用户名: 密码: 验证码:
磁共振弥散加权成像在肝脏恶性肿瘤疗效评估中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1肝脏原发及转移性恶性肿瘤ADC值特点及ADC值测量可重复性研究
     目的研究肝脏原发及各种转移性恶性肿瘤在MR弥散加权成像(diffusion weighted imaging. DWI)不同b值条件下表观弥散系数(apparent diffusion coefficient, ADC)值的特点及随b值变化的规律,评价肝脏恶性病灶ADC值测量的观察者内及观察者间一致性,病灶ADC值测量的可重复性及可重现性。材料与方法该研究方案得到医院伦理委员会批准并获得患者的知情同意书。40位肝脏原发及转移性恶性肿瘤患者(男31例,女9例,年龄32-77岁,平均年龄58.7岁)共74个靶病灶(其中肝细胞肝癌31个,结直肠癌肝转移15个,胰腺癌肝转移9个,胰腺神经内分泌癌肝转移8个,胃癌肝转移7个,肺癌肝转移4个)。行MRDWI扫描(b=0,50,150,500,800 s/mm2),获取靶病灶的ADC值,分析各种转移瘤ADC值的差异及随b值升高的变化趋势。对其中15例患者(男11例,女3例,年龄49-77岁,平均年龄62岁)的30个病灶(包括肝细胞肝癌8个,结直肠癌肝转移8个,胰腺癌肝转移6个,胃癌肝转移4个,肺癌肝转移4个)重复进行3次b=500 s/mm2 DWI扫描,并进行多次重复测量,采用配对t检验,Pearson相关分析,可靠性检验及Bland-Altman分析评估观察者内、观察者间一致性以及ADC值测量的可重复性及可重现性。
     结果b=500 s/mm2时,病灶周围肝脏ADC值1.84×10-3mm2/s,胰腺神经内分泌癌肝转移灶ADC值为1.90×10-3mm2/s,二者不存在显著性差异。周围肝脏及胰腺神经内分泌癌肝转移ADC值显著高于胰腺癌肝转移1.42×10-3mm2/s,胃癌肝转移1.39×10-3mm2/s,肝细胞肝癌1.36×10-3mm2/s,肺癌肝转移1.30×10-3mm2/s,结直肠癌肝转移1.23×10-3mm2/s,且后5种转移瘤ADC值之间不存在显著性差异。b=800 s/mm2时,除了胰腺癌肝转移,其他所有肿瘤ADC值与正常肝脏组织存在显著性差异(p<0.05)。所有肿瘤ADC值均随b值增大而逐步下降,但存在不同的变化趋势。肝脏恶性病灶ADC值测量的观察者内,观察者间,同次检查两个序列(b=500 s/mm2)病灶ADC值,两次检查两个序列(b=500 s/mm2)病灶ADC值之间配对t检验不存在显著性差异,Pearson相关系数分别为0.994,0.983,0.753,0.712,可靠性检验组内相关系数分别为0.997,0.991,0.857,0.827,平均变异率分别为1.75%,2.86%,9.88%和9.55%,Bland-Altman分析发现观察者内、观察者间和可重复性检验所有点均位于一致性界限之内,而可重现性分析中发现有6.7%(2/30)的点位于一致性界限之外。
     结论MR DWI能够反映肝脏原发及各种转移性恶性肿瘤ADC值的不同特点,肝脏恶性病灶ADC值测量的观察者内及观察者间一致性,短期可重复性较好,但变异率小于18.72%的ADC值改变可能是由于测量误差引起的,同时需要注意可重现性的误差控制。
     2磁共振弥散加权成像对晚期肝细胞肝癌患者分子靶向药物治疗的疗效评估
     目的探讨晚期肝细胞肝癌(HCC)患者接受分子靶向药物(索拉非尼)治疗后影像学(包括CT与MR检查)表现的改变,重点探讨磁共振弥散加权成像(diffusion weighted imaging, DWI)表观弥散系数(apparent diffusion coefficient,ADC)的变化规律及其临床意义,为临床提供一种早期疗效评估方法。材料与方法此研究方案经过医院伦理委员会批准并获得患者的知情同意书。2008年12月-2010年1月前瞻性纳入晚期原发性肝癌患者10例(均为男性,年龄39-77岁,平均年龄60岁),治疗前一周内行上腹部MR-DWI扫描(b=500,800 s/mm2),治疗结束后1-3周、6周及12周复查MR-DWI,测定肝内直径大于10 mm典型癌灶的ADC值,根据病灶最大径的改变或坏死、结合实验室检查及临床状况对疗效进行评估。分析病灶的CT增强特点、MR T1WI、T2WI信号改变及ADC值的变化规律。
     结果HCC接受分子靶向药物治疗,影像学可评估病灶31个,其中14个为有反应病灶,17个为无反应病灶。有反应病灶基线最大径及ADC值(b=500 s/mm2)显著高于无反应病灶,有反应病灶治疗后ADC值(b=800 s/mm2)变化率显著高于无反应病灶。有反应病灶经过治疗后其ADC值(b=800 s/mm2)表现为先升高,后降低,随后再次升高的独特规律。传统检查手段观察到病灶T2WI信号增高提示细胞溶解与破坏,T1WI信号增高提示病灶内部出血,CT增强显示病灶强化程度减低,坏死成分增加,据此对ADC值的变化规律作出合理解释。无反应病灶T1WI、T2WI信号及CT表现治疗后未发生显著改变,ADC值在治疗开始后6周内基本保持稳定,12周观察到病灶ADC值(b=800 s/mm2)显著减低,提示病情进展。分子靶向治疗前后有反应病灶及无反应病灶的大小未见显著差异,提示传统疗效评估标准对此种药物疗效评价的局限性。此外,治疗过程中影像学表现与肿瘤指标的变化相一致。
     结论DWI结合传统CT及MR成像,有助于预测并早期监测HCC患者分子靶向药物治疗的疗效,能够实时评估治疗过程中的动态变化,并早期提示肿瘤复发。
     3磁共振弥散加权成像对肝脏转移性肿瘤全身系统性化疗的疗效评估
     目的研究上腹部磁共振弥散加权成像(diffusion weighted imaging. DWI)在肝脏转移性肿瘤全身系统性化疗疗效评估中的价值。材料与方法此研究方案经过伦理委员会批准并获得病人的知情同意书。2008年12月-2010年1月前瞻性地纳入肝转移瘤患者21例(其中男12例,女9例,年龄范围33-73岁,平均年龄56.6岁),包括结直肠癌肝转移10例,胃癌肝转移3例,肺癌肝转移3例,胰腺癌肝转移2例,乳腺癌肝转移1例,未分化癌肝转移1例,胰腺神经内分泌癌肝转移1例。于全身系统化疗前一周内行DWI扫描(b=500,800 s/mm2),治疗开始后1-3周,治疗结束后1周复查DWI。选择肝内最大的3-4个病灶作为靶病灶(共80个),测量靶病灶的表观弥散系数(apparent diffusion coefficient, ADC)值。根据治疗结束后靶病灶最大径的改变分为缓解组(最大径缩小>30%,20个病灶)、进展组(最大径增大>20%,包含18个病灶)和稳定组(介于前两者之间,42个病灶),比较三组靶病灶治疗前后ADC值及ADC值变化率的差异,及这些指标与病灶最大径改变率之间的相关性。
     结果治疗前缓解组ADC值显著低于稳定组及进展组(p<0.015),治疗后1-3周缓解组ADC值显著升高(此时病灶最大径改变率甚微),并且ADC值改变率(32-33%)显著高于稳定组(7-8%)及进展组(ADC值下降11-13%),治疗前ADC值以及ADC值早期变化率与化疗结束后病灶最大径缩小率之间存在显著的相关性,b=800 s/mm2 Pearson相关系数、R2较b=500 s/mm2更高,对肝转移瘤化疗疗效评估更为适宜。治疗结束后缓解组ADC值显著升高,稳定组及进展组ADC值无显著性差异。
     结论DWI在肝转移瘤全身系统化疗的疗效预测及早期评估中具有重要价值,可望为临床提供一种新的疗效评估手段。
1 Reproducibility and characteristics of the apparent diffusion coefficient (ADC) values of primary and metastatic liver cancers by MR diffusion-weighted imaging (DWI)
