手段,对官渡构造带下沙溪庙组砂体的致密程度进行了综合研究,划分了有利砂体的空间分布范围;综合利用相干体、倾角扫描和方差体分析技术,不仅精细刻画了官渡构造带各层段的断裂展布特征,同时对须家河组和下沙溪庙组的裂缝、微裂缝进行了预测,指明了裂缝发育带的分布范围。
     4.针对官渡构造带碎屑岩储层砂体薄且致密、横向非均质性强的特点,采用神经网络多属性回归分析方法反演地层的纵波阻抗及储层物性参数,通过砂岩楔状体模型的数值模拟求取其有效厚度,预测了有效砂体的空间展布,其结果与实钻吻合,形成了一套适合于该区致密碎屑岩地层的砂体预测方法。
With development of oil and gas exploration, the prediction technique of tight clasticreservoir with lower porosity and lower permeability is attracted more attention. Recently,much work have been done, and made plenty of useful results. For the complication of theproblem, it is hard to make the precise results using the reservoir prediction technique. So,based on studying seismic wave field character by mathematic modeling and temporalresolution improvement of post-stack seismic data with the compensation of the highfrequency absorption attenuation in f-x domain, combined with the lithology information,geological background together with log data, the seismic prediction methods of tightclastic reservoir in Guandu structure belts is discussed through the integration of elaboratestructure description, seismic attributes analysis, seismic facies technique, post-stackimpedance inversion and other ways. The achievements and recognitions are achievementas follows.
     1. The effectiveness of the phase shift compensation method of the high frequencyabsorption and attenuation in f-x domain is proved, and the applying situation of theseismic and geology in surface has been given in which the attenuation of highfrequency absorption of seismic wave ban be compensated by numerical simulations.The properly modified function of Quality-Velocity derived from field information inwestern area and library analysis is applied in Sichuan basin first time. The frequencyband of post stack seismic data processed is widened properly and the temporalresolution is increased efficiently without decreasing the S-N ratio in Guandu structurebelt.
     2. The geology model is established with log data and seismic inversion. The seismicwavefield characteristic of Xiashaximiao formation sand is summarized by the FourierFinite Difference seismic simulation. Using S and P log data of the Guandu structuralbelts, the EI model is carried out aimed for tight sand of Xujiahe 4 member andXiashaximiao formation. On the basis of analysis AVO action characteristic, the gasreservoir is identified in aimed formation.
     3. With the utilization different seismic attributes, clustering analysis of attributes andseismic facies studying as well as spectrum decomposition methods and so on, thedegree of the tight sand of Xiashaximiao formation is researched, and pointed outfavorable reservoir distribution areas. Besides that, Based on the coherence、dipscanning and square variance cube, not only the fault-fracture system distribution law ofdifferent formation is accounted, but also its distribution areas is forecasted.
     4. The reservoir sand of the Guandu structural belt is not only thin and tight, but also variedviolently in the space, so, the multi-attributes regression method with neural network isapplied to inverse the acoustic impedance and reservoir parameters; the thickness ofsand is calculated by tuning thickness theory. The distribution of sand is predicted accurately and its thickness and depth is fitting with the drilling very well with themethod discussed in the article. The method of forecasting the sand is established whichis applicable in the non-marine tight clastic rock with the combination of geophysicsand geology.
