用户名: 密码: 验证码:
gna13,lrp8基因在斑马鱼胚胎发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异源三聚体鸟苷酸结合蛋白(G蛋白)作为一种重要的信号转导因子参与调控多种生理过程。G蛋白分为四大家族:Gs,Gi,Gq和G12。G13属于G12家族,其基因名称为gna13。有研究表明Gα13敲除小鼠胚胎的脉管系统出现严重缺陷并在孕后约9.5天死亡。然而,该现象背后的分子机理尚未阐明。斑马鱼具有两种不同的Gα13转录本:Gα13a和Gα13b。在斑马鱼发育早期,Gα12/13促进翻转和延伸运动以促进原肠胚的正常形成。其调节外包的分子机理可能一方面通过限制E-cadherin的活性来实现,另一方面通过调节肌动蛋白细胞骨架的组织来实现。在本研究中,我们发现,沉默Gα13的表达会导致斑马鱼造血系统和血管系统缺陷。Gα13b的下调使得血液循环完全消失。Gatal, pu.1, flk等血细胞或血管标记基因亦下调表达。进一步研究发现在Gα13b缺失的胚胎中,血细胞和血管内皮细胞历经P53介导的细胞凋亡。降低P53的表达可使细胞免于死亡从而部分拯救了Gα13b缺失胚胎的表型。血细胞和血管标记基因的表达亦得到恢复。这些结果提示了Gα13在细胞存活中的新功能。
     LRP8是低密度脂蛋白受体超家族成员之一。斑马鱼的lrp8序列通过其基因组序列预测拼接得到,而从未得到实验验证。本研究首次用实验的方法克隆验证了该序列,并发现其比网上预测序列多出一条长57bp的片段。在胚胎发育的体节期,lrp8在头部腹面菱脑原节的四处特定细胞中特异表达。同时在卵黄囊表面也可以检测到均匀的呈点状分布的阳性信号。在胚胎发育至2天后,lrp8主要在中枢神经系统中,特别是在头部中线处以及侧线表达。进一步研究发现,lrp8的缺失会抑制脊髓神经轴突的生长以及髓鞘的形成。这为我们进一步研究lrp8作用的分子机理奠定了基础。
Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as signal transducers and control many different physiologic processes. G proteins can be grouped into four families Gs, Gi, Gq and G12. Gα13,with its gene name gan13,belongs to the G12 family. The Ga13(?)mouse embryos have defective vascular systems and display embryonic lethality (-E9.5), but the molecular basis that underlies the vascular defect observed in Gα13(?) mouse embryos has not been defined. In zebrafish, there are two isoforms of Gα13:Gα13a and Gα13b. During zebrafish gastrulation, Ga12/13 are required for convergence and extension (CE) movements. Ga12/13 might regulate epiboly through two distinct mechanisms by limiting E-cadherin activity and modulating the organization of the actin cytoskeleton. We show here that knockdown of Gα13 in zebrafish results in hematopoietic and angiogenic defects. The Gα13b morphants show complete loss of blood circulation. The expression of hematopoietic and angiogenic markers such as gata1,pu.l,flk were also lost. Further studies reveal that blood cells and vascular endothelial cells have undergone apoptosis through a p>53-dependent pathway in Gα13b-depleted embryos. Injection of p53 morpholino could partially rescue the phenotype of Ga13b morphants and restore the expression of hematopietic and angiogenic markers. These data demonstrate a new role for Gα13 in cell survival.
     Lrp8 belongs to the low-density lipoprotein receptor super family. The sequence of Irp8 homology in zebrafish was predicted based on the genomic sequences and has not verified by experiments. In this study, we firstly cloned its cDNA and found our sequence with an additional 57bp fragment to the predicted one. During the late segmentation, lrp8 specifically expresses in four groups of cells in the rhombomere. Its signals can also be detected throughout the surface of yolk sac as presented in pairs of spots. In the embryos of 2dpf or older, Irp8 expresses highly in the centre nerve system, especially in the middle line of the brain. Further study revealed that the lost of Irp8 would suppress the myelination as well as axon growth. All these results will contribute to further study of the molecular mechanism under this process.
引文
1. Pevny, L., et al., Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature,1991.349(6306):p. 257-60.
    2. Martin, D.I., et al., Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature,1990.344(6265):p.444-7.
    3. Tsai, F.Y., et al., An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature,1994.371(6494):p.221-6.
    4. Wadman, I., et al., Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. Embo J,1994.13(20):p.4831-9.
    5. Porcher, C., et al., The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell,1996.86(1):p.47-57.
    6. Robb, L., et al., The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. Embo J,1996.15(16):p.4123-9.
    7. Dickson, M.C., et al., Defective haematopoiesis and vascμlogenesis in transforming growth factor-beta I knock out mice. Development,1995.121(6):p.1845-54.
    8. Oshima, M., H. Oshima, and M.M. Taketo, TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vascμlogenesis. Dev Biol,1996.179(1):p. 297-302.
    9. Shalaby, F., et al., Failure of blood-island formation and vascμlogenesis in Flk-1-deficient mice. Nature,1995.376(6535):p.62-6.
    10. Sitzmann, J., K. Noben-Trauth, and K.H. Klempnauer, Expression of mouse c-myb during embryonic development. Oncogene,1995.11(11):p.2273-9.
    11. Mucenski, M.L., et al., A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell,1991.65(4):p.677-89.
    12. Sasaki, K., et al., Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A,1996.93(22):p. 12359-63.
    13. Castilla, L.H., et al., Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYHII. Cell,1996. 87(4):p.687-96.
    14. Perkins, A.C., A.H. Sharpe, and S.H. Orkin, Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature,1995.375(6529):p.318-22.
    15. Southwood, C.M., K.M. Downs, and J.J. Bieker, Erythroid Kruppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn,1996.206(3):p.248-59.
    16. Colle-Vandevelde, A., Blood anlage in teleostei. Nature,1963.198:p.1223.
    17. Detrich, H.W.,3rd, et al., Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A,1995.92(23):p.10713-7.
    18. Davidson, A.J., et al., cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature,2003.425(6955):p.300-6.
    19. Davidson, A.J. and L.I. Zon, The'definitive' (and'primitive') guide to zebrafish hematopoiesis. Oncogene,2004.23(43):p.7233-46.
    20. Lieschke, G.J., et al., Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis:implications for axial patterning. Dev Biol,2002. 246(2):p.274-95.
    21. Bennett, C.M., et al., Myelopoiesis in the zebrafish, Danio rerio. Blood,2001.98(3):p. 643-51.
    22. Long, Q., et al., GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development,1997.124(20):p.4105-11.
    23. Thompson, M.A., et al., The cloche and'spadetail genes differentially affect hematopoiesis and vascμlogenesis. Dev Biol,1998.197(2):p.248-69.
    24. Burns, C.E., et al., Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regμlators. Exp Hematol,2002.30(12):p.1381-9.
    25. Willett, C.E., et al., Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev Dyn,1999.214(4):p.323-36.
    26. Weinstein, B.M., et al., Hematopoietic mutations in the zebrafish. Development,1996. 123:p.303-9.
    27. Hsia, N. and L.I. Zon, Transcriptional regulation of hematopoietic stem cell development in zebrafish. Exp Hematol,2005.33(9):p.1007-14.
