用户名: 密码: 验证码:
具有C_2对称性的手性NHC的合成及其在催化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氮杂环卡宾(NHC)及其金属络合物的化学是近二十年来发展起来的新领域。NHC作为一种新型的配体,它们可与过渡金属离子配位,形成稳定性较好的配合物,在多类催化反应中表现出独特的魅力,其中手性NHC及其金属配合物在不对称催化反应中发挥着越来越重要的作用,显示出重要的学术及应用价值。
     在本论文中,我们设计了具有C2对称性的螯合型五元、六元NHC的前体,其环上氮原子的取代基中带潜在配位的氧原子,脱除质子后可形成多齿NHC配体,与金属配位时形成的螯合物在催化不对称反应时可能获得更高选择性。由于它们特殊的配位能力,与传统的有机膦配体不同、在催化反应等领域与机膦配体互补。
     本文采用以下不同路线合成了具有上述结构特征的NHC前体咪唑盐、咪唑啉盐、四氢嘧啶盐。这些路线包括:(1)以手性的氨基醇(醚)为原料与草酸二乙酯反应形成酰胺、再用LiAlH4还原酰胺得到二胺,最后通过与原甲酸乙酯、氟硼酸铵(氯化铵等)作用关环形成咪唑啉盐七种;(2)以氨基醇为原料与1,2-二溴乙烷反应得到二胺,再经过与原甲酸乙酯、氟硼酸铵(氯化铵等)作用关环形成咪唑啉盐三种;(3)乳酸酯(或扁桃酸酯)为原料,经酚醚化、还原酯为醇、对甲苯磺酰化,溴代,最后与咪唑反应得到咪唑盐六种;(4)以苯基环氧乙烷和咪唑在加压的条件下反应,得到咪唑盐一种;(5)以胺和乙二醛为原料合成二亚胺,再用多聚甲醛、TMSCl进行关环,得到咪唑盐二种;(6)类似与路线(2),但使用1,3-二溴乙烷反应,得到了六元环的3,4,5,6-四氢嘧啶盐六种。
     对氨基醇与乙二醛间的反应,得到了双噁唑螺环化合物,而非未得到预期的产物二胺。
     将合成的咪唑(啉)盐、嘧啶盐经脱质子后生成的螯合型NHC用于催化反应。以咪唑(啉)盐原位形成的NHC-Cu化合物催化二乙基锌对环己(戊)烯酮的不对称共轭加成反应。当使用咪唑啉盐时,获得了较高的化学收率(99%)和合理的ee值(78%)。使用不同的碱,优势产物的构型会发生改变。
     这些咪唑(啉)盐、嘧啶盐-碱-Cu(I)原位形成的化合物也能催化硅氢试剂对α,β-不饱和酮的共轭还原反应。其中咪唑盐形成的催化剂表现出较好的催化性能和选择性,能使反应在5 min内完成,且只还原其中的碳碳双键,得到近乎定量收率的选择性还原产物。
The chemistry of N-heterocyclic carbene (NHC) and its metal complexes is a new and active research area in the last two decades. NHC, a novel type of ligand, can coordinate with transition metal ions, forming complexes with good stability and unique quality in many catalytic reactions. In recent years, their catalytic properties in asymmetric version have been highlighted, both with academic interest and technical importance.
     In this thesis, we have designed five- membered-ring, and six-membered-ring NHC precursors with a C2 symmetry, where substitutents attached to nitrogen atoms of the ring have potentially coordinative oxygen atoms. Therefore, these NHC might act as multi-dentated ligand when coordinating with metal ions, and exhibit different, hopefully more excellent catalytic abilities, when compared with the current popular mono-dentate NHC ligands. Due to their special coordinative property and topology, they might be different, or even as an alternative, to the traditional phosphorous ligand.