引文
《赤水及邻区中浅层碎屑岩天然气成藏条件研究》,中石化南方勘探开发分公司内部报告,2004
     《地震波在吸收与衰减介质中传播的数值模拟及补偿》研究报告,同济大学,2004年
     《地震波在吸收与衰减介质中传播的数值模拟及补偿》研究报告,同济大学,2004年
     Strata技术文档(随机手册),Hampson Russell Company,2005
    [1] 鲍祥生,尹成,赵伟,等.储层预测的地震属性优选技术研究[J].石油物探.2006,45(1):28-33
    [2] 毕玉英,杨宝俊.二维粘弹介质中完全波场正演模拟[J].石油地球物理勘探.1995,30(3):352-362
    [3] 蔡刚,吕锡敏,苏明军,等.频谱分解技术在准噶尔盆地油气勘探中的应用[J].天然气工业.2006,26(4):35-37
    [4] 蔡瑞.基于谱分解技术的缝洞型碳酸盐岩溶洞识别方法[J].石油勘探与开发.2005,32(2):82-85
    [5] 曹茂森,任青文,王怀洪.基于小波与分形理论的地震异常检测[J].地球物理学报.2005,48(3):672-679
    [6] 曹孟起,王九栓,邵林海.叠前弹性波阻抗反演技术及应用[J].石油地球物理勘探.2006,41(3):323-326
    [7] 陈波,胡少华,毕建军.地震属性模式聚类预测储层物性参数[J].石油地球物理勘探.2005,40(2):204-208
    [8] 陈耿毅,余钦范,蔡希玲,等.地震模拟技术新进展-第67届EAGE年会论文综述[J].勘探地球物理进展.2005,28(6):439-448
    [9] 段云卿,覃天,张联盟,等.基于体属性的地震相干技术[J].石油地球物理勘探.2006,41(4):442-446
    [10] 傅旦丹,何樵登.正交各向异性介质地震弹性波场的伪谱法正演模拟[J].石油物探.2001,40(3):8-14
    [11] 苟亮,彭真明.小波多尺度边缘检测及其在裂缝预测中的应用[J].石油地球物理勘探.2005,40(3):309-313
    [12] 郭刚明.地震属性技术的研究与应用.以潍北凹陷灶户构造为例.西南石油学院博士论文.2005
    [13] 郭科.多元统计方法及其应用[M].成都:电子科技大学出版社,2003年9月
    [14] 何碧竹,周杰,汪功怀.利用多元地震属性预测储层信息[J].石油地球物理勘探.2003,38(3):258-262
    [15] 何诚,蔡友洪,李邗,等.AVO属性交会图解释技术在碳酸盐岩储层预测中的应用[J].石油地球物理勘探.2005,40(6):711-715
    [16] 何汉漪.海上高分辨率地震实例研究[J].地球物理学报.1999,42(1):120-126.
    [17] 贺保卫,潘仁芳,莫午零,等.用AVO方法从定性到半定量检测砂岩含气性[J].断块油气田.2005,12(1):19-20
    [18] 贺振华.反射地震资料偏移处理与反演方法[M].重庆大学出版社.1989
    [19] 黄小平,杜洪凌,史晓川.地震相分析在石南21井区沉积相划分中的应用[J].新疆石油地质.2004.25(6):671-672
    [20] 昆西c.史蒂夫s.张翠兰,译.用于储层预测和检测的地震属性技术[J].国外油气勘探.1998,10(2):220-231
    [21] 李庆忠.走向精确勘探的道路[M].北京:石油工业出版社.1993
    [22] 李廷辉,岳跃龙,胡永军,等.Jason反演技术在张东地区储层预测中的应用[J].石油地球物理勘探.2005,40(S1):109-113
    [23] 李幼明.面向油气勘探开发提升地震偏移及属性刻划水平[J].地球物理学进展.2002,17(2):198-210
    [24] 李玉新.地震相干技术在断层与沉积相解释中的应用[J].沉积与特提斯地质.2006,26(3):67-71
    [25] 李正文,胡光岷.P-SV波AVO分析[J].成都理工学院学报.1996,23(4):73-79
    [26] 凌云,高军,张汝杰.基于一维弹性阻尼波动理论的沙丘Q吸收补偿[J].石油地球物理勘探.1997,32(2):795-803
    [27] 凌云.大地吸收衰减分析[J].石油地球物理勘探.2001,36(1):1-8
    [28] 刘传虎.地震属性与非构造油气藏勘探[J].新疆石油地质.2005,26(5):485-488
    [29] 刘丽.地震多参数在塔河油田储层含油气性预测中的应用[J].勘探地球物理进展.2005,28(4):290-294
    [30] 刘文岭,牛彦良,李刚,等.多信息储层预测地震属性提取与有效性分析方法[J].石油物探.2002,41(1):101-106
    [31] 刘雯林.灰岩储层孔隙预测方法[J].石油地球物理勘探.1990,25(4):429-44
    [32] 刘喜武,年静波,吴海波.几种地震波阻抗反演方法的比较分析与综合应用[J]_世界地质.2005,24(3):270-276
    [33] 刘亚明.含气碳酸盐岩的AVO异常响应特征分析—以川东建南气田区为例[J].中国海上油气.2005,17(2):92-93
    [34] 柳建新,刘海飞.倾角扫描多剖面互相关分析及应用效果[J].地球物理学进展.2004,19(1):161-165
    [35] 陆基孟.地震勘探原理[M].北京:石油工业出版社.1982
    [36] 吕公河,于常青,董宁.叠后地震属性分析在油气田勘探开发中的应用[J].地球物理学进展.2006,21(1):161-166
    [37] 马波,冉崎,王兵.充西地区须四段裂缝预测[J].天然气勘探与开发.2006,29(3):30-32
    [38] 马劲风.地震勘探中广义弹性阻抗的正反演[J].地球物理学报.2003,46(3):118-124
    [39] 马在田.高阶有限差分偏移[J].地球物理勘探.1982,17(1):6-15
    [40] 裴正林,牟永光.地震波传播数值模拟[J].地球物理学进展.2004,19(4):933-941
    [41] 佘德平.波场数值模拟技术[J].勘探地球物理进展.2004,27(1):16-21
    [42] 沈守文,彭大钧,颜其彬,等.SB地区西山窑组上部地震相与沉积相分析[J].西南石油学院学报.1999,21(3):32-36