    28. Ben-David, Y., et al., Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev,1991.5(6):p.908-18.
    29. Brown, L.A., et al., Insights into early vascμlogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech Dev,2000.90(2):p.237-52.
    30. Herbomel, P., B. Thisse, and C. Thisse, Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development,1999.126(17):p.3735-45.
    31. Robb, L., et al., Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A,1995.92(15):p.7075-9.
    32. Shivdasani, R.A., E.L. Mayer, and S.H. Orkin, Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature,1995.373(6513):p.432-4.
    33. Begley, C.G. and A.R. Green, The SCL gene:from case report to critical hematopoietic regulator. Blood,1999.93(9):p.2760-70.
    34. Green, T., Haematopoiesis. Master regulator unmasked. Nature,1996.383(6601):p.575, 577.
    35. Valge-Archer, V.E., et al., The LIM protein RBTN2 and the basic helix-loop-helix protein TALI are present in a complex in erythroid cells. Proc Natl Acad Sci U S A,1994.91(18): p.8617-21.
    36. Wadman, I.A., et al., The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TALI, E47, GATA-1 and Ldbl/NLI proteins. Embo J,1997.16(11):p.3145-57.
    37. Gering, M., et al., The SCL gene specifies haemangioblast development from early mesoderm. Embo J,1998.17(14):p.4029-45.
    38. Liao, W., et al., Hhex and scl function in parallel to regμlate early endothelial and blood differentiation in zebrafish. Development,2000.127(20):p.4303-13.
    39. Gering, M., et al., Lmo2 and Scl/Tall convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gatal. Development,2003. 130(25):p.6187-99.
    40. Porcher, C., et al., Specification of hematopoietic and vascμlar development by the bHLH transcription factor SCL without direct DNA binding. Development,1999.126(20):p. 4603-15.
    41. Dooley, K.A., A.J. Davidson, and L.I. Zon, Zebrafish scl functions independently in hematopoietic and endothelial development. Dev Biol,2005.277(2):p.522-36.
    42. Patterson, L.J., M. Gering, and R. Patient,Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood,2005.105(9):p.3502-11.
    43. Visvader, J.E., Y. Fujiwara, and S.H. Orkin, Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev,1998.12(4):p.473-9.
    44. Liao, E.C., et al., SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev,1998.12(5):p.621-6.
    45. Brunet de la Grange, P., et al., Low SCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells. Blood,2006.108(9):p.2998-3004.
    46. Graveley, B.R., Alternative splicing:increasing diversity in the proteomic world. Trends Genet,2001.17(2):p.100-7.
    47. Landry, J.R., D.L. Mager, and B.T. Wilhelm, Complex controls:the role of alternative promoters in mammalian genomes. Trends Genet,2003.19(11):p.640-8.
    48. Varshavsky, A., The N-end rμle and regulation of apoptosis. Nat Cell Biol,2003.5(5):p. 373-6.
    49. Crompton, M.R., et al., Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res,1992.20(21):p.5661-7.
    50. Bedford, F.K., et al., HEX:a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. Nucleic Acids Res,1993.21(5):p.1245-9.
    51. Ho, C.Y., et al., A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol,1999.9(19):p. 1131-4.
    52. Yatskievych, T.A., S. Pascoe, and P.B. Antin, Expression of the homebox gene Hex during early stages of chick embryo development. Mech Dev,1999.80(1):p.107-9.
    53. Newman, C.S., F. Chia, and P.A. Krieg, The XHex homeobox gene is expressed during development of the vascμlar endothelium:overexpression leads to an increase in vascular endothelial cell number. Mech Dev,1997.66(1-2):p.83-93.
    54. Thomas, P.Q., A. Brown, and R.S. Beddington, Hex:a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development,1998.125(1):p.85-94.
    55. Levanon, D., et al., AML1, AML2, and AML3, the human members of the runt domain gene-family:cDNA structure, expression, and chromosomal localization. Genomics,1994. 23(2):p.425-32.
    56. Tracey, W.D. and N.A. Speck, Potential roles for RUNX1 and its orthologs in determining hematopoietic cell fate. Semin Cell Dev Biol,2000.11(5):p.337-42.
    57. Kalev-Zylinska, M.L., et al., Runxl is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development,2002.129(8):p.2015-30.
    58. Kalev-Zylinska, M.L., et al., Runx3 is required for hematopoietic development in zebrafish. Dev Dyn,2003.228(3):p.323-36.
    59. Vandenbunder, B., et al., Complementary patterns of expression of c-ets 1, c-myb and c-myc in the blood-forming system of the chick embryo. Development,1989.107(2):p. 265-74.
    60. Mukouyama, Y., et al., Hematopoietic cells in cμltures of the murine embryonic aorta-gonad-mesonephros"region are induced by c-Myb. Curr Biol,1999.9(15):p.833-6.
    61. Mukouyama, Y., et al., The AML1 transcription factor functions to develop and maintain hematogenic precursor cells in the embryonic aorta-gonad-mesonephros region. Dev Biol, 2000.220(1):p.27-36.
    62. Sandberg, M.L., et al., c-Myb and p300 regμlate hematopoietic stem cell proliferation and differentiation. Dev Cell,2005.8(2):p.153-66.
    63. Stainier, D.Y., et al., Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development,1995.121(10):p.3141-50.
    64. Driever, W., et al., A genetic screen for mutations affecting embryogenesis in zebrafish. Development,1996.123:p.37-46.
    65. Haffter, P., et al., The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development,1996.123:p.1-36.
    66. Ransom, D.G., et al., Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development,1996.123:p.311-9.
    67. Liao, E.C., et al., Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. Development,2002.129(3):p.649-59.
    68. Hammerschmidt, M., et al., Mutations affecting morphogenesis during gastrμlation and tail formation in the zebrafish, Danio rerio. Development,1996.123:p.143-51.
    69. Griffin, K.J., et al., Molecμlar identification of spadetail:regμlation of zebrafish trunk and tail mesoderm formation by T-box genes. Development,1998.125(17):p.3379-88.
    70.. Ruvinsky, I., L.M. Silver, and R.K. Ho, Characterization of the zebrafish tbx16 gene and evolution of the vertebrate T-box family. Dev Genes Evol,1998.208(2):p.94-9.
    71. Amacher, S.L., et al., The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development,2002. 129(14):p.3311-23.
    72. Marinissen, M.J. and J.S. Gutkind, G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci,2001.22(7):p.368-76.
    73. Pierce, K.L., R.T. Premont, and R.J. Lefkowitz, Seven-transmembrane receptors. Nat Rev Mol Cell Biol,2002.3(9):p.639-50.
    74. Fields, T.A. and P.J. Casey, Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J,1997.321 (Pt 3):p.561-71.
    75. Milligan, G., I. Mμllaney, and F.M. Mitchell, Immunological identification of the alpha subunit of G13, a novel guanine nucleotide binding protein. FEBS Lett,1992.297(1-2):p. 186-8.
    76. Spicher, K., et al., G12 and G13 alpha-subunits are immunochemically detectable in most membranes of various mammalian cells and tissues. Biochem Biophys Res Commun, 1994.198(3):p.906-14.