     The following routes were employed in this thesis, for the synthesis of imidazolium salts, imidazolinium salts and 3,4,5,6-tetrahydropyrimidinium salts, the precursor of C2-symmetric NHC: (1) amides obtained from chiral amino alcohol (ether) and diethyl oxalate were reduced with LiAlH4, yielding diamines, the latter ones reacted with ethyl orthoformate and ammonium tetrafluoroborate (or ammonium chloride etc.), furnishing seven imidazolinium salts; (2) diamines derived from the reaction between amino alcohols and 1,2-dibromoethane reacted with ethyl orthoformate and ammonium tetrafluoroborate (ammonium chloride etc.), providing three imidazolinium salt; (3) the hydroxy group in alkyl lactate (mandelate) was converted into the corresponding ethers, and then the formed esters were reduced to alcohols, and the alcohol was converted to bromide; finally, the bromides reacted with imidazole giving six imidazolium salts; (4) one imidazolium salt was produced via the reaction of styrene oxide with imidazole under pressure; (5) two imidazolium salts were obtained via the cyclization of diimine derived from amine and glyoxal, with paraformaldehyde in the presence of trimethylsilyl chloride; (6) a similar reaction to route (2), but 1,3–dibromopropane was used and six six-membered ring 3,4,5,6-tetrahydropyrimidinium salts were obtained.
     Reaction of amino alcohols with glyoxal was also investigate, however, spiro bisoxazolidine compounds, instead of the expected diamines, were produced.
     The synthesized imidazolium salts were used as the NHC precursor in catalytic reactions. Cu-NHC compounds formed in situ from imidazolium (imidazolinium) salts were applied to the asymmetric conjugate addition of Et2Zn to cyclohexenone and cyclopentenone. In the presence of imidazolinium salts, high chemical yield (up to 99%) and reasonable ee (up to 78%) were achieved. It is interesting that using different bases may result in the switch of the configuration of the major product.
     The imidazolium salts were also applied to the Cu-promoted conjugate reduction ofα,β-unsaturated ketones with silane. Catalysts derived from imidazolium salts showed good catalytic properties and selectivity. The reaction could be finished in just 5 min, and only polar C-C double bond was reduced.
引文
[1] Wanzlick H W. Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed. Engl., 1962, 1: 75-80.
    [2] Wanzlick H W, Sch?nherr H J. Direct Synthesis of a Mercury Salt-Carbene Complex. Angew. Chem. Int. Ed. Engl., 1968, 7: 141-142.
    [3] (?)fele K. Metal Complexes of Thiophosphinic and Selenophosphinic Acids. Angew. Chem. Int. Ed. Engl., 1969, 8: 916-917.
    [4] (?)fele K. 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuerübergangsmetall-carben- komplex. J. Organomet. Chem., 1968, 12: 42–43.
    [5] Arduengo A J, Harlow R L, Kline M. A Stable Crystalline Carbene. J. Am. Chem. Soc., 1991, 113: 361-363.
    [6] Green J C, Scurr R G, Arnold P L, Cloke F G N. An Experimental and Theoretical Investigation of the Electronic Structure of Pd and Pt Bis(carbene) Complexes. Chem. Commun., 1997, 1963.
    [7] Despagnet-Ayoub E, Grubbs R H. A Stable Four-Membered N-Heterocyclic Carbene. J. Am. Chem. Soc., 2004, 126: 10198-10199.
    [8] Despagnet-Ayoub E, Grubbs R H. A Ruthenium Olefin Metathesis Catalyst with a Four-Membered N-Heterocyclic Carbene Ligand. Organometallics, 2005, 24: 338-340.
    [9] Alder R W, Blake M E, Bortolotti C et al. Complexation of Stable Carbenes with Alkali Metals. Chem. Commun., 1999, 241-242.
    [10] Guillen F, Winn C L,Alexakis A. Enantioselective Copper-Catalyzed Conjugate Addition Using Chiral Diaminocarbene Ligands. Tetrahedron: Asymm., 2001, 12: 2083-2086.
    [11] Scarborough C C, Popp B V,Guzei I A, et al. Development of 7-Membered N-Heterocyclic Carbene Ligands for Transition Metals. J. Organomet. Chem., 2005, 690: 6143–6155.
    [12] Enders D, Breuer K, Raabe G, et al. Preparation, Structure, and Reactivity of 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a New Stable Carbene. Angew. Chem. Int. Ed. Engl., 1995, 34: 1021-1023.