    [43] 宋维琪,王小马,杜玉民,等.综合应用地震属性、测井数据反演储层参数[J].石油地球物理勘探.2002,37(5):491-494
    [44] 孙鹏远,孙建国,卢秀丽.P-SV波AVO分析[J].石油地球物理勘探.2003,38(2):131-135
    [45] 孙夕平,杜世通.边缘检测技术在河道和储层小断裂成像中的应用[J].石油物探.2003,42(4):469-472
    [46] 孙夕平,杨国权.三维地震相干体技术在目标区沉积相研究中的应用[J].石油物探.2004,43(6):591-594
    [47] 王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究[J].地球物理学进展.2005,20(1):89-92
    [48] 王大兴,于波,高俊梅.高阻抗砂岩气藏的AVO分析[J].石油地球物理勘探.2001,36(3):301-307
    [49] 王华忠,马在田,曹景忠.优化系数傍轴近似方程三维一步法偏移[J].石油地球物理勘探.1998,33(2):170-184
    [50] 王山山,邓玉琼.弹性波正演模拟的混合算法[J].石油地球物理勘探.1997,32(6):804-808
    [51] 王西文,刘全新,李幼铭,等.地震信号瞬时特征在小波域分频提取的方法和应用[J].石油地球物理勘探.2000,35(4):452-460
    [52] 王彦辉,王欢,李纲.小断层的识别方法[J].大庆石油地质与开发.2000,19(5):31-32
    [53] 王允诚.油气储层评价[M].北京:石油工业出版社.1999
    [54] 王振华.三维波动方程P-R分裂偏移[J].石油地球物理勘探.1990,25(3):170-184
    [55] 谢用良.川西丰谷地区三维AVO油气检测技术应用研究[J].天然气工业.2006,26(3):46-49
    [56] 熊小兵,贺振华.声波方程共炮记录叠前深度偏移[J].石油物探.1998,37(4):49-53
    [57] 徐旺林,庞雄奇,高仁安.储层测井特征属性反演方法[J].天然气工业.2005,25(3):52-54
    [58] 许多,李正文,李显贵,等.非均质气藏AVO反演及应用研究[J]_矿物岩石.2001,21(1):86-90
    [59] 严又生译.地震属性及其分类[J].国外油气勘探.1997,9(4):529-530
    [60] 杨春峰,张宏,田小敏等.相干数据体处理技巧及在精细构造解释中的应用[J].石油物探.2004(S1):107-109
    [61] 杨国权,高荣涛,雷凌,等.河流相储集体的精细解释与描述[J].石油地球物理勘探.2005,40(3):314-317
    [62] 杨勤勇.全三维地震解释[J].地球物理学进展.1999,14(3):128-137
    [63] 杨勇,别爱芳,杨彩娥,等.神经网络微地震相分析方法及应用[J].地球学报.2005,26(5):483-486
    [64] 姚忠瑞,乔玉雷,毕俊凤.谱分解技术及其在井间储层解释中的应用[J].油气地球物理.2005,3(1):32-35
    [65] 印兴耀,袁世洪,张繁昌.从弹性波阻抗反演中提取岩石物理参数[A].CPS/SEG 2004, 国际地球物理会议论文集[C].CPS/SEG 2004国际地球物理会议,北京,2004.河北:中国石油学会物探专业委员会及美国地球物理学家学会,2004:538-542
    [66] 于红枫,王英民,李雪.Stratimagic波形地震相分析在层序地层岩性分析中的应用[J].煤田地质与勘探.2006,34(1):64-66
    [67] 于建国,林春明,王金铎,等.曲流河沉积亚相的地震识别方法[J].石油地球物理勘探.2003,8(5):547-551
    [68] 俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社.1993
    [69] 苑春方,彭苏萍,张中杰,等.Kelvin-Voigt均匀黏弹性介质中传播的地震波[J].中国科学D辑-地球科学.2005,35(10):957-962
    [70] 张娥,高书琴,候成福,等.利用地震属性预测砂岩储层厚度及含油饱和度[J].石油勘探与开发.2000,27(1):92-94
    [71] 张关泉.利用低阶偏微分方程组的大倾角差分偏移[J].地球物理学报.1986,29(3):273-282
    [72] 张宏彬,何樵登等.宽带约束反演[J].石油物探.1995,34(1):1-10
    [73] 张进铎,杨平,王云雷.地震信息的谱分解技术及其应用[J].勘探地球物理进展.2006,29(4):235-238
    [74] 张军华,王月英,赵勇等.小波多分辨率相干数据体的提取及应用[J].石油地球物理勘探.2004,39(1):33-36
    [75] 张学芳,董月昌,慎国强,等.曲线重构技术在测井约束反演中的应用[J].石油勘探与开发.2005,32(3):70-72
    [76] 张延玲,杨长春,贾曙光.地震属性技术的研究和应用[J].地球物理学进展.2005,20(4):1129-1133
    [77] 张益明,张文,范廷恩.多种地震属性分析技术在LD20-1构造区储层预测和含气性检测中的应用[J].中国海上油气.2005,17(3):167-170
    [78] 张营革,高秋菊,郝志伟,等:地层油藏上倾尖灭精细描述方法[J].油气地球物理.2006,4(3):35-39
    [79] 张永刚.地震波场数值模拟方法[J].石油物探.2003,42(2):143-148
    [80] 赵海宽,张延章,王国鹏,等.基于模型的曲线重构地震反演技术及应用分析[J].新疆地质.2005,23(1):89-91
    [81] 郑晓东.Zoeppritz方程的近似及其应用[J].石油地球物理勘探.1991,26(2):129-144
    [82] 仲伟军,关键,刘珂,等.地震相分析技术在沙门子鼻隆岩性预测中的应用[J].新疆地质.2006,24(3):331-334
    [83] 周红艳.基于三维场的地震相分析方法及应用[J].石油天然气学报(江汉石油学院学报).2005.27(3):471-472