    77. Kratz, E., et al., Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ,2006.13(10):p.1631-40.
    78. Kozasa, T., et al., p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science,1998.280(5372):p.2109-11.
    79. Fields, S. and O. Song, A novel genetic system to detect protein-protein interactions. Nature,1989.340(6230):p.245-6.
    80. Adarichev, V.A., et al., G alpha 13-mediated transformation and apoptosis are permissively dependent on basal ERK activity. Am J Physiol Cell Physiol,200.3.285(4):p. C922-34.
    81. Waheed, A.A. and T.L. Jones, Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem,2002.277(36):p.32409-12.
    82. Dodane, V. and B. Kachar, Identification of isoforms of G proteins and PKC that colocalize with tight junctions. J Membr Biol,1996.149(3):p.199-209.
    83. Meyer, T.N., C. Schwesinger, and B.M. Denker, Zonμla occludens-1 is a scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellμlar permeability in epithelial cells. J Biol Chem,2002.277(28):p. 24855-8.
    84. Niu, J., et al., Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. Curr Biol,2001. 11(21):p.1686-90.
    85. Diviani, D., J. Soderling, and J.D. Scott, AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem,2001. 276(47):p.44247-57.
    86. Carnegie, G.K., et al., AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol Cell,2004.15(6):p.889-99.
    87. Suzuki, N., et al., Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci U S A,2003.100(2):p.733-8.
    88. Liu, Y., et al., Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascμlar maturation. Journal of Clinical Investigation,2000.106(8):p. 951-961.
    89. Chikumi, H., S. Fukuhara, and J.S. Gutkind, Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation:evidence of a role for focal adhesion kinase. J Biol Chem,2002. 277(14):p.12463-73.
    90. Gohla, A., et al., Differential involvement of Galphal2 and Galpha 13 in receptor-mediated stress fiber formation. J Biol Chem,1999.274(25):p.17901-7.
    91. Katoh, H., et al., Constitutively active Galpha12, Galpha13, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem, 1998.273(44):p.28700-7.
    92. Kranenburg, O., et al., Activation of RhoA by lysophosphatidic acid and Galphal2/13 subunits in neuronal cells:induction of neurite retraction. Mol Biol Cell,1999.10(6):p. 1851-7.
    93. Mao, J., et al., Tec/Bmx non-receptor tyrosine kinases are involved in regμlation of Rho and serum response factor by Galphal2/13. Embo J,1998.17(19):p.5638-46.
    94. Jiang, Y., et al., The G protein G alphal2 stimμlates Bruton's tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature,1998.395(6704):p.808-13.
    95. Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature,2002. 420(6916):p.629-35.
    96. Jaffe, A.B. and A. Hall, Rho GTPases in transformation and metastasis. Adv Cancer Res, 2002.84:p.57-80.
    97. Hart, M.J., et al., Direct stimμlation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science,1998.280(5372):p.2112-4.
    98. Fukuhara, S., et al., A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem,1999.274(9):p.5868-79.
    99. Fukuhara, S., H. Chikumi, and J.S. Gutkind, Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett,2000.485(2-3):p.183-8.
    100. Chen, Z., et al., Structure of the p115RhoGEF rgRGS domain-Galpha13/il chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol,2005. 12(2):p.191-7.
    101. Chen, Z., et al., Structure of the rgRGS domain of p115RhoGEF. Nat Struct Biol,2001. 8(9):p.805-9.
    102. Moratz, C., et al., Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J Immunol,2000.164(4):p.1829-38.
    103. Johnson, E.N., et al., RGS16 inhibits signalling through the G alpha 13-Rho axis. Nat Cell Biol,2003.5(12):p.1095-103.
    104. Bretscher, A., K. Edwards, and R.G. Fehon, ERM proteins and merlin:integrators at the cell cortex. Nat Rev Mol Cell Biol,2002.3(8):p.586-99.
    105. Vaiskunaite, R., et al., Conformational activation of radixin by G13 protein alpha subunit. J Biol Chem,2000.275(34):p.26206-12.
    106. Matsui, T., et al., Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol,1998.140(3):p.647-57.
    107. Yamaguchi, Y., et al., Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimμlate its phosphatase activity. Curr Biol,2002.12(15):p. 1353-8.
    108. Zhu, D., et al., Galphal2 directly interacts with PP2A:evidence FOR Galpha12-stimμlated PP2A phosphatase activity and dephosphorylation of microtubμle-associated protein, tau. J Biol Chem,2004.279(53):p.54983-6.
    109. Chinkers, M., Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab, 2001.12(1):p.28-32.
    110. Janssens, V., J. Goris, and C. Van Hoof, PP2A:the expected tumor suppressor. Curr Opin Genet Dev,2005.15(1):p.34-41.
    111. Meigs, T.E., et al., Galphal2 and Galpha13 negatively regμlate the adhesive functions of cadherin. J Biol Chem,2002.277(27):p.24594-600.
    112. Meigs, T.E., et al., Interaction of Galpha 12 and Galpha 13 with the cytoplasmic domain of cadherin provides a mechanism for beta-catenin release. Proc Natl Acad Sci U S A, 2001.98(2):p.519-24.
    113. Andreeva, A.V., et al., G alphal2 interaction with alphaSNAP induces VE-cadherin localization at endothelial junctions and regulates barrier function. J Biol Chem,2005. 280(34):p.30376-83.
    114. Andreeva, A.V., et al., Novel mechanisms of G protein-dependent regulation of endothelial nitric-oxide synthase. Mol Pharmacol,2006.69(3):p.975-82.
    115. Radhika, V., et al., Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem,2004.279(47):p.49406-13.
    116. Kashef, K., et al., JNK-interacting leucine zipper protein is a novel scaffolding protein in the Galpha13 signaling pathway. Biochemistry,2005.44(43):p.14090-6.
    117. Huang, C., et al., The Ca2+-sensing receptor couples to Galphal2/13 to activate phospholipase D in Madin-Darby canine kidney cells. Am J Physiol Cell Physiol,2004. 286(1):p. C22-30.
    118. Plonk, S.G, S.K. Park, and J.H. Exton, The alpha-subunit of the heterotrimeric G protein G13 activates a phospholipase D isozyme by a pathway requiring Rho family GTPases. J Biol Chem,1998.273(9):p.4823-6.
    119. Rumenapp, U., et al., The M3 muscarinic acetylcholine receptor expressed in HEK-293 cells signals to phospholipase D via G12 but not Gq-type G proteins:regulators of G proteins as tools to dissect pertussis toxin-resistant G proteins in receptor-effector coupling. J Biol Chem,2001.276(4):p.2474-9.
    120. Xie, Z., et al., Mechanisms of regulation of phospholipase D1 and D2 by the heterotrimeric G proteins G13 and Gq. J Biol Chem,2002.277(14):p.11979-86.
    121. Hains, M.D., et al., Galphal2/13-and rho-dependent activation of phospholipase C-epsilon by lysophosphatidic acid and thrombin receptors. Mol Pharmacol,2006.69(6): p.2068-75.
    122. Kelley, G.G., S.E. Reks, and A.V. Smrcka, Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J,2004.378(Pt 1):p.129-39.
    123. Lopez, I., et al., A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem,2001.276(4): p.2758-65.
    124. Kurrasch-Orbaugh, D.M., et al., A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation:the involvement of MAP kinases. J Neurochem, 2003.86(4):p.980-91.