     Objective To study the apparent diffusion coefficient (ADC) values of primary and metastatic liver cancers and their evolvement characteristics by MR diffusion-weighted imaging (DWI) under the condition of different b values; and to evaluate the intra-and inter-observer consistency, short-term repeatability and reproducibility of the measurement of ADC values of hepatic malignant lesions.
     Materials and Methods This research program was approved by the Hospital Ethics Committee and the informed consents were obtained from the patients. Seventy four cases of 40 patients (male 31 cases, female 9 cases, age range 32-77 yrs, average age 58.7 yrs) with primary and metastatic liver cancers (including 31 hepatocellular carcinomas,15 colorectal cancer liver metastasis,9 pancreatic cancer liver metastasis. 8 pancreatic neuroendocrine carcinoma liver metastasis,7 gastric cancer liver metastasis and 4 lung cancer liver metastasis) were included. MR DWI (b= 0,50,150, 500,800 s/mm2) was performed and the ADC values of the lesions were obtained. The differences among the ADC values of different liver metastasis were analyzed, and the trend of the ADC values in accordance to the increasing of b values was evaluated: Fifteen patients (male 11 cases, female 3 cases, age range 49-77 yrs, average age 62 yrs) underwent DWI scans for three times with different intervals and repeated measurements were performed on 30 lesions (including 8 hepatocellular carcinomas,8 colorectal cancer liver metastasis,6 pancreatic cancer liver metastasis,4 gastric cancer liver metastasis and 4 lung cancer liver metastasis). The intra-and interobserver consistency, short-term repeatability and reproducibility of the measurement of ADC values of hepatic malignant lesions were evaluated by using paired t test, Pearson's correlation analysis, reliability test and Bland-Altman analysis in SPSS 13.0 software.
     Results When b was set as 500 s/mm, there was no significant difference between the ADC value (×10-3 mm2/s) of the surrounding liver tissue (1.84) and the pancreatic endocrine liver metastasis (1.90). The ADC values of the surrounding liver tissue and pancreatic endocrine liver metastasis were significantly higher than those of pancreatic cancer liver metastasis (1.42), gastric cancer liver metastasis (1.39), hepatocellular carcinoma (1.36), lung cancer liver metastasis (1.30) and colorectal cancer liver metastasis (1.23). And there were no significant differences between the ADC values of the latter five kinds of liver metastasis. There were significant differences between the ADC values (b= 800 s/mm2) of the surrounding liver tissue and all the primary and metastatic liver lesions except pancreatic cancer liver metastasis. All the ADC values of the lesions decreased when the b value increased with a common and somewhat unique trend of each kind of the lesion. No significant differences of ADC values of malignant liver lesions could be found by using paired t test in the intra-and inter-observer consistency, the repeatability (two sequences both with a b of 500 s/mm2 lesion in the same session) and the reproducibility(two sequences both with a b of 500 s/mm2 in two sessions) evaluation. Pearson's correlation coefficients were 0.994,0.983, 0.753 and 0.712, intraclass correlation coefficient of the reliability test was 0.997, 0.991,0.857 and 0.827, and the average coefficient of variation was 1.75%,2.86%, 9.88% and 9.55%, respectively. Bland-Altman analysis showed that all the data points from the intra-and inter-observer consistency, as well as repeatability tests were located within the limits of consistency, while 6.7%(2/30) points of reproducibility analysis located beyond the reference lines.