    [84] Aki K and Richards P G. Quantitative seismology [M]. W. H. Freeman and Co. 1980
    [85] Angeleri G P and Carpi R. Porosity prediction from seismic data. Geophysical prospecting [J]. 1982, 30 (5): 580-597
    [86] Bahorich M and Farmer S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube [J]. The Leading Edge. 1995, 14 (10): 1053-1058
    [87] Bahorich M S and Farmer S L. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. 65th Annual Internat [J]. Mtg. Soc. Expl. Geophys. Expanded Abstracts. 1995: 93-96
    [88] Balch A H. Color sonograms-A new dimension in seismic data interpretation [J]. Soc. of Expl. Geophys. 1971, 36:1074-1098
    [89] Bishop C M. Neural Networks for Pattern Recognition [M]. Oxford University Press. 1999: 164-193
    [90] Bishop T N, Bube K P and Cutler R T et al. Tomographic determination of velocity and depth in laterally varying media [J]. Geophysics. 1985, 50 (6): 903-923
    [91] Bloomfield P. Fourier analysis of time series: An introduction [M]. John Wiley & Sons Inc. 1976
    [92] Bortfeld R. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves [J]. Geophysical Prospecting. 1961, 9: 485-502
    [93] Brown A R. Seismic attributes and their classification [J]. The Leading Edge. 1996, 15( 10): 1090
    [94] Burianyk M. Amplitude vs offset and seismic rock property analysis: A primer [J]. CSEG RECORDER. 2000, 25 (9): 6-16
    [95] Castagna J P and Smith S W. Comparison of AVO indicators: A modeling study [J]. Geophysics. 1994, 59 (12): 1849-1855
    [96] Castagna J P and Swan H W. Principles of AVO cross-plotting [J]. The Leading Edge. 1997, 16(1): 135-171
    [97] Castagna J P, Sun S and Seigfried RW. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons [J]. The Leading Edge. 2003, 22 (2): 120-127
    [98] Castagna J P, Swan H W and Foster D J. Framework for AVO gradient and intercept interpretation [J]. Geophysics. 1998, 63 (3): 948-956
    [99] Chacko S. Porosity identification using amplitude variations with effect, examples from South Sumatra [J]. Geophysics. 1989, 54 (8): 942-951
    [100] Chakraborty A and Okaya D. Frequency-time decomposition of seismic data using wavelet-based methods [J]. Geophysics.1995, 60 (6): 1906-1916
    [101] Chen P. Spectral ringing suppression and optimal windowing for attenuation and Q measurements [J]. Geophysics. 1998, 63 (2): 632-636
    [102] Chen Q and Sidney S. Seismic attribute technology for reservoir forecasting and monitoring [J]. The Leading Edge. 1997, 16 (5): 445-452
    [103] Chen Y M. Generalized pulse-spectrum technique [J]. Geophysics. 1985, 50(11). 1664-1675
    [104] Ciz R, Siggins A F and Dewhurst D Net al. Seismic attribute analysis of experimentally recorded waveforms [J]. 74th Ann. Intemat. Mtg.: Soc. ofExpl. Geophys. 2004, 1638-1641