    125. Maruyama, Y., et al., Galpha(12/13) mediates alpha(1)-adrenergic receptor-induced cardiac hypertrophy. Circ Res,2002.91(10):p.961-9.
    126. Nishida, M., et al., G alpha 12/13-and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem,2005. 280(18):p. 18434-41.
    127. Shepard, L.W., et al., Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve G alpha(13) and RhoA. J Biol Chem,2001.276(49):p.45979-87.
    128. Needham, L.K. and E. Rozengurt, Galpha12 and Galphal3 stimμlate Rho-dependent tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130 Crk-associated substrate. J Biol Chem,1998.273(23):p.14626-32.
    129. Sayas, C.L., J. Avila, and F. Wandosell, Glycogen synthase kinase-3 is activated in neuronal cells by Galphal2 and Galpha 13 by Rho-independent and Rho-dependent mechanisms. J Neurosci,2002.22(16):p.6863-75.
    130. Fukuhara, S., et al., Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras AND Rho-independent pathway. J Biol Chem,2000.275(28):
    p.21730-6.
    131. Hooley, R., et al., G alpha 13 stimulates Na+-H+exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem,1996.271(11):p.6152-8.
    132. Lin, X., et al., Galphal2 differentially regμlates Na+-H+ exchanger isoforms. J Biol Chem,1996.271(37):p.22604-10.
    133. Xu, N., et al., A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci U S A,1993.90(14):p.6741-5.
    134. Chan, A.M., et al., Expression cDNA cloning of a transforming gene encoding the wild-type G alpha 12 gene product. Mol Cell Biol,1993.13(2):p.762-8.
    135. Radhika, V. and N. Dhanasekaran, Transforming G proteins. Oncogene,2001.20(13):p. 1607-14.
    136. Parks, S. and E. Wieschaus, The Drosophila gastrμlation gene concertina encodes a G alpha-like protein. Cell,1991.64(2):p.447-58.
    137. Martin, C.B., et al., The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene,2001.20(16):p.1953-63.
    138. Fromm, C., et al., The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci U S A,1997.94(19):p.10098-103.
    139. Aragay, A.M., et al., G12 requirement for thrombin-stimμlated gene expression and DNA synthesis in 1321N1 astrocytoma cells. J Biol Chem,1995.270(34):p.20073-7.
    140. Marinissen, M.J., et al., Thrombin protease-activated receptor-1 signals through Gq-and G13-initiated MAPK cascades regulating c-Jun expression to induce cell transformation. J Biol Chem,2003.278(47):p.46814-25.
    141. Kumar, R.N., et al., Transactivation of platelet-derived growth factor receptor alpha by the GTPase-deficient activated mutant of Galpha12. Mol Cell Biol,2006.26(1):p.50-62.
    142. Marinissen, M.J., et al., The small GTP-binding protein RhoA regμlates c-jun by a ROCK-JNK signaling axis. Mol Cell,2004.14(1):p.29-41.
    143. Kumar, R.N., S.K. Shore, and N. Dhanasekaran, Neoplastic transformation by the gep oncogene, Galpha12, involves signaling by STAT3. Oncogene,2006.25(6):p.899-906.
    144. Perona, R., et al., Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev,1997.11(4):p.463-75.
    145. Dermott, J.M., et al., Oncogenic mutant of Galpha12 stimulates cell proliferation through cycloxygenase-2 signaling pathway. Oncogene,1999.18(51):p.7185-9.
    146. Slice, L.W., J.H. Walsh, and E. Rozengurt, Galpha(13) stimulates Rho-dependent activation of the cyclooxygenase-2 promoter. J Biol Chem,1999.274(39):p.27562-6.
    147. Liu, G and T.A. Voyno-Yasenetskaya, Radixin stimμlates Racl and Ca2+/calmodμlin-dependent kinase, CaMKⅡ:cross-talk with Galphal3 signaling. J Biol Chem,2005.280(47):p.39042-9.
    148. Girkontaite, I., et al., Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol,2001.2(9):p.855-62.
    149. Graler, M.H., et al., The sphingosine 1-phosphate receptor SlP4 regμlates cell shape and motility via coupling to Gi and G12/13. J Cell Biochem,2003.89(3):p.507-19.
    150. Xu, J., et al., Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell,2003.114(2):p.201-14.
    151. Lin, F., et al., Essential roles of G{alpha}12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrμlation movements. J Cell Biol,2005.169(5):p. 777-87.
    152. Offermanns, S., et al., Vascular system defects and impaired cell chemokinesis as a result of Galphal3 deficiency. Science,1997.275(5299):p.533-6.
    153. Ruppel, K.M., et al., Essential role for Galphal3 in endothelial cells during embryonic development. Proc Natl Acad Sci U S A,2005.102(23):p.8281-6.
    154. Buhl, A.M., et al., G alpha 12 and G alpha 13 stimμlate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem,1995.270(42):p.246314.
    155. Gohla, A., R. Harhammer, arid G. Schultz, The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem,1998.273(8):p.4653-9.
    156. Friedl, P. and K. Wolf, Tumour-cell invasion and migration:diversity and escape mechanisms. Nat Rev Cancer,2003.3(5):p.362-74.
    157. Raftopoμlou, M. and A. Hall, Cell migration:Rho GTPases lead the way. Dev Biol,2004. 265(1):p.23-32.
    158. Van Haastert, P.J. and P.N. Devreotes, Chemotaxis:signalling the way forward. Nat Rev Mol Cell Biol,2004.5(8):p.626-34.
    159. Kelly, P., et al., The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci U S A,2006.103(21):p.8173-8.
    160. Kelly, P., et al., A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem,2006.281(36):p.26483-90.
    161. Moers, A., et al., G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med,2003.9(11):p.1418-22.
    162. Gohla, A., G. Schμltz, and S. Offermanns, Role for G(12)/G(13) in agonist-induced vascμlar smooth muscle cell contraction. Circ Res,2000.87(3):p.221-7.
    163. Hersch, E., et al., Gq/G13 signaling by ET-1 in smooth muscle:MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol,2004.287(5): P.C1209-18.
    164. Gilchrist, A., et al., G alpha minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. J Biol Chem,2001.276(28):p. 25672-9.
    165. Jho, E.H. and C.C. Malbon, Galpha12 and Galpha13 mediate differentiation of P19 mouse embryonal carcinoma cells in response to retinoic acid. J Biol Chem,1997. 272(39):p.24461-7.
    166. Wang, H.Y., J. Kanungo, and C.C. Malbon, Expression of Galpha 13 (Q226L) induces P19 stem cells to primitive endoderm via MEKK1,2, or 4. J Biol Chem,2002.277(5):p. 3530-6.
    167. Berestetskaya, Y.V., et al., Regulation of apoptosis by alpha-subunits of G12 and G13 proteins via apoptosis signal-regμlating kinase-1. J Biol Chem,1998.273(43):p. 27816-23.
    168. Althoefer, H., P. Eversole-Cire, and M.I. Simon, Constitutively active Galphaq and Galpha13 trigger apoptosis through different pathways. J Biol Chem,1997.272(39):p. 24380-6.