    [13] Nyce G W, Csihony S, Waymouth R M, et al. A General and Versatile Approach to Thermally Generated N-Heterocyclic Carbenes. Chem. Eur. J., 2004, 10: 4073-4079.
    [14] Hahn F E, Wittenbecher L, Boese R, et al. N,N′-Bis(2,2-dimethylpropyl)benzimidazolin- 2-ylidene: A Stable Nucleophilic Carbene Derived from Benzimidazole. Chem. Eur. J., 1999, 5: 1931-1935.
    [15] Hahn F E, Wittenbecher L, Van D L, et al. Evidence for an Equilibrium between an N-heterocyclic Carbene and Its Dimer in Solution. Angew. Chem. Int. Ed., 2000, 39: 541-544.
    [16] Méry D, Aranzaes J R, Astruc D. Use of an Electron-Reservoir Complex Together with Air to Generate N-Heterocyclic Carbenes. J. Am. Chem. Soc., 2006, 128: 5602-5603.
    [17] (a)姜岚,李争宁,赵德峰. N-杂环卡宾及其金属络合物的合成研究进展.化学进展, 2009, 21, 1229-1240. (b)刘波,张娜,陈万芝.过渡金属N-杂环卡宾配合物合成.化学进展, 2010, 22: 2134.
    [18] Arduengo A J III, Dias H V R, Calabrese J C, et al. Homoleptic Carbene-silver(I) and Carbene-copper(I) Complexes. Organometallics 1993, 12, 3405.
    [19] Herrmann W A, Goossen L J, Kocher C,et al. Chiral Heterocylic Carbenes in Asymmetric Homogeneous Catalysis. Angew. Chem., Int. Ed. Engl., 1996, 35, 2805.
    [20] Kaur H, Zinn F K, Stevens E D, et al. (NHC)CuI (NHC = N-Heterocyclic Carbene) Complexes as Efficient Catalysts for the Reduction of Carbonyl Compounds. Organometallics, 2004, 23: 1157-1160.
    [21] Sandra C, Zinner, Wolfgang A, et al. Synthesis and Characterization of Asymmetric NHC Complexes. J. Organomet. Chem., 2008, 693: 1543-1546.
    [22] Perry M C, Cui X, Burgess K. A Modular Approach to Trans-chelating, N-heterocyclic Carbene Ligand Complexes. Tetrahedron: Asymm., 2002, 13: 1969-1972.
    [23] Herrmann W A, Goossen L J, Artus G R J, et al. Metal Complexes of Chiral Imidazolin-2-ylidene Ligands. Organometallics, 1997, 16: 2472-2477.
    [24] Bao W, Wang Z, Li Y. Synthesis of Chiral Ionic Liquids from Natural Amino Acids. J. Org. Chem., 2003, 68: 591-593.
    [25] Anthony J, Arduengo III, Roland Krafczyk, et al. Imidazolylidenes, Imidazolinylidenes and Imidazolidines. Tetrahedron, 1999, 55:14523-l 4534.
    [26] Lee S, Hartwig J F, S-Vinyl-O-t-butyl Thiolcarbonate. A New Route to Polymercaptans. J. Am. Chem. Soc., 2001, 66: 3402-3415.
    [27]史成武(Shi C W),葛茜(Ge Q),邱治国(Qiu Z G), et al.物理化学学报(Acta Physico-Chimica Sinica), 2007, 23: 1473-1477.
    [28] Lin, Y-S, Lin C-Y, Liu C-W, et al. A Highly Active Ionic Liquid Catalyst for Morita–Baylis–Hillman Reaction. Tetrahedron, 2006, 62: 872–877.
    [29] Moore T; Merzouk M, Williams, N. Synthesis of Amidoalkyl Imidazol-2-ylidene Ligands and Their Application to Enantioselective Copper-Catalysed Conjugate Addition. Synlett.,2008, No. 1, 21–24. [30 ] Polly L A, Claire W. Sterically Demanding Bi- and Tridentate Alkoxy-N-heterocyclic carbenes. Inorganica Chimica Acta, 2007, 360,190–196.