    [105] Claerbout J F. Fundamentals of geophysical data processing: With applications to petroleum prospecting [M]. McGraw-Hill Book Co. 1976
    [106] Claerbout J F. Imaging the earth's interior [M]. Blackwell Scientific Publications Inc. 1985
    [107] Claerbout J F. Toward a unified theory of reflection mapping [J]. Geophysics. 1971, 36 (3): 467-481
    [108] Cohen L and Lee C. Instantaneous bandwidth for signals and spectrogram [J]. Proc. IEEE ICASSP-90. 1990: 2451-2454
    [109] Cohen L. Time-Frequency Analysis [M]. Prentice-Hall Signal Processing Seies. 1995
    [110] Connolly R Elastic impedance [J]. The Leading Edge. 1999, 18 (4): 438-452
    [111] Daniel P H, James S S and John A Q. Use of multiattribute transform to predict log properties from seismic data [J]. Geophysics. 2001, 60 (1): 220-236
    [112] Dufour J, Squires J and Goodway W Net al. Integrated geological and geophysical interpretation case study, and Lame rock parameter extractions using AVO analysis of the Blackfoot 3C-3D seismic data, southern Alberta, Canada [J]. Geophysics. 2002, 67 (1): 27-37
    [113] Edward J, Maarten D H and Matheus V S. Imaging using optional rational approximation to the paraxial wave equation [J]. 1998, 68th Ann. Internat. Mtg. Soc. Expl. Geophys. Expanded Abstracts
    [114] Fatti J Let al. Detection of gas in sandstone reservoirs using AVO analysis [J]. Geophysics. 1994, 59 (9): 1362-1376
    [115] Gazdag J and Sguazzero P. Migration of seismic data by phase-shift plus interpolation [J]. Geophysics. 1984, 49 (1): 124-131
    [116] Gazdag J. Modeling of the acoustic wave equation with transform method [J]. Geophysics. 1981, 46 (6): 854-859
    [117] Gazdag J. Wave equation migration with the phase-shift method [J]. Geophysics. 1978, 43 (6): 1342-1351
    [118] Gersztenkorn A and Marfurt K J. Eigen structure-based coherence computations as an aid to 3D structural and stratigraphic mapping [J]. Geophysics. 1999, 64 (5): 1468-1479
    [119] Ghosh S K. Limitations on impedance inversion of band-limited reflection data [J]. Geophysics. 2000, 65 (4): 951-957
    [120] Goodway W N. AVO and lame constants for rock parameterization and fluid detection [J]. CSEG RECORDER. 2001, 26 (6): 39-60
    [121] Goodway W, Chen T and Downton J. Improved AVO Fluid Detection and Lithology Discrimination Using Lame Petrophysical Parameters: "Lambda-Rho", "Mu-Rho", and "Lambda/Mu Fluid Stack", from P and S Inversions [J]. CSEG September 1997 Technical luncheon
    [122] Hardy H, Beierz R A and Gaston J D. Frequency estimates of seismic traces [J]. Geophysics. 2003, 68 (1): 370-380
    [123] Hilterman F. Seismic Lithology [M]. SEG-continuing Education. 1983