     Conclusion MR DWI can characterize different ADC values of primary and metastatic liver cancers. Intra-and inter-observer consistency and the short-term repeatability of the ADC values measurement are satisfied. A variation rate of the ADC value less than 18.72% may be due to measurement error and attention should be paid to control the measurement error involving reproducibility.
     2 Assessment of the efficacy of molecular targeted therapy in patients with advanced hepatocellular carcinoma with MR Diffusion-weighted imaging (DWI)
     Objective To explore the findings on CT and MR scans in patients with advanced hepatocellular carcinoma (HCC) during molecular targeted therapy (Sorafenib), with a focus on the regular pattern and clinical sense of apparent diffusion coefficient (ADC) values obtained from MR diffusion-weighted imaging (DWI), and to provide an early assessment tool for such an evolving therapy strategy. Materials and
     Methods This research program was approved by the Hospital Ethics Committee and informed consents were obtained from the patients. From Dec.2008 to Jan.2010,10 patients with advanced hepatocellular carcinoma (all male; age range 39-77 years old, with an average age of 60) were included. Upper abdominal MR-diffusion weighted imaging (DWI) scans (b=500,800 s/mm") were performed within 1 week prior to, 1-3 weeks.6 weeks and 12 weeks after the start of molecular targeted therapy. Apparent diffusion coefficient (ADC) values of hepatic lesions with the diameter larger than 1 cm were measured. Treatment efficacy judgment was referred to RECIST as well as clinical and laboratory observations. Evolving courses of the ADC values of the lesions during therapy were demonstrated.
     Results Thirty-one HCC lesions which underwent molecular targeted therapy could be assessed by imaging modality,14 of which were responsive and the other 17 lesions fell into the nonresponsive group. The largest diameters and the ADC values (b= 500 s/mm2) of the responsive lesions at the baseline were significantly higher than those of the non-responsive group. The rate of change of ADC values (b= 800 s/mm2) after the start of treatment in responsive group was significantly higher than that in non-responsive group. The ADC values (b= 800 s/mm2) of the responsive lesions after therapy showed a first rise, then a decrease, and then an increase again at last. Traditional CT and MR imaging showed increased signal intensity on T2WI, suggesting cell lysis and destruction, and increased signal intensity on T1WI indicating bleeding within the tumor. Contrast enhanced CT scans demonstrated a reduction of the degree of enhancement and a increase of the necrosis area of the lesions. Based on these findings, the mechanism of the changes of ADC values could be explored. Signal intensities on T1 and T2 WI as well as the CT findings appeared unchanged in non-responsive lesions. And the ADC values remained stable within 6 weeks after the start of treatment. A significant reduction of the ADC values (b= 800 s/mm2) of those lesions was observed at the 12-week-follow-up, suggesting progression of the disease. No significant change of the largest diameter could be observed at the end of follow-up, in both responsive and non-responsive groups, suggesting a limitation of traditional criteria in evaluation of such an evolving therapy. Additionally, the imaging findings consisted with the changes of tumor marker.
     Conclusion Combined with traditional CT and MR scans, MR-DWI offering ADC values of the lesions can help to predict and monitor the efficacy of molecular targeted therapy in HCC patients, give real-time evaluation of dynamic changes in the course of treatment, and prompted an early tumor recurrence.
     3 Assessment of treatment efficacy of systemic chemotherapy in patients with liver metastases by magnetic resonance diffusion-weighted imaging (DWI)
     Objective To explore the utilization of upper abdominal magnetic resonance diffusion-weighted imaging (DWI) in assessment of treatment efficacy of systemic chemotherapy in patients with liver metastases.
     Materials and Methods This research program was approved by the Hospital Ethics Committee and informed consents were obtained from the patients. From Dec.2008 to Jan.2010,21 patients with liver metastases (male 12 cases, female 9 cases, age range 33-73 yrs, average age 56.6 yrs) were prospectively enrolled, including 10 cases of colorectal cancer liver metastases,3 gastric cancer,3 lung cancer,2 pancreatic cancer, 1 breast cancer,1 undifferentiated carcinoma and 1 pancreatic neuroendocrine carcinoma. Upper abdominal MR-DWI scans (b=500.800 s/mm2) were performed within 1 week prior to,1-3 weeks after the start of systemic chemotherapy and 1 week after the end the therapy. Apparent diffusion coefficient (ADC) values of the target lesions (the largest 3-4 lesions in the liver of each case) were measured. Totally 80 target lesions were divided into three groups according to RECIST after completion of the therapy:remission group (maximum diameter decrease rate>30%,20 lesions), progression group (maximum diameter increase rate>20%.18 lesions) and stable group (range between remission and progress,42 lesions). ADC values before and after the therapy were compared among three groups, and the correlation between the change rates of ADC values and the maximum diameters was also evaluated.
     Results The ADC value of remission group was significantly lower than those of stable and progression groups (p<0.015). The ADC values of remission group significantly increased 1-3 weeks after the start of therapy (without obvious change in maximal diameter of the lesions), and the change rate of ADC values was significantly higher than in remission group (32-33%) than in the stable group (7-8%) and progression group (decreased 11-13%). Both the ADC values pretreatment and the early change rate of ADC values (1-3 weeks after the start of therapy) correlated well with the ultimate change rate of maximum diameter of lesions (1 week after the end of therapy). The correlations were higher when the b value was settled as 800 s/mm2 rather than 500 s/mm2, which suggested that DWI with a b value of 800 s/mm2 be more favorable to predict and monitor the treatment efficiency. After therapy, ADC values increased significantly compared with those on the baseline in remission group. However, no significant differenced were observed between baseline and post-treatment ADC values in stable and progression groups.