    [31] Altenhoff G, Goddard R, Christian W, et al. An N-Heterocyclic Carbene Ligand with Flexible Steric Bulk Allows Suzuki Cross-Coupling of Sterically Hindered Aryl Chlorides at Room Temperature. Angew. Chem. Int. Ed., 2003, 42: 3690–3693.
    [32] Arduengo A J, Goerlich J R, Marshall W J. A Stable Diaminocarbene. J. Am. Chem. Soc., 1995, 117: 11027-11028.
    [33] Jurík V, Gilani M, Wilhelm R. Ueber Die Zusammensetzung Der Kamphors?ure Und Die Producte Ihrer Aetherification (Kamphorweins?ure, Kamphor?ther und wasserfreie Kamphors?ure). Eur. J. Org. Chem., 2006, 22: 5103-5109.
    [34] Veldhuizen J J V, Garber S B, Kingsbury J S, et al. A Recyclable Chiral Ru Catalyst for Enantioselective Olefin Metathesis. Efficient Catalytic Asymmetric Ring-Opening/Cross Metathesis in Air. J. Am. Chem. Soc., 2002, 124: 4954-4955.
    [35] Larsen A O, Leu W, Oberhuber C N, et al. Bidentate NHC-Based Chiral Ligands for Efficient Cu-Catalyzed Enantioselective Allylic Alkylations: Structure and Activity of an Air-Stable Chiral Cu Complex. J. Am. Chem. Soc., 2004, 126: 11130-11131.
    [36] Waltman A W, Grubbs R H. A New Class of Chelating N-Heterocyclic Carbene Ligands and Their Complexes with Palladium. Organometallics, 2004, 23: 3105-3107.
    [37] Enders D, Breuer K, Raabe G, et al. Preparation, Structure, and Reactivity of 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a New Stable Carbene. Angew. Chem. Int. Ed. Engl., 1995, 34: 1021-1023.
    [38] Enders D, Gielen H. Synthesis of Chiral Triazolinylidene and Imidazolinylidene Transition Metal Complexes and first Application in Asymmetric Catalysis. J. Organomet. Chem., 2001, 617-618: 70-80.
    [39] Hahn F E, Wittenbecher L, Boese R, Bl?ser D. N,N′-Bis(2,2-dimethylpropyl)benzimidazolin-2-ylidene: A Stable Nucleophilic Carbene Derived from Benzimidazole. Chem. Eur. J., 1999, 5: 1931-1935.
    [40] (a) Herrmann, W. A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angew. Chem. Int. Ed., 2002, 41: 1290. (b) Herrmann W A, Schütz J, Frey G D, et al. N-Heterocyclic Carbenes: Synthesis, Structures, and Electronic Ligand Properties. Organometallics 2006, 25: 2437.
    [41] Scott N M, Clavier H, Mahjoor P, et al. Synthetic, Structural, and Thermochemical Studies of N-Heterocyclic Carbene (NHC) and Tertiary Phosphine Ligands in the [(L)2Ni(CO)2] (L = PR3, NHC) System. Organometallics 2008, 27: 3181.
    [42] Lee M T, Hu C H. Density Functional Study of N-Heterocyclic and Diamino Carbene Complexes: Comparison with Phosphines. Organometallics 2004, 23: 976.
    [43] O’Brien C J, Kantchev E A B, Chass G A, et al. Towards the rational design of palladium-N-heterocyclic carbene catalysts by a combined experimental and computational approach. Tetrahedron 2005, 61: 9723.
    [44] Díez-González S, Nolan S P. Stereoelectronic Parameters Associated with N-heterocyclic Carbene (NHC) Ligands: A Quest for Understanding. Coord. Chem. Rev. 2007, 251, 874.
    [45] Connor E F, Nyce G W, Myers M, et al. First Example of N-Heterocyclic Carbenes as Catalysts for Living Polymerization: Organocatalytic Ring-Opening Polymerization of Cyclic Esters. J. Am. Chem. Soc., 2002, 124: 914.
    [46] Duong H A, Cross M J, Louie J. N-Heterocyclic Carbenes as Highly Efficient Catalysts for the Cyclotrimerization of Isocyanates. Org. Lett., 2004, 6: 4679.