    [124] Jones I F, Baud H and Strachan A. Velocity as an Attribute-Continuous Velocity Estimation from PreSDM CRP Gathers [J]. 61st Mtg. Eur. Assoc. Expl Geophys. Extended Abstracts. European Association of Geophysical Exploration. Session 1999: 1042
    [125] Kalkomey C T. Potential risks when using seismic attributes as predictors of reservoir properties [J]. The Leading Edge. 1997, 17 (3): 247-251
    [126] Kessinger W. Extended split-step Fourier migration [J]. Soc. Expl. Geophysics. Expanded Abstracts. 1992, 917-920
    [127] Kjartansson E. Constant Q wave propagation and attenuation [J]. Geophys. RES. 1979, 82 (B7): 4737-4748
    [128] Kohonen T. Self-Organizing Maps [J]. Springer series in Information Sciences. 1997, No. 30: 203-217
    [129] Larner K and Beasley C. Cascaded migration: Improving the accuracy of finite-difference migration [J]. Geophysics. 1987, 52 (5): 618-643
    [130] Lee M W and Suh S Y. Optimization of one-way wave equations [J]. Geophysics. 1985, 50 ( 10): 1634-1637
    [131] Levander A R. Fourth-order finite-difference P-SV seismograms [J]. Geophysics. 1988, 53 (11): 1425-1436
    [132] Lewis C. Seismic attribute for reservoir monitoring [J]. The Leading Edge. 1997, 16 (5): 459-469
    [133] Lewis C. Seismic attributes for reservoir monitoring: A feasibility study using forward modeling [J]. 65th Annual Internat. Mtg. Soc. Expl. Geophys. Expanded Abstracts. 1995: 309-312
    [134] Li Z. Compensating finite-difference errors in 3-D migration and modeling [J]. Geophysics. 1991, 56 (10): 1650-1660
    [135] Linari V, Santiago M and Pastor C et al. Seismic facies analysis based on 3D multiattribute volume classification, La Palma Field, Maracaibo, Venezuela [J]. The Leading Edge. 2003, 22(1): 32-36
    [136] Liner C, Li C F and Gersztenkorn A et al. SPICE: A new general seismic attribute [J]. 74th Ann. Internat. Mtg.: Soc. ofExpl. Geophys. 2004, 433-436
    [137] Ma X Q. A robust joint inversion algorithm for rock property estimation [J]. CSEG RECORDER. 2001, 26 (1): 42-48
    [138] Ma X Q. An Accurate Seismic Inversion Approach Using Exact and Over-parameter Methods [J]. 68th SEG Expanded Abstracts. 1998
    [139] Mallat S G. A theory for multi-resolution signal decomposition: The wavelet representation [J]. IEEE Trans on PAMI, 1989, 11 (7): 927-938
    [140] Mallick. A simple approximation to the P- wave reflection coefficient and its implication in the inversion of amplitude variation with offset data [J]. Geophysics. 1993, 58 (4): 544-552
    [141] Marfurt K J, Kirlin R L and Farmer S Let al. 3D seismic attributes using a semblance-based coherency algorithm [J]. Geophysics. 1998, 63 (4): 1150-1165
    [142] Maria A, Capello de P and Batzale M. Rock physics in seismic monitoring [J]. The Leading Edge. 1997, 16 (9): 1255-1260