    169. Summerton, J., Morpholino antisense oligomers:the case for an RNase H-independent structural type. Biochim Biophys Acta,1999.1489(1):p.141-58.
    170. Arora, V., et al., c-Myc antisense limits rat liver regeneration and indicates role for c-Myc in regμlating cytochrome P-450 3A activity. J Pharmacol Exp Ther,2000.292(3):p. 921-8.
    171. Qin, G., et al., In vivo evaluation of a morpholino antisense oligomer directed against tumor necrosis factor-alpha. Antisense Nucleic Acid Drug Dev,2000.10(1):p.11-6.
    172. Ekker, S.C., Morphants:a new systematic vertebrate functional genomics approach. Yeast,2000.17(4):p.302-306.
    173. Nasevicius, A. and S.C. Ekker, Effective targeted gene 'knockdown'in zebrafish. Nat Genet,2000.26(2):p.216-20.
    174. Lele, Z., J. Bakkers, and M. Hammerschmidt, Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis,2001.30(3): p.190-4.
    175. Murray-Zmijewski, R, D.P. Lane, and J.C. Bourdon, p53/p63/p73 isoforms:an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ, 2006.13(6):p.962-72.
    176. Bourdon, J.C., et al., p53 isoforms can regulate p53 transcriptional activity. Genes Dev, 2005.19(18):p.2122-37.
    177. Chen, J., et al., Loss of function of def selectively up-regμlates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev,2005.19(23):p. 2900-11.
    178. Heasman, J., M. Kofron, and C. Wylie, Beta-catenin signaling activity dissected in the early Xenopus embryo:a novel antisense approach. Dev Biol,2000.222(1):p.124-34.
    179. Bauer, H., et al., The type Ⅰ serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development,2001.128(6):p.849-58.
    180. Sumanas, S. and S.C. Ekker, Xenopus frizzled-7 morphant displays defects in dorsoventral patterning and convergent extension movements during gastrulation. Genesis,2001.30(3):p.119-22.
    181. Cui, Z., et al., Inhibition of skiA and skiB gene expression ventralizes zebrafish embryos. Genesis,2001.30(3):p.149-53.
    182. Howard, E.W., et al., SpKrl:a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos. Development,2001.128(3):p.365-75.
    183. Hyatt, T.M. and S.C. Ekker, Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol,1999.59:p.117-26.
    184. Sumanas, S. and S. Lin, Etsl-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol,2006.4(1):p. e10.
    185. Sumanas, S., et al., Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. Blood,2008.111(9):p.4500-10.
    186. Chomczynski, P. and K. Mackey, Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques,1995.19(6):p.942.
    187. Link, V., A. Shevchenko, and C.P. Heisenberg, Proteomics of early zebrafish embryos. BMC Dev Biol,2006.6:p.1.
    188. Qian, F., et al., Distinct functions for different scl isoforms in zebrafish primitive and definitive hematopoiesis. PLoS Biol,2007.5(5):p. e132.
    189. Rekhtman, N., et al., Direct interaction of hematopoietic transcription factors PU.1 and GATA-1:functional antagonism in erythroid cells. Genes Dev,1999.13(11):p.1398-411.
    190. Hsu, K., et al., The pu.l promoter drives myeloid gene expression in zebrafish. Blood, 2004.104(5):p.1291-7.
    191. Kappel, A., et al., Role of SCL/Tal-1, GATA, and ets transcription factor binding sites for the regulation of flk-1 expression during murine vascular development. Blood,2000. 96(9):p.3078-85.
    192. Robu, M.E., et al.,p53 activation by knockdown technologies. PLoS Genet,2007.3(5):p. e78.
    193. Masuda, Y., et al., Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochemical and Biophysical Research Communications,2002.293(1):p.396-402.
    194. Bagnato, A. and F. Spinella, Emerging role of endothelin-1 in tumor angiogenesis. Trends Endocrinol Metab,2003.14(1):p.44-50.
    195. Leung, T., et al., Zebrafish G protein gamma2 is required for VEGF signaling during angiogenesis. Blood,2006.108(1):p.160-6.
    196. Shan, D., et al., The G protein G alpha(13) is required for growth factor-induced cell migration. Dev Cell,2006.10(6):p.707-18.
    197. Versteeg, H.H., et al., FⅦa:TF induces cell survival via G12/G13-dependent Jak/STAT activation and BclXL production. Circ Res,2004.94(8):p.1032-40.
    198. Wang, R.M., et al., The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats. Brain Res,2009.1255:p.32-41.
    199. Gomez-Lazaro, M., F.J. Fernandez-Gomez, and J. Jordan, p53:twenty five years understanding the mechanism of genome protection. J Physiol Biochem,2004.60(4):p. 287-307.
    200. Kim, M.S., et al., G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol Cancer Res,2007.5(5):p.473-84.
    201. Marine, J.C. and A.G Jochemsen, Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun,2005.331(3):p.750-60.
    202. Kimmel, C.B., R.M. Warga, and D.A. Kane, Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development,1994.120(2):p.265-76.
    203. Raible, D.W., et al., Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Dev Dyn,1992.195(1):p.29-42.
    204. Papan, C. and J.A. Campos-Ortega, On the formation of the neural keel and neural tube in the zebrafishDanio (Brachydanio) rerio. Development Genes and Evolution,1994. 203(4):p.178-186.
    205. Hemmati-Brivanlou, A. and D. Melton, Vertebrate Embryonic Cells Review Will Become Nerve Cells Unless Told Otherwise. Cell,1997.88:p.13-17.
    206. Suzuki, A., et al., A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proceedings of the National Academy of Sciences of the United States of America,1994.91(22):p.10255.
    207. Hawley, S.H., et al., Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes & development,1995.9(23):p.2923.
    208. Wilson, P.A. and A. Hemmati-Brivanlou, Induction of epidermis and inhibition of neural fate by Bmp-4. Nature,1995.376(6538):p.331-333.
    209. Xu, R.H., et al., A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochemical and biophysical research communications,1995.212(1):p.212-219.
    210. Lamb, T.M., et al., Neural induction by the secreted polypeptide noggin. Science,1993. 262(5134):p.713.
    211. Hemmati-Brivanlou, A., O.G Kelly, and D.A. Melton, Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell,1994. 77(2):p.283-295.
    212. Sasai, Y., et al., Xenopus chordin:a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell,1994.79(5):p.779-790.
    213. Weinstein, D.C. and A. Hemmati-Brivanlou, Neural induction in Xenopus laevis: evidence for the default model. Current Opinion in Neurobiology,1997.7(1):p.7-12.
    214. Mμllins, M.C., et al., Genes establishing dorsoventral pattern formation in the zebrafish embryo:the ventral specifying genes. Development,1996.123(1):p.81.
    215. Schulte-Merker, S., et al., The zebrafish organizer requires chordino. Nature,1997. 387(6636):p.862-863.
    216. Fekany-Lee, K., et al., The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development,2000.127(11):p.2333.
    217. Nguyen, V.H., et al., Ventral and Lateral Regions of the Zebrafish Gastrula, Including the Neural Crest Progenitors, Are Established by abmp2b/swirlPathway of Genes. Developmental biology,1998.199(1):p.93-110.