    [47] Burstein C, Glorius R. Organocatalyzed Conjugate Umpolung ofα,β-Unsaturated Aldehydes for the Synthesis ofγ-Butyrolactones. Angew. Chem. Int. Ed., 2004, 43: 6205.
    [48] Chan A, Scheidt K A. Conversion ofα,β-Unsaturated Aldehydes into Saturated Esters: An Umpolung Reaction Catalyzed by Nucleophilic Carbenes. Org. Lett., 2005, 7: 905.
    [49] Chow Y K K, Bode J W. Catalytic Generation of Activated Carboxylates: Direct, Stereoselective Synthesis ofβ-Hydroxyesters from Epoxyaldehydes. J. Am. Chem. Soc., 2004, 126: 8126.
    [50] Reynolds N T, Alaniz J R, Rovis T. Conversion ofα-Haloaldehydes into Acylating Agents by an Internal Redox Reaction Catalyzed by Nucleophilic Carbenes. J. Am. Chem. Soc., 2004, 126: 9518.
    [51] Stetter H. Catalyzed Addition of Aldehydes to Activated Double Bonds—A New Synthetic Approach. Angew. Chem., Int.Ed. Engl., 1976, 15: 639.
    [52] Yadav J S, Anuradha K, Subba Reddy B V, Eeshwaraiah B. Microwave-accelerated Conjugate Addition of Aldehydes toα,β-unsaturated Ketones. Tetrahedron Lett., 2003, 44: 8959.
    [53] Kerr M S, Alaniz J, Rovis T. A Highly Enantioselective Catalytic Intramolecular Stetter Reaction. J. Am. Chem. Soc., 2002, 124: 10298.
    [54] Readde Alaniz J, Rovis T. A Highly Enantio- and Diastereoselective Catalytic Intramolecular Stetter Reaction. J. Am. Chem. Soc., 2005, 127: 6284.
    [55] Lapworth A. Crystal and Molecular Structure of the Compound of Triethylphosphine and Carbon Disulfide. J. Am. Chem. Soc., 1903, 83: 995.
    [56] Zhao C, Chen S, Wu P, et al. Acta Chim. Sinica.1988, 46: 784.
    [57] Murry J A, Frantz D E, Soheili A, et al. Synthesis ofα-Amido Ketones via Organic Catalysis: Thiazolium-Catalyzed Cross-Coupling of Aldehydes with Acylimines. J. Am. Chem. Soc., 2001,123: 9696
    [58] Pohl M, Lingen B, Muller M. Thiamin-Diphosphate-Dependent Enzymes: New Aspects of Asymmetric C-C Bond Formation. Chem. Eur. J., 2002, 8: 5288.
    [59] Hachisu, Y.; Bode, J. W.; Suzuki, K. Catalytic Intramolecular Crossed Aldehyde?Ketone Benzoin Reactions: A Novel Synthesis of Functionalized Preanthraquinones. J. Am. Chem. Soc.2003, 125, 8432.
    [60] Singh R, Kissling R M, Letellier M A, et al. Transesterification/Acylation of Secondary Alcohols Mediated by N-Heterocyclic Carbene Catalysts J. Org. Chem. 2004, 69: 209.
    [61] Suzuki Y, Yamauchi K, Muramatsu K, et al. First Example of Chiral N-heterocyclic Carbenes as Catalysts for Kinetic Resolution. Chem. Commun., 2004, 2770.
    [61] Kano T, Sasaki K, Maruoka K. Enantioselective Acylation of Secondary Alcohols Catalyzed by Chiral N-Heterocyclic Carbenes. Org. Lett., 2005, 7: 1347.
    [63] Bazan G C, Oskam J H, Cho H N, et al. Living ring-opening metathesis polymerization of 2,3-difunctionalized 7-oxanorbornenes and 7-oxanorbornadienes by Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(O-tert-Bu)2 and Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(OCMe2CF3)2. J. Am. Chem. Soc., 1991, 113: 6899.
    [64] Yamamura M, Moritani I, Murahashi S. The Reaction ofσ-Vinylpalladium Complexes with Alkyllithiums. Stereospecific Syntheses of Olefins from Vinyl Halides and Alkyllithiums. J. Organomet. Chem., 1975, 91: C39.