     Conclusion MR-DWI has great potential in prediction, early detection and monitoring the therapeutic efficacy of systemic chemotherapy in patients with hepatic metastases.
引文
[1]Laurent V, Trausch G, Bruot O, et al. Comparative study of two whole-body imaging techniques in the case of melanoma metastases:Advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol.2009 Jun 2. [Epub ahead of print]
    [2]Semelka RC, Shoenut JP, Kroeker MA, et al. Focal liver disease:comparison of dynamic contrast enhanced CT and T2-weighted fat-suppressed, FLASH, and dynamic gadolinium-enhanced MR imaging at 1.5 T. Radiology 1992; 184:687-694.
    [3]Chan JH, Tsui EY, Luk SH, et al. Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging, 2001,262:161-5.
    [4]Okada Y, Ohtomo K, Kiryu S,et al. Breath-hold T2-weighted MRI of hepatic tumors:value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr.1998 May-Jun;22(3):364-71.
    [5]Bruegel M, Gaa J, Waldt S, et al. Diagnosis of hepatic metastasis:comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol.2008 Nov;191(5):1421-9.
    [6]Zech CJ, Herrmann KA, Dietrich O, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging:comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol.2008 Apr;43(4):261-6.
    [7]Nasu K, Kuroki Y, Nawano S, et al. Hepatic metastases:diffusion weighted sensitivity encoding versus SPIO-enhanced MR imaging. Radiology 2006, 239:122-30.
    [8]Koike N, Cho A, Nasu K, et al. Role of diffusion-weighted magnetic resonance imaging in the differential diagnosis of focal hepatic lesions. World J Gastroenterol.2009 Dec 14;15(46):5805-12.
    [9]Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology.1999 Mar;210(3):617-23.
    [10]Demir OI, Obuz F, Sagol O, et al. Contribution of diffusion-weighted MRI to the differential diagnosis of hepatic masses. Diagn Interv Radiol.2007 Jun;13(2):81-6.
    [11]Moteki T, Horikoshi H. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging.2006 Sep;24(3):637-45.
    [12]Sun XJ, Quan XY, Huang FH, et al. Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J Gastroenterol.2005 Nov 7;11(41):6535-7.
    [13]Taoli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic with single-shot echo-planar MR imaging sequences:prospective study in 66 patients. Radiology,2003,2261:71-8.
    [14]Koh DM, Scurr E, Collins DJ, et al. Colorectal hepatic metastases:quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol.2006 Sep; 16(9):1898-905.
    [15]Steens SC, Admiraal-Behloul F, Schaap JA, et al. Reproducibility of brain ADC histograms. Eur Radiol.2004 Mar;14(3):425-30.
    [16]Sibon I, Menegon P, Orgogozo JM, et al. Inter-and intraobserver reliability of five MRI sequences in the evaluation of the final volume of cerebral infarct.J Magn Reson Imaging.2009 Jun;29(6):1280-4.
    [17]Braithwaite AC, Dale BM, Boll DT, et al. Short-and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology.2009 Feb;250(2):459-65.
    [18]Koh DM, Blackledge M, Collins DJ, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial.Eur Radiol. 2009 Nov;19(11):2728-38.
    [19]Padhani AR, Liu G, Koh DM, et al. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker Consensus and Recommendations. Neoplasia. 2009 Feb;11(2):102-25.
    [20]Quan XY, Sun XJ, Yu ZJ, et al. Evaluation of diffusion weighted imaging of magnetic resonance imaging in small focal hepatic lesions:a quantitative study in 56 cases. Hepatobiliary Pancreat Dis Int.2005 Aug;4(3):406-9.
    [21]Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence:detection and characterization of focal hepatic lesions. AJR Am J Roentgenol.1998 Feb;170(2):397-402.
    [22]Kanematsu M, Kondo H, Goshima S,et al. Imaging liver metastases:review and update. Eur J Radiol.2006 May;58(2):217-28.
    [23]Namimoto T, Yamashita Y, Sumi S, et al. Focal liver masses:characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997;204:739-44.
    [24]Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients. Radiology 2003;226:71-8.
    [25]Vossen JA, Buijs M, Liapi E, et al. Receiver operating characteristic analysis of diffusion-weighted magnetic resonance imaging in differentiating hepatic hemangioma from other hypervascular liver lesions. J Comput Assist Tomogr. 2008 Sep-Oct;32(5):750-6.
    [26]Liapi E, Geschwind JF, Vossen JA, et al. Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol.2008 Jan;190(1):67-73.
    [27]Buijs M, Vossen JA, Hong K, et al. Chemoembolization of hepatic metastases from ocular melanoma:assessment of response with contrast-enhanced and diffusion-weighted MRI. AJR Am J Roentgenol.2008 Jul;191(1):285-9.
    [28]Muhi A, Ichikawa T, Motosugi U,et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions:estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging.2009 Nov;30(5):1005-11.
    [29]Turner R, Le Bihan D, Maier J, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology.1990 Nov;177(2):407-14.
    [30]Turner R, Le Bihan D, Chesnick AS. Echo-planar imaging of diffusion and perfusion. Magn Reson Med.1991 Jun;19(2):247-53.
    [31]Morvan D. In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Reson Imaging 1995 13:193-9.
    [32]Thoeny HC, De Keyzer F, Boesch C, et al. Diffusion-weighted imaging of the parotid gland:influence of the choice of b-values on the apparent diffusion coefficient value. J Magn Reson Imaging.2004 Nov;20(5):786-90.