    [143] Matteucci G. Seismic attribute analysis and calibration: A general procedure and a case study [J]. Annual Meeting Abstracts, Society of Exploration Geophysicists. 1996:373-376
    [144] Mazzotti A. Amplitude, phase and frequency versus offset applications [J]. Geophysical Prospecting. 1991, 39: 863-886
    [145] Michelena R J. Similarity analysis: A new tool to summarize attributes information [J]. The Leading Edge. 1998, 17 (4): 545-548
    [146] Morlet J, Arens G and Fourgeau E et al. Wave propagation and Sampling theory- Part 11: Sampling theory and complex waves [J]. Geophysics. 1982, 47 (2): 222-236
    [147] Okaya D A. Spectral properties of the earth' s contribution to seismic resolution [J]. Geophysics. 1995, 60(1): 244-251
    [148] Oldenburg DW, Levy S and Stinson K J. Inversion of band-limited reflection seismograms: Theory and practice [J]. Proc. IEEE. 1986, 74: 487-497
    [149] Oldenburg D W, Levy S and Stinson K J. Root-mean-square velocities and recovery of the acoustic impedance [J]. Geophysics. 1984, 49 (10): 1653-1663
    [150] Ostrander W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence [J]. Geophysics. 1984, 49 (10): 1637-1648
    [151] Philippe M D. Porosity from seismic data: a geostatistical approach [J]. Geophysics. 1988, 53 (10): 1263-1275
    [152] Powel M J. Radial basis functions for multivariable interpolation [J]. A review. In IMA Conference on Algorithms for the Approximation of Functions and Data. 1985: 143-167
    [153] Press W H, Teukolsky S A and Vetterling W T et al. Numerical recipes in C: The art of scientific computing [M]. Cambridge University Press. 1992
    [154] Pujol J and Smithson S. Seismic wave attenuation in volcanic rocks from VSP experiments [J]. Geophysics. 1991, 56 (9): 1441-1455
    [155] Raikes S A and Whiter R E. Measurements of earth attenuation from down-hole and surface seismic recordings [J]. Geophysical Prospecting. 1984, 32 (3): 829-919
    [156] Regueiro J. & Pena A. AVO in North of Paria, Venezuela: Gas methane versus condensate reservoirs [J]. Geophysics. 1999, 61 (4): 937-946
    [157] Ristow D. Fourier finite-difference migration [J]. Geophysics. 1994, 59 (12): 1882-1893[158] Robertson J D and Fisher D A. Seismic interpretation-Complex seismic trace attributes [J]. The Leading Edge. 1988, 7(6): 22-26
    [159] Robertson J D and Nogami H H. Complex seismic trace analysis of thin beds [J]. Geophysics. 1984, 49 (4): 344-352
    [160] Ronen S, Hoskins J and Schultz P S et al. Seismic-guided estimation of log properties, part 2: Using artificial neural networks for nonlinear attribute calibration [J]. The Leading Edge. 1994, 13(6): 674-678
    [161] Ronen S, Schultz P S and Hattori M et al. Seismic-guided estimation of log properties, Part 1: A data-driven interpretation methodology [J]. The Leading Edge. 1994, 13 (5): 305-310