    [65] Huang J, Nolan S P. Efficient Cross-Coupling of Aryl Chlorides with Aryl Grignard Reagents (Kumada Reaction) Mediated by a Palladium/Imidazolium Chloride System. J. Am. Chem. Soc., 1999, 121: 9889.
    [66] Bohm V P W, Weskamp T, Gstottmayr C W K, et al. Nickel-Catalyzed Cross-Coupling of Aryl Chlorides with Aryl Grignard Reagents. Angew. Chem. Int. Ed., 2000, 39: 1602.
    [67] Weskamp T, Behm V P W, Herrmann W A. Combining N-heterocyclic Carbenes and Phosphines: Improved Palladium(II) Catalysts for Aryl Coupling Reactions. J. Organomet. Chem., 1999, 585: 348.
    [68] Clyne D S, Jin J, Genest E, et al. First Chelated Chiral N-Heterocyclic Bis-Carbene Complexes. Org. Lett., 2000, 2: 1125.
    [69] Gstottmayr C W K, Bohm V P W, Herdtweck E, et al. Defined N-Heterocyclic Carbene Complex for the Palladium-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides at Ambient Temperatures. Angew. Chem. Int. Ed., 2002, 41: 1363.
    [70] Cetinkaya B, Ozdemir I, Bruneau C. Ruthenium-carbene Catalysts for the Synthesis of 2,3-dimethylfuran. J. Mol. Catal. A: Chem., 1997, 118: L1.
    [71] Field L D, Messerle B A, Vuong K Q, et al. Intramolecular Hydroamination with Rhodium(I) and Iridium(I) Complexes Containing a Phosphine?N-Heterocyclic Carbene Ligand. Organometallics, 2005, 24: 4241.
    [72] Tudose A, Demonceau A, Delaude L. Imidazol(in)ium-2-carboxylates as N-heterocyclic carbene precursors in ruthenium–arene catalysts for olefin metathesis and cyclopropanation. J. Organomet. Chem., 2006, 691: 5356.
    [73] Marko I E, Sterin S, Buisine O, et al. Science 2002, 298: 204.
    [74] Marko I E, Michaud G, Berthon-Gelloz, et al. Die Umsetzung von Benzyl?thern am Aluminiumoxyd-Kontakt Adv. Synth. Catal., 2004, 15: 1429.
    [75] Hill J E, Nile T A. Rhodium Carbene Complexes as Hydrosilylation Catalysts. J. Organomet. Chem. 1977, 137: 293.
    [76] Lappert M F. In Transition Metal Chemistry, Eds: Mηller,A.; Diemann, E., Verlag Chemie, Weinheim, 1981, p. 287.
    [77] Lappert M F, Maskell R K. Homogeneous catalysis: VIII. Carbene-transition-metal Complexes as Hydrosilylation Catalysts. J. Organomet. Chem., 1984, 264: 217.
    [78] Herrmann W A, Goossen I J, Kocher C, Artus G R. Chiral Heterocylic Carbenes in Asymmetric Homogeneous Catalysis. Angew. Chem., Int. Ed. Engl. 1996, 35: 2805.
    [79] Herrmann W A, Goossen L J, Spiegler M. Chiral Oxazoline/Imidazoline-2-ylidene Complexes. Organometallics, 1998, 17: 2162.
    [80] Guillen F, Winn C L, Alexakis A. Enantioselective Copper-Catalyzed Conjugate Addition using Chiral Diaminocarbene Ligands. Tetrahedron: Asym. 2001, 12: 2083.
    [81] Cavell K J, Elliott M C, Nielsen D J Paine J S. Chiral N-heterocyclic Carbene Ligands Based on a Biisoquinoline Template. Dalton Trans. 2006, 4922.
    [82] Clavier H, Coutable L, Guillemin J C, et al. New Bidentate Alkoxy-NHC Ligands for Enantioselective Copper-Catalysed Conjugate Addition. Tetrahedron: Asym., 2005, 16: 921.
    [83] Matsumoto Y, Yamada K, Tomioka K. C2 Symmetric Chiral NHC Ligand for Asymmetric Quaternary Carbon Constructing Copper-Catalyzed Conjugate Addition of Grignard Reagents to 3-Substituted Cyclohexenones. J. Org. Chem., 2008, 73: 4578.