    [33]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988,168:497-505.
    [34]Mulkern RV, Vajapeyam S, Haker SJ, et al. Magnetization transfer studies of the fast and slow tissue water diffusion components in the human brain. NMR Biomed.2005 May; 18(3):186-94.
    [35]Niendorf T, Dijkhuizen RM, Norris DG, et al. Biexponential diffusion attenuation in various states of brain tissue:implications for diffusion-weighted imaging. Magn Reson Med.1996 Dec;36(6):847-57.
    [36]Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis:value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol.2007 Apr;188(4):1001-8.
    [37]Damasio MB, Tagliafico A, Capaccio E, et al. Diffusion-weighted MRI sequences (DW-MRI) of the kidney:normal findings, influence of hydration state and repeatability of results.Radiol Med.2008 Mar; 113(2):214-24.
    [38]Gibbs P, Pickles MD, Turnbull LW. Repeatability of echo-planar-based diffusion measurements of the human prostate at 3 T.Magn Reson Imaging.2007 Dec;25(10):1423-9.
    [39]Chen YB, Hu CM, Zhong J, et al. Image quality stability of whole-body diffusion weighted imaging. Chin Med Sci J.2009 Jun;24(2):122-6.
    [40]White ML, Zhang Y, Robinson RA. Evaluating tumors and tumorlike lesions of the nasal cavity, the paranasal sinuses, and the adjacent skull base with diffusion-weighted MRI.J Comput Assist Tomogr.2006 May-Jun;30(3):490-5.
    [41]Jian He, Lina Zhao, Zhinong Jiang, et al. Angioleiomyoma of the nasal cavity:A rare cause of epistaxis. Otolaryngology-Head and Neck Surgery.2009,141:663-4.
    [42]Jian He, Feng Zhao. Inner visions:Courtroom scene. RadioGraphics, 2010.20(1):12.
    [43]Sandrasegaran K, Sundaram CP, Ramaswamy R, et al.Usefulness of diffusion-weighted imaging in the evaluation of renal masses.AJR Am J Roentgenol.2010 Feb;194(2):438-45.
    [44]胡吉波,何健,王丽华,等.马蹄肾合并原发性神经内分泌癌一例.中华医学杂志.2008;88(19):1367-8.
    [45]Nakayama T, Yoshimitsu K, Irie H, et al. Usefulness of the calculated apparent diffusion coefficient value in the differential diagnosis of retroperitoneal masses.J Magn Reson Imaging.2004 Oct;20(4):735-42.
    [46]胡吉波,何健,任宏,等.腹膜后淋巴管平滑肌瘤二例.中华医学杂志2010;90(11):788-9.
    [47]Kwee TC, Takahara T, Luijten PR, et al. ADC measurements of lymph nodes: Inter-and intra-observer reproducibility study and an overview of the literature.Eur J Radiol.2009 Apr 15. [Epub ahead of print]
    [48]Pickles MD, Gibbs P, Lowry M, et al. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 2006;24:843-7.
    [49]Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging:An early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000;92:2029-36.
    [50]van den Bos IC, Hussain SM, Krestin GP, et al. Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences:feasibility study. Radiology.2008 Jul;248(1):264-71.
    [51]Rong R, Zhang CY, Wang XY. Normal appearance of large field diffusion weighted imaging on 3.0T MRI. Chin Med Sci J.2008 Sep;23(3):158-61.
    [52]Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen:preliminary clinical experience in 61 patients. Abdom Imaging.1999 Sep-Oct;24(5):456-61.
    [53]Oner AY, Celik H, Oktar SO, et al. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging:initial experience. Clin Radiol.2006 Nov;61(11):959-65.
    [54]Yoshikawa T, Kawamitsu H, Mitchell DG, et al.ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol.2006 Dec; 187(6):1521-30.
    [55]Chow LC, Bammer R, Moseley ME, et al. Single breath-hold diffusion-weighted imaging of the abdomen. J Magn Reson Imaging.2003 Sep;18(3):377-82.
    [56]Nasu K, Kuroki Y, Sekiguchi R, et al. The effect of simultaneous use of respiratory triggering in diffusion-weighted imaging of the liver. Magn Reson Med Sci.2006 Oct;5(3):129-36.
    [57]Kwee TC, Takahara T, Koh DM, et al. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging.2008 Nov;28(5):1141-8.
    [58]Yoshikawa T, Ohno Y, Kawamitsu H, et al. Abdominal apparent diffusion coefficient measurements:effect of diffusion-weighted image quality and usefulness of anisotropic images. Magn Reson Imaging.2008 Dec;26(10):1415-20.
    [1]Bruix J, Boix L, Sala M, et al. Focus on hepatocellular carcinoma. Cancer Cell, 2004;5:215-9.
    [2]Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents:defining priorities to reduce cancer disparities in different geographic region of the world. J Clin Oncol,2006; 24(14):2137-50.
    [3]El Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Eng J Med.1999,55:74-108.
    [4]Thomas MB, Zhu AX. Hepatocellular carcinoma:the need for progress. J Clin Oncol.2005,23(13):2892-9.
    [5]Sherman M. Hepatocellular carcinoma:epidemiology, risk factors, and screening. Semi Liver Dise.2005;25:143-53.
    [6]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907-17.
    [7]TF Greten, F Korangy, MP Manns, et al. Molecular therapy for the treatment of hepatocellular carcinoma. Br J Cancer,2009(100):19-23.
    [8]Greten TF, Papendorf F, Bleck JS, et al. Survival rate in patients with hepatocellular carcinoma:a retrospective analysis of 389 patients. Br J Cancer, 2005(92):1862-8.