    218. Hild, M., et al., The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development,1999.126(10):p.2149.
    219. Dick, A., et al., Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development,2000.127(2):p.343.
    220. Furthauer, M., B. Thisse, and C. Thisse, Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Developmental Biology, 1999.214(1):p.181-196.
    221. Miller-Bertoglio, V., et al., Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Developmental biology,1999.214(1):p.72-86.
    222. Talbot, W.S., et al., A homeobox gene essential for zebrafish notochord development. 1995.
    223. Stachel, S.E., D.J. Grunwald, and P.Z. Myers, Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrμla zebrafish. Development,1993.117(4):p.1261.
    224. Melby, A.E., R.M. Warga, and C.B. Kimmel, Specification of cell fates at the dorsal margin of the zebrafish gastrμla. Development,1996.122(7):p.2225.
    225. Shih, J. and S.E. Fraser, Characterizing the zebrafish organizer:microsurgical analysis at
    the early-shield stage. Development,1996.122(4):p.1313.
    226. Saude, L., et al., Axis-inducing activities and cell fates of the zebrafish organizer. Development,2000.127(16):p.3407.
    227. Miller-Bertoglio, V.E., et al., Differential Regulation ofchordinExpression Domains in Mutant Zebrafish. Developmental biology,1997.192(2):p.537-550.
    228. Kelly, C., et al., Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development,2000.127(18):p.3899.
    229. Wilson, S.I. and T. Edlund, Neural induction:toward a unifying mechanism. Nat Neurosci, 2001.4 Suppl:p.1161-8.
    230. Wilson, S.I., et al., The status of Wnt signalling regμlates neural and epidermal fates in the chick embryo. Nature,2001.411(6835):p.325-30.
    231. Furthauer, M., C. Thisse, and B. Thisse, A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrμla. Development,1997.124(21):p.4253.
    232. Koshida, S., et al., Inhibition of BMP activity by the FGF signal promotes posterior neural development in zebrafish. Developmental biology,2002.244(1):p.9-20.
    233. Durston, A.J., et al., Retinoic acid causes an anteroposterior transformation in the developing central nervous system.1989.
    234. Sive, H.L., et al., Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes & development,1990.4(6):p.932.
    235. Conlon, R.A., Retinoic acid and pattern formation in vertebrates. Trends in Genetics, 1995.11(8):p.314-319.
    236. Cox, W.G and A. Hemmati-Brivanlou, Caudalization of neural fate by tissue recombination and bFGF. Development,1995.121(12):p.4349.
    237. Kelly, GM., et al., Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development,1995.121(6):p.1787.
    238. Kengaku, M. and H. Okamoto, bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development,1995.121(9):p.3121.
    239. Lamb, T.M. and R.M. Harland, Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development,1995. 121(11):p.3627.
    240. McGrew, L.L., C.J. Lai, and R.T. Moon, Specification of the Anteroposterior Neural Axis through Synergistic Interaction of the Wnt Signaling Cascade withnogginandfollistatin. Developmental biology,1995.172(1):p.337-342.
    241. Blumberg, B., et al., An essential role for retinoid signaling in anteroposterior neural patterning. Development,1997.124(2):p.373.
    242. Koshida, S., et al., Initial anteroposterior pattern of the zebrafish central nervous system is determined by differential competence of the epiblast. Development,1998.125(10):p. 1957.
    243. Kazanskaya, O., A. Glinka, and C. Niehrs, The role of Xenopus dickkopfl in prechordal plate specification and neural patterning. Development,2000.127(22):p.4981.
    244. Kiecker, C. and C. Niehrs, A morphogen gradient of Wnt/{beta}-catenin signalling regμlates anteroposterior neural patterning in Xenopus. Development,2001.128(21):p. 4189.
    245. Yamaguchi, T.P., Heads or tails:Wnts and anterior-posterior patterning. Current Biology, 2001.11(17):p. R713-R724.
    246.. Kudoh, T., S.W. Wilson, and I.B. Dawid, Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development,2002.129(18):p.4335.
    247. Kim, C.H., et al., Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature,2000.407(6806):p.913-916.
    248. Heisenberg, C.P., et al., A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axinl leads to a fate transformation of telencephalon and eyes to diencephalon. Genes & development,2001.15(11):p.1427.
    249. Lekven, A.C., et al., Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Developmental Cell,2001. 1(1):p.103-114.
    250. Houart, C., et al., Establishment of the telencephalon during gastrμlation by local antagonism of Wnt signaling. Neuron,2002.35(2):p.255-265.
    251. Bernhardt, R.R., et al., Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. The Journal of Comparative Neurology,1992.326(2):p.263-272.
    252. Str hle, U., et al., one-eyed pinhead is required for development of the ventral midline of the zebrafish (Danio rerio) neural tube. Genes and Function,2008.1(2):p.131-148.
    253. Odenthal, J., et al., Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Developmental biology,2000.219(2):p.350-363.
    254. Tomizawa, K., et al., Monoclonal antibody stains oligodendrocytes and Schwann cells in zebrafish (Danio rerio). Anatomy and Embryology,2000.201(5):p.399-406.
    255. Br samle, C. and M.E. Halpern, Characterization of myelination in the developing zebrafish. Glia,2002.39(1):p.47-57.
    256. Park, H.C., et al., olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Developmental biology,2002.248(2):p.356-368.
    257. Kawai, H., N. Arata, and H. Nakayasu, Three-dimensional distribution of astrocytes in zebrafish spinal cord. Glia,2001.36(3):p.406-413.
    258. Tomizawa, K., Y. Inoue, and H. Nakayasu, A monoclonal antibody stains radial glia in the adμlt zebrafish (Danio rerio) CNS. Journal of Neurocytology,2000.29(2):p. 119-128.
    259. Myers, P.Z., J.S. Eisen, and M. Westerfield, Development and axonal outgrowth of identified motoneurons in the zebrafish. Journal ofNeuroscience,1986.6(8):p.2278.
    260. Appel, B., L.A. Givan, and J.S. Eisen, Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development. BMC Developmental Biology,2001.1(1):p.13.
    261. Williams, J.A., et al., Programmed Cell Death in Zebrafish Rohon Beard Neurons Is Influenced by TrkCl/NT-3 Signaling* 1. Developmental Biology,2000.226(2):p. 220-230.
    262. Svoboda, K.R., A.E. Linares, and A.B. Ribera, Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development,2001.128(18):p.3511.
    263. Eisen, J.S., Patterning motoneurons in the vertebrate nervous system. Trends in Neurosciences,1999.22(7):p.321-326.
    264. Lewis, K.E. and J.S. Eisen, Hedgehog signaling is required for primary motoneuron induction in zebrafish. Development,2001.128(18):p.3485.
    265. Ensini, M., et al., The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development,1998.125(6):p.969.
    266. Liu, J.P., E. Laufer, and T.M. Jessell, Assigning the Positional Identity of Spinal Motor Neurons::Rostrocaudal Patterning of Hox-c Expression by FGFs, Gdfll, and Retinoids. Neuron,2001.32(6):p.997-1012.
    267. Appel, B., et al., Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development,1995.121(12):p.4117.
    268. Inoue, A., et al., Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. American Journal of Anatomy,2005.199(1):p. 1-11.