    [84] Veldhuizen J J V, Campbell J E, Giudici R E, Hoveyda A H. A Readily Available Chiral Ag-Based N-Heterocyclic Carbene Complex for Use in Efficient and Highly Enantioselective Ru-Catalyzed Olefin Metathesis and Cu-Catalyzed Allylic Alkylation Reactions. J. Am. Chem. Soc., 2005, 127: 6877.
    [85] Herrmann W A, Goossen L J, Kocher C, Artus G RJ. Chiral Heterocylic Carbenes in Asymmetric Homogeneous Catalysis. Angew. Chem., Int. Ed. Engl., 1996, 35: 2805.
    [86] Faller J W, Fontaine P P. Stereodynamics and Asymmetric Hydrosilylation with Chiral Rhodium Complexes Containing a Monodentate N-Heterocyclic Carbene. Organometallics. 2006, 25:5887.
    [87] Enders D, Gielen H, Breuer K. Catalytic Asymmetric Hydrosilylation with (Triazolinylidene)Rhodium Complexes Containing an Axis of Chirality. Tetrahedron: Asymmrtry., 1997, 8: 3571.
    [88] Gade L H, Cesar V. A Modular Assembly of Chiral Oxazolinylcarbene–Rhodium Complexes: Efficient Phosphane-Free Catalysts for the Asymmetric Hydrosilylation of Dialkyl Ketones. Angew. Chem., Int. Ed., 2004, 43: 1014.
    [89] Yuan Y, Raabe G, Bolm C. Novel Rhodium Complexes with Ferrocene-Based N-Heterocylic Carbenes: Synthesis, Structure and Catalysis. J. Organomet. Chem., 2005, 690: 5747.
    [90] Ros A, Alcarazo M, Iglesias-Siguenza J, Dǐez E, et al. Stereoselective Synthesis of Rhodium(I) 4-(Dialkylamino)triazol-5-ylidene Complexes. Organometallics, 2008, 27: 4555.
    [91] Xu Q, Gu X X, Liu S J, Dou Q Y, et al. The Use of Chiral BINAM NHC-Rh(III) Complexes in Enantioselective Hydrosilylation of 3-Oxo-3-arylpropionic Acid Methyl or Ethyl Esters. J. Org. Chem., 2007, 72: 2240.
    [92] Chianese A R, Crabtree R H. Axially Chiral Bidentate N-Heterocyclic Carbene Ligands Derived from BINAM: Rhodium and Iridium Complexes in Asymmetric Ketone Hydrosilylation. Organometallics 2005, 24: 4432.
    [93] Bantu B, Wang D, Wurst K, Buchmeiser M R. Copper (I) 1,3-R2-3,4,5,6-tetrahydropyrimidin- 2-ylidenes (R=mesityl, 2-propyl): Synthesis, X-ray Structures, Immobilization and Catalytic Activity. Tetrahedron., 2005, 61: 12145.
    [94] Song C, Ma C, Ma Y, Feng W, et al. Bis-paracyclophane N-heterocyclic Carbene–ruthenium Catalyzed Asymmetric Ketone Hydrosilylation. Tetrahedron Lett., 2005, 46: 3241.
    [95] Sa-ei K, Montgomery J. Highly Diastereoselective Preparation of Anti-1,2-Diols by Catalytic Addition of Alkynylsilanes toα-Silyloxyaldehydes. Org. Lett., 2006, 8: 4441.
    [96] M. Gilani R, Wilehlm. New Enantiopure Imidazolinium Carbene Ligands Incorporating two Hydroxy Groups for Lewis Acid-catalyzed Diethyl Zinc Addition to Aldehydes. Tetrahedron: Asym., 2008, 19: 2346-2352.
    [97] K S, Yoo J, O’Neill S, et al. Asymmetric Intermolecular Boron Heck-Type Reactions via Oxidative Palladium(II) Catalysis with Chiral Tridentate NHC-Amidate-Alkoxide LigandsJ. Org. Chem., 2010, 75: 95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700