    [9]Mann CD, Neal CP, Garcea G. Prognostic molecular markers in hepatocellular carcinoma:a systemic review. Eur J Cancer.2007,43:979-92.
    [10]Roberts LR, Gores GJ. Hepatocellular carcinoma:molecular pathways and new therapeutic targets. Semin Liver Dis,2005,25(2):212-25.
    [11]Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol,2005,23(31):8093-108.
    [12]Zhu A. Development of Sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer.2008(112):250-9.
    [13]Llvet J, Bruix J. Novel advancements in management of hepatocellular carcinoma in 2008. J Hepatology.2008;48Suppl:S20-37.
    [14]Wilhelm SM, Carter C, Tang L, et al. Bay 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinase involved in tumor progression and angiogenesis. Cancer Res, 2004(64):7090-109.
    [15]Llovet J, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.2008(359):378-90.
    [16]Miller AB, Hoogstraten B, Staquet M, et al. Reporting results of cancer treatment. Cancer,1981,47:207-14.
    [17]Therasse P, Eisenhauer EA, Verweij J. RECIST revisited:a review of validation studies on tumor assessment. Eur J Cancer 2006,42:1031-9.
    [18]Jaffe CC. Measures of response:RECIST, WHO, and new alternatives. J Clin Oncol 2006,24:3245-51.
    [19]Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology 2005,234:756-64.
    [20]Shankar S, vanSonnenberg E, Desai J, et al. Gastrointestinal stromal tumor: new nodule-within-a-mass pattern of recurrence after partial response to imatinib mesylate. Radiology 2005,235:892-8.
    [21]Suzuki C, Jacobsson H, Hatschek T, et al. Radiologic measurements of tumor response to treatment:practical approaches and limitations. RadioGraphics 2008,28:329-44.
    [22]Llovet JM, Di Bisceglie AM, Bruix J, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008,100:698-711.
    [23]Forner A, Ayuso C, Varela M, et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma:are response evaluation criteria in solid tumors reliable? Cancer 2009,115:616-23.
    [24]Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 2003,21:2831-42.
    [25]Siemerink EJ, Mulder NH, Brouwers AH, et al.18F-Fluorodeoxyglucose positron emission tomography for monitoring response to sorafenib treatment in patients with hepatocellular carcinoma. Oncologist.2008 Jun;13(6):734-5.
    [26]Anderson HL, Yap JT, Miller MP, et al. Assessment of pharmacodynamic vascular response in a phase 1 trial of combretastatin A4 phosphate. J Clin Oncol 2003,21:2823-30.
    [27]Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment:A quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol 2004,183:1619-28.
    [28]Bruegel M, Gaa J, Waldt S, et al. Diagnosis of hepatic metastasis:comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol.2008 Nov;191(5):1421-9.
    [29]Zech CJ, Herrmann KA, Dietrich O, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging:comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol.2008 Apr;43(4):261-6.
    [30]Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience. Radiology 2006,239:448-56.
    [31]Deng J, Miller FH, Rhee TK, et al. Diffusion weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 2006; 17:1195-200.
    [32]Kamel IR, Reyes DK, Liapi E, et al. Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol 2007;18:49-56.
    [33]Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma.AJR Am J Roentgenol 2003;181:708-10.
    [34]Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006;17:505-12.
    [35]Christina S, Nina FS, Petros M, et al. Diffusion-weighted MRI of advanced hepatocellular carcinoma during sorafenib treatment:initial results. AJR Am J Roentgenol 2009; 193:301-7.
    [36]Thoney HC, Keyzer FD, Vandecaveye V, et al. Effect of vascular targeting agent in rat tumor model:dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology,2005;237:492-9.
    [37]Koh DM, Blackledge M, Collins DJ, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol. 2009 Nov;19(11):2728-38.
    [38]鲁宏,章士正,胡惠,等.大鼠脑缺血再灌注后水通道蛋白-4表达与弥散加权成像表观弥散系数的相关性研究.国际脑血管病杂志.2009;17(3):166-70.
    [39]Patterson DM, Padhani AR, Collins DJ. Technology insight:water diffusion MRI-a potential new biomarker of response to cancer therapy. Nature Clinical Practice Oncology.2008,5(4):220-33.
    [40]Koh DM, Collins DJ. Diffusion-weighted MRI in the body:applications and challenges in oncology. AJR 2007,188:1622-35.
    [41]Thoeny HC, Keyzer FD. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eru Radiol,2007,17:1385-93.
    [42]Shi-Zheng Zhang, Jian He, Jie Xiao, et al. Utilization of 16-slice spiral computed tomography body perfusion imaging in diagnosis and therapeutic effect evaluation of acute pancreatitis. Eru Radiol,2007,17(Supplements):245.
    [43]Shinya S, Sasaki T, Nakagawa Y, et al. The efficacy of diffusion-weighted imaging for the detection and evaluation of acute pancreatitis. Hepatogastroenterology.2009 Sep-Oct;56(94-95):1407-10.
    [44]Koike N, Cho A, Nasu K, et al. Role of diffusion-weighted magnetic resonance imaging in the differential diagnosis of focal hepatic lesions. World J Gastroenterol.2009 Dec 14;15(46):5805-12.
    [45]Vossen JA, Buijs M, Liapi E, et al. Receiver operating characteristic analysis of diffusion-weighted magnetic resonance imaging in differentiating hepatic hemangioma from other hypervascular liver lesions. J Comput Assist Tomogr. 2008 Sep-Oct;32(5):750-6.
    [46]Quan XY, Sun XJ, Yu ZJ, et al. Evaluation of diffusion weighted imaging of magnetic resonance imaging in small focal hepatic lesions:a quantitative study in 56 cases. Hepatobiliary Pancreat Dis Int.2005 Aug;4(3):406-9.