    269. Tokumoto, M., et al., Molecμlar heterogeneity among primary motoneurons and within myotomes revealed by the differential mRNA expression of novel islet-1 homologs in embryonic zebrafish. Developmental biology,1995.171(2):p.578-589.
    270. Eisen, J.S. and S.H. Pike, The spt-1 mutation alters segmental arrangement and axonal development of identified neurons in the spinal cord of the embryonic zebrafish. Neuron, 1991.6(5):p.767-776.
    271. Metcalfe, W.K., Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. J Comp Neurol,1985.238(2):p.218-24.
    272. Streit, A., Early development of the cranial sensory nervous system:from a common field to individual placodes. Dev Biol,2004.276(1):p.1-15.
    273. Schlosser, G., Induction and specification of cranial placodes. Dev Biol,2006.294(2):p. 303-51.
    274. Gompel, N., et al., Pattern formation in the lateral line of zebrafish. Mech Dev,2001. 105(1-2):p.69-77.
    275. Ghysen, A. and C. Dambly-Chaudiere, The lateral line microcosmos. Genes Dev,2007. 21(17):p.2118-30.
    276. Nechiporuk, A. and D.W. Raible, FGF-dependent mechanosensory organ patterning in zebrafish. Science,2008.320(5884):p.1774-7.
    277. Lecaudey, V, et al., Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development,2008.135(16):p.2695-705.
    278. Hava, D., et al., Apical membrane maturation and cellular rosette formation during morphogenesis of the zebrafish lateral line. J Cell Sci,2009.122(Pt 5):p.687-95.
    279. Nave, K.A. and B.D. Trapp, Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci,2008.31:p.535-61.
    280. Poliak, S. and E. Peles, The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci,2003.4(12):p.968-80.
    281. Salzer, J.L., Polarized domains of myelinated axons. Neuron,2003.40(2):p.297-318.
    282. Trapp, B.D. and K.A. Nave, Multiple sclerosis:an immune or neurodegenerative disorder? Annu Rev Neurosci,2008.31:p.247-69.
    283. Suter, U. and S.S. Scherer, Disease mechanisms in inherited neuropathies. Nat Rev Neurosci,2003.4(9):p.714-26.
    284. McDonald, W.I. and M.A. Ron, Multiple sclerosis:the disease and its manifestations. Philos Trans R Soc Lond B Biol Sci,1999.354(1390):p.1615-22.
    285. Hanemann, C.O., Hereditary demyelinating neuropathies:from gene to disease. Neurogenetics,2001.3(2):p.53-7.
    286. Lemke, G. and R. Axel, Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell,1985.40(3):p.501-8.
    287. Spiryda, L.B., Myelin protein zero and membrane adhesion. J Neurosci Res,1998.54(2): p.137-46.
    288. Milner, R.J., et al., Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell,1985.42(3):p.931-9.
    289. Macklin, W.B., et al., Structure and expression of the mouse myelin proteolipid protein gene. J Neurosci Res,1987.18(3):p.383-94.
    290. Nave, K.A., et al., Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci U S A,1987.84(16):p.5665-9.
    291. Carnegie, P.R., Amino acid sequence of the encephalitogenic basic protein from human myelin. Biochem J,1971.123(1):p.57-67.
    292. Readhead, C., et al., Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell,1987.48(4):p.703-12.
    293. Shine, H.D., et al., Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J Neurochem,1992. 58(1):p.342-9.
    294. Avila, R.L., et al., Myelin structure and composition in zebrafish. Neurochem Res,2007. 32(2):p.197-209.
    295. Geltner, D., K. Kitagawa, and M. Yoshida, Remarkable diversity of proteolipid proteins in fish. J Neurosci Res,1998.54(2):p.289-95.
    296. Stratmann, A. and G. Jeserich, Molecμlar cloning and tissue expression of a cDNA encoding IP1-a P0-like glycoprotein of trout CNS myelin. J Neurochem,1995.64(6):p. 2427-36.
    297. Lyons, D.A., et al., erbb3 and erbb2 are essential for schwann cell migration and myelination in zebrafish. Curr Biol,2005.15(6):p.513-24.
    298. Kirby, B.B., et al., In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci,2006.9(12):p.1506-11.
    299. Brosamle, C. and M.E. Halpern, Characterization of myelination in the developing zebrafish. Glia,2002.39(1):p.47-57.
    300. Woods, I.G., et al., nsf is essential for organization of myelinated axons in zebrafish. Curr Biol,2006.16(7):p.636-48.
    301. Voas, M.G., et al., alphall-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr Biol,2007.17(6):p.562-8.
    302. Schweitzer, J., et al., Evolution of myelin proteolipid proteins:gene duplication in teleosts and expression pattern divergence. Mol Cell Neurosci,2006.31(1):p.161-77.
    303. Schaefer, K. and C. Brosamle, Zwilling-A and-B, two related myelin proteins of teleosts, which originate from a single bicistronic transcript. Mol Biol Evol,2009.26(3):p.495-9.
    304. Li, H., et al., Oligl and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci,2007.27(52):p.14375-82.
    305. Jessen, K.R. and R. Mirsky, The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci,2005.6(9):p.671-82.
    306. Pogoda, H.M., et al., A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Dev Biol,2006.298(1):p.118-31.
    307. Levavasseur, F., et al., Comparison of sequence and function of the Oct-6 genes in zebrafish, chicken and mouse. Mech Dev,1998.74(1-2):p.89-98.
    308. Kazakova, N., et al., A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol,2006.297(1):p.1-13.
    309. Rudenko, G, et al., Structure of the LDL receptor extracellμlar domain at endosomal pH. Science,2002.298(5602):p.2353-8.
    310. Gotthardt, M., et al., Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem,2000.275(33):p.25616-24.
    311. Trommsdorff, M., et al., Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem,1998. 273(50):p.33556-60.
    312. May, P., Y.K. Reddy, and J. Herz, Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J Biol Chem,2002.277(21):p.18736-43.
    313. Kinoshita, A., et al., The intracellμlar domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J Biol Chem,2003.278(42):p.41182-8.
    314. Ross, R., The pathogenesis of atherosclerosis:a perspective for the 1990s. Nature,1993. 362(6423):p.801-9.
    315. Betsholtz, C., Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev,2004.15(4):p.215-28.
    316. Loukinova, E., et al., Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF. J Biol Chem,2002. 277(18):p.15499-506.
    317. Boucher, P., et al., Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low Density lipoprotein receptor-related protein in caveolae. J Biol Chem,2002.277(18):p.15507-13.
    318. Barnes, H., E.J. Ackermann, and P. van der Geer, v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. Oncogene,2003.22(23): p.3589-97.
    319. Pelicci, G, et al., A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell,1992.70(1):p.93-104.
    320. Ranganathan, S., et al., Serine and threonine phosphorylation of the low density lipoprotein receptor-related protein by protein kinase Calpha regulates endocytosis and association with adaptor molecules. J Biol Chem,2004.279(39):p.40536-44.
    321. Okada, S.S., S.R. Grobmyer, and E.S. Barnathan, Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol,1996.16(10):p.1269-76.
    322. Mahley, R.W., Apolipoprotein E:cholesterol transport protein with expanding role in cell
    biology. Science,1988.240(4852):p.622-30.