    [162] Ronen S, Schultz P S and Hattori M et al. Seismic-guided estimation of log properties, Part 3: A controlled study [J]. The Leading Edge. 1994, 13 (7): 770-776
    [163] Ronen S, Schultz P S and Hattori M et al. Seismic-guided estimation of log properties. Part 2: Using artificial neural networks for nonlinear attribute calibration [J]. The Leading Edge. 1994, 13(6): 674-4578
    [164] Russell B and Hampson D. M ultiattribute seismic analysis [J]. The Leading Edge. 1997, 17(10): 1439-1454
    [165] Russell B H. Introduction to Seismic Inversion Methods [M]. Society of Exploration Geophysicists. 1986
    [166] Russell B, Hampson D and Schuelke Jet al. Multi-attribute seismic analysis [J]. The Leading Edge. 1997, 16 (10): 1439-1443
    [167] Rutherford S R and Williams R H. Amplitude versus offset variations in gas sands [J]. Geophysics. 1989, 54 (6): 680-688
    [168] Sambridge M and Drijkoningen G. Genetic algorithms in seismic waveform inversion [J]. Geophys. Int. 1992, 109: 323-342
    [169] Sheriff R E. Encyclopedic dictionary of exploration geophysics [M]. Third edition. Soc. Expl. Geophys. 1991
    [170] Shuey R T. A simplification of the Zoeppritz Equations [J]. Geophysics. 1985, 50 (4): 609-614
    [171] Sinha S, Routh P S and Anno P D et al. Spectral decomposition of seismic data with continuous-wavelettransform [J]. Geophysics. 2005, 70 (6): P19-P25
    [172] Smith G C and Gidlow P M. Weighted stacking for rock property estimation and detection of gas [J]. Geophysical Prospecting. 1987, 35: 993-1014[173] Steeghs P and Drijkoningen G G. Time-frequency analysis of seismic sequences [J]. 65th Ann. Internat. Mtg. Soc. Expl. Geophys. Expanded Abstracts. 1995: 1528-1531
    [174] Stoffa P L, Fakkema J T and Deluna F et al. Split-step Fourier migration [J]. Geophysics. 1990, 55 (4): 410-421
    [175] Vail R Personal Communications [M]. 1988
    [176] Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method (shear waves) [J]. Geophysics. 1986, 51 (4): 889-901
    [177] Wang Y. Approximations to the Zoeppritz equations and their use in AVO analysis [J]. Geophysics. 1999, 64 (6): 1920-1927
    [178] White R E. Properties of instantaneous seismic attributes [J]. The Leading Edge. 1991, 10 (7): 26-32
    [179] William M. Geophysical Data Analysis: Discrete inverse Theory [M]. Academic Press. 1984
    [180] Wu R S and Huang L J. Scattered field calculation in heterogeneous media using a phase-screen propagator [J]. SEG Technical Program Expanded Abstracts. 1992: 1289-1292
    [181] Yih J, Jing Y T and Chen S H. An improved method of determining near surface Q [J]. Geophysics. 1999, 64 (5): 1608-1617
    [182] Yilmaz O. Seismic data processing [M]. Soc. Expl. Geophys. 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700