    [47]Sun XJ, Quan XY, Huang FH, et al. Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J Gastroenterol.2005 Nov 7;11(41):6535-7.
    [48]Muhi A, Ichikawa T, Motosugi U, et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions:estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging.2009 Nov;30(5):1005-11.
    [49]Nasu K, Kuroki Y, Tsukamoto T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma:imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR Am J Roentgenol.2009 Aug;193(2):438-44.
    [50]Wang H, Wang XY, Jiang XX, et al. Comparison of diffusion-weighted with T2-weighted Imaging for detection of small hepatocellular carcinoma in cirrhosis:preliminary quantitative study at 3-T. Acad Radiol.2010 Feb;17(2):239-43.
    [51]Fan WJ, Zhang L, Ouyang YS. Evaluation of the effect of transcatheter arterial chemoembolization in treatment of primary hepatocellular carcinoma with magnetic resonance diffusion-weighted imaging:4-6-week follow-up of 25 cases. Zhonghua Yi Xue Za Zhi.2008 Sep 16;88(35):2474-7.
    [52]Mannelli L, Kim S, Hajdu CH, et al. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization:diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol.2009 Oct;193(4):1044-52.
    [53]Kamel IR, Liapi E, Reyes DK, et al. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology.2009 Feb;250(2):466-73.
    [54]Rhee TK, Naik NK, Deng J, et al. Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma:comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol.2008 Aug; 19(8):1180-6.
    [55]Oh J, Henry RG, Pirzkall A, et al. Survival analysis in patients with glioblastoma multiforme:predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J Magn Reson Imaging,2004; 19:546-54.
    [56]Nakamizo A, Inamura T, Yamaguchi S, et al. Diffusion-weighted imaging predicts postoperative persistence in meningioma patients with peritumoural abnormalities on magnetic resonance imaging. J Clin Neurosci 2003;10:589-93.
    [57]DeVries AF, Kremser C, Hein PA, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys2003;56:958-65.
    [58]Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis:value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol.2007 Apr;188(4):1001-8.
    [59]Dzik-Jurasz A, Domenig C, George M, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 2002;360:307-8.
    [60]Harrison L, Blackwell K. Hypoxia and anemia:factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 2004;9[suppl5]:31-40.
    [61]Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme:ADC histogram analysis predicts response to bevacizumab treatment. Radiology,252(1):182-9.
    [62]Thoeny HC, De Keyzer, Che F, et al. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of A-4 phosphate after repeated administration. Neoplasia 2005;7:779-87.
    [63]Silvera S, Oppenheim C, Touze E, et al. Spontaneous intracerebral hematoma on diffusion-weighted images:influence of T2-shine-through and T2-blackout effects. Am J Neuroradiol 2005;26:236-41.
    [64]Liu L, Cao Y, Chen C, et al. Sorafenib blocks the Raf/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res,2006,66(24):11851-8.
    [65]Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004,64(19):7099-109.
    [66]Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase Ⅱ study of sorafenib in patients with advanced hepatocellular carcinoma. J of Clin Oncology, 2006,24(26):4293-300.
    [67]Padhani AR, Liu G, Mu-Koh D, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker consensus and recommendations. Neoplasia,2009,11 (2):102-25.
    [68]So BJ, Bekaii-Saab T, Bloomston MA, et al. Complete clinical response of metastatic hepatocellular carcinoma to sorafenib in a patient with hemochromatosis:a case report. J Hematol Oncol,2008,1:18.
    [69]Schramm C, Schuch G, Lohse AW. Sorafenib-induced liver failure. Am J Gastroenterol,2008,103(8):2162-3.
    [70]秦叔逵,龚新雷.索拉非尼治疗原发性肝癌的研究进展.临床肿瘤学杂志.2008,13(12):1057-68.
    [1]Beckingham IJ, Krige JE. ABC of diseases of liver, pancreas, and biliary system. BMJ 2001;322:477-80.
    [2]Gilson N, HonoreC, Detry O,et al. Surgical management of hepatic metastases of colorectal origin. Acta Gastroenterol Belg.2009 Jul-Sep;72(3):321-6.
    [3]Ress M, Plant G, Bygrave S. Late results justify resection for multiple hepatic metastases from colorectal cancer. Br J Surg 1997;84:1136-40.
    [4]Fusai G, Davidson BR. Strategies to increase the respectability of liver metastasis from colorectal cancer. Gig Surg 2003;20:481-96.
    [5]Adam R, Pascal G, Castaing D, et al. Tumor progression while on chemotherapy: a contraindication to liver resection for multiple colorectal metastases? Ann Surg 2004;240:1052-61.
    [6]Damjanov N, Weiss J, Haller DG. Resection of the primary colorectal cancer is not necessary in nonobstructed patients with metastatic disease. Oncologist.2009 Oct;14(10):963-9.
    [7]Cleary JM, Tanabe KT, Lauwers GY,et al. Hepatic toxicities associated with the use of preoperative systemic therapy in patients with metastatic colorectal adenocarcinoma to the liver. Oncologist.2009 Nov;14(11):1095-105.
    [8]Lubezky N, Metser U, Geva R, et al. The role and limitations of 18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy:comparison with operative and pathological findings. J Gastrointest Surg.2007 Apr;11(4):472-8.
    [9]Patterson DM, Padhani AR Collins DJ. Technology insight:water diffusion MRI-a potential new biomarker of response to cancer therapy. Nature Clinical Practice Oncology.2008,5(4):220-33.
    [10]Koh DM, Collins DJ. Diffusion-weighted MRI in the body:applications and challenges in oncology. AJR 2007,188:1622-35.