    323. Weisgraber, K.H., Apolipoprotein E:structure-function relationships. Adv Protein Chem, 1994.45:p.249-302.
    324. Plump, A.S., et al., Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell,1992.71(2):p. 343-53.
    325. Zhang, S.H., et al., Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J Clin Invest,1994.94(3):p.937-45.
    326. Shimano, H., et al., Inhibition of diet-induced atheroma formation in transgenic mice expressing apolipoprotein E in the arterial wall. J Clin Invest,1995.95(2):p.469-76.
    327. Swertfeger, D.K., G. Bu, and D.Y. Hui, Low density lipoprotein receptor-related protein mediates apolipoprotein E inhibition of smooth muscle cell migration. J Biol Chem,2002. 277(6):p.4141-6.
    328. Zhu, Y. and D.Y. Hui, Apolipoprotein E binding to low density lipoprotein receptor-related protein-1 inhibits cell migration via activation of cAMP-dependent protein kinase A. J Biol Chem,2003.278(38):p.36257-63.
    329. Hahn-Dantona, E., et al., The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem,2001.276(18):p.15498-503.
    330. Orr, A.W., et al., Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol,2003.161(6):p.1179-89.
    331. Spijkers, P.P., et al., LDL-receptor-related protein regμlates beta2-integrin-mediated leukocyte adhesion. Blood,2005.105(1):p.170-7.
    332. Qian, Z., et al., Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature,1993.361(6411):p.453-7.
    333. Seeds, N.W., B.L. Williams, and P.C. Bickford, Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science,1995.270(5244):p.1992-4.
    334. Carroll, P.M., et al., The mouse tissue plasminogen activator gene 5'flanking region directs appropriate expression in development and a seizure-enhanced response in the CNS. Development,1994.120(11):p.3173-83.
    335. Yepes, M., et al., Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest,2002.109(12):p. 1571-8.
    336. Nassar, T., et al., In vitro and in vivo effects of tPA and PAI-1 on blood vessel tone. Blood, 2004.103(3):p.897-902.
    337. Yepes, M., et al., Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest,2003.112(10):p.1533-40.
    338. Rubin, L.L. and J.M. Staddon, The cell biology of the blood-brain barrier. Annu Rev Neurosci,1999.22:p.11-28.
    339. Broadwell, R.D., et al., Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Prog Brain Res,1990.82:p.95-101.
    340. Janzer, R.C. and M.C. Raff, Astrocytes induce blood-brain barrier properties in endothelial cells. Nature,1987.325(6101):p.253-7.
    341. Stewart, P. A. and M J. Wiley, Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells:a study using quail-chick transplantation chimeras. Dev Biol,1981.84(1):p.183-92.
    342. Baker, R.N., et al., The movement of exogenous protein in experimental cerebral edema. An electron microscopic study after freeze-injury. J Neuropathol Exp Neurol,1971.30(4): p.668-79.
    343. Garcia, J.H., et al., Neuronal ischemic injury:light microscopy, μltrastructure and biochemistry. Acta Neuropathol,1978.43(1-2):p.85-95.
    344. Romanic, A.M. and J.A. Madri, Extracellular matrix-degrading proteinases in the nervous system. Brain Pathol,1994.4(2):p.145-56.
    345. Asahi, M., et al., Role for matrix metalloproteinase 9 after focal cerebral ischemia:effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab,2000. 20(12):p.1681-9.
    346. Asahi, M., et al., Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci, 2001.21(19):p.7724-32.
    347. Wang, Y.F., et al., Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med,1998.4(2):p. 228-31.
    348. Makarova, A., et al., The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J Biol Chem,2003. 278(50):p.50250-8.
    349. Rebeck, GW., et al., Apolipoprotein E in sporadic Alzheimer's disease:allelic variation and receptor interactions. Neuron,1993.11(4):p.575-80.
    350. Boucher, P., et al., LRP:role in vascular wall integrity and protection from atherosclerosis. Science,2003.300(5617):p.329-32.
    351. Wang, X., et al., Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med,2003.9(10):p.1313-7.
    352. Deane, R., et al., LRP/amyloid beta-peptide interaction mediates differential brain efflux ofAbeta isoforms. Neuron,2004.43(3):p.333-44.
    353. Degryse, B., et al., The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem,2004.279(21):p. 22595-604.
    354. Schμlz, S., et al., Role of LDL receptor-related protein (LRP) in coronary atherosclerosis. Int J Cardiol,2003.92(2-3):p.137-44.
    355. Sherrington, R., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature,1995.375(6534):p.754-60.
    356. Levy-Lahad, E., et al., Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science,1995.269(5226):p.973-7.
    357. De Strooper, B., et al., A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellμlar domain. Nature,1999.398(6727):p.518-22.
    358. De Strooper, B., et al., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature,1998.391(6665):p.387-90.
    359. Ni, C.Y., et al., gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science,2001.294(5549):p.2179-81.
    360. Marambaud, P., et al., A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellμlar domain and regulates disassembly of adherens junctions. Embo J,2002. 21(8):p.1948-56.
    361. Quinn, K.A., et al., Soluble low density lipoprotein receptor-related protein (LRP) circμlates in human plasma. J Biol Chem,1997.272(38):p.23946-51.
    362. Quinn, K.A., et al., Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp Cell Res,1999.251(2):p.433-41.
    363. Cao, X. and T.C. Sudhof, A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science,2001.293(5527): p.115-20.
    364. Baek, S.H., et al., Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell,2002.110(1):p. 55-67.
    365. Higashijima, S., Y. Hotta, and H. Okamoto, Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci,2000.20(1):p.206-18.
    366. Tanaka, H., et al., Novel mutations affecting axon guidance in zebrafish and a role for plexin signalling in the guidance of trigeminal and facial nerve axons. Development, 2007.134(18):p.3259.
    367. Bernhardt, R.R., et al., Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol,1990.302(3):p.603-16.
    368. Kimmel, C.B., S.L. Powell, and W.K. Metcalfe, Brain neurons which project to the spinal cord in young larvae of the zebrafish. The Journal of Comparative Neurology,2004. 205(2):p.112-127.
    369. Str hle, U., et al., Vertebrate floor-plate specification:variations on common themes. Trends in Genetics,2004.20(3):p.155-162.
    370. Colamarino, S.A. and M. Tessier-Lavigne, The role of the floor plate in axon guidance. Annual review of neuroscience,1995.18(1):p.497-529.
    371. Charron, R, et al., The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell,2003.113(1):p.11-23.
    372. McCarthy, R.A., et al., Megalin functions as an endocytic sonic hedgehog receptor. Journal of Biological Chemistry,2002.277(28):p.25660.
    373. Odenthal, J. and C. Niisslein-Volhard, Fork head domain genes in zebrafish. Development genes and evolution,1998.208(5):p.245-258.
    374. Norton, W.H., et al., Monorail/Foxa2 regμlates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development,2005.132(4):p.645.
    375. Briscoe, J., et al., Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature,1999.398(6728):p.622-626.
    376. Ericson, J., et al., Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell,1997.90(1):p.169-180.
    377. Lu, Q.R., et al., Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron,2000.25(2):p.317-329.
    378. Tanabe, Y., H. Roelink, and T.M. Jessell, Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation. Current Biology,1995.5(6):p.651-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700