    [11]Thoeny HC, Keyzer FD. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eru Radiol,2007,17:1385-93.
    [12]Bruegel M, Gaa J, Waldt S, et al. Diagnosis of hepatic metastasis:comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol.2008 Nov;191(5):1421-9.
    [13]Gu TF, Xiao XL, Sun F, et al. Diagnostic value of whole body diffusion weighted imaging for screening primary tumors of patients with metastases. Chin Med Sci J.2008 Sep;23(3):145-50.
    [14]Jian He, Liangfa Yu, Shizheng Zhang. A rare cause of jaundice in a patient with multiple gastrointestinal polyps. Gut,2009.4 (accepted and in press).
    [15]纪建松,章士正,邵初晓,等.螺旋CT对成人肠套叠的诊断及临床意义.中华医学杂志.2007;87(16):1129-32.
    [16]Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 2000;43:828-36.
    [17]Chinnaiyan AM, Prasad U, Shankar S, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000;97:1754-9.
    [18]Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003 181:708-10.
    [19]Deng J, Miller FH, Rhee TK, et al. Diffusion weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 2006 17:1195-200.
    [20]Buijs M, Kamel IR, Vossen JA, et al. Assessment of metastatic breast cancer response to chemoembolization with contrast agent enhanced and diffusion-weighted MR imaging. J Vasc Interv Radiol.2007 Aug;18(8):957-63.
    [21]Buijs M, Vossen JA, Hong K, et al. Chemoembolization of hepatic metastases from ocular melanoma:assessment of response with contrast-enhanced and diffusion-weighted MRI. AJR Am J Roentgenol.2008 Jul;191(1):285-9.
    [22]Liapi E, Geschwind JF, Vossen JA, et al. Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol.2008 Jan;190(1):67-73.
    [23]Vossen JA, Kamel IR, Buijs M, et al. Role of functional magnetic resonance imaging in assessing metastatic leiomyosarcoma response to chemoembolization. J Comput Assist Tomogr.2008 May-Jun;32(3):347-52.
    [24]Marugami N, Tanaka T, Kitano S, et al. Early detection of therapeutic response to hepatic arterial infusion chemotherapy of liver metastases from colorectal cancer using diffusion-weighted MR imaging. Cardiovasc Intervent Radiol.2009 Jul;32(4):638-46.
    [25]Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient:potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology.2008 Sep;248(3):894-900.
    [26]Koh DM, Scurr E, Collins D, et al. Predicting response of colorectal hepatic metastasis:value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol.2007 Apr;188(4):1001-8.
    [27]Oh J, Henry RG, Pirzkall A, et al. Survival analysis in patients with glioblastoma multiforme:predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J Magn Reson Imaging, 2004; 19:546-54.
    [28]Nakamizo A, Inamura T, Yamaguchi S, et al. Diffusion-weighted imaging predicts postoperative persistence in meningioma patients with peritumoural abnormalities on magnetic resonance imaging. J Clin Neurosci 2003;10:589-93.
    [29]DeVries AF, Kremser C, Hein PA, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys2003;56:958-65.
    [30]Dzik-Jurasz A, Domenig C, George M, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 2002;360:307-8.
    [31]Harrison L, Blackwell K. Hypoxia and anemia:factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 2004;9[suppl5]:31-40.
    [32]Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map:a noninvasive MRI biomarker to early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 2005;102:5524-9.
    [33]Mardor Y, Pfeffer R, Spiegelmann R, et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 2003;21:1094-1100.
    [34]Kim B, Chenevert TL, Ross BD. Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model:a quantitative in vivo study using magnetic resonance imaging. Clin Cancer Res 1995; 1 (6):643-50.
    [35]Hamstra DA, Tychewicz JM, Lee KC et al.19F Spectroscopy and diffusion weight MRI predict increased tumor response to cytosine deaminase and uracil phosphoribosyl transferase gene dependent enzyme prodrug therapy. Mol Ther 2004;10(5):916-28.
    [36]Mannelli L, Kim S, Hajdu CH, et al. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization:diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol.2009 Oct; 193(4):1044-52.
    [37]Outwater E, Tomazewski JE, Daly JM, et al. Hepatic colorectal metastases: correlation of MR imaging and pathologic appearance. Radiology, 1991;180:327-32.
    [38]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.
    [39]Higano S, Yun X, Kumabe T, et al. Malignant astrocytic tumors:clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology,2006;241:839-46.
    [40]Sun X, Wang H, Chen F, et al. Diffusion-weighted MRI of hepatic tumor in rats: comparison between in vivo and postmortem imaging acquisitions. J Magn Reson Imaging.2009 Mar;29(3):621-8.
    [41]Roth Y, Tichler T, Kostenich G, et al. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology.2004 Sep;232(3):685-92.
    [42]Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997;3:1457-66.
    [43]Kapse N, Goh V. Functional imaging of colorectal cancer:positron emission tomography, magnetic resonance imaging, and computed tomography. Clin Colorectal Cancer.2009 Apr;8(2):77-87.
    [44]Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience. Radiology.2006 May;239(2):448-56.
    [45]Barugel ME, Vargas C, Krygier Waltier G Metastatic colorectal cancer:recent advances in its clinical management. Expert Rev Anticancer Ther.2009 Dec;9(12):1829-47.
    [1]Hahn EL. Spin echoes. Phys Rev 1950; 80:580-94.
    [2]Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94:630-8.
    [3]Stejskal EO, Tanner JE. Spin diffusion measurements:spin-echo in the presence of a time dependent field gradient. J Chem Phys 1965; 42:288-92.
    [4]Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter:demonstration with MR techniques in vivo. Radiology 1990; 177 (2): 401-5.
    [5]Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats:comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 1990; 14:330-46.
    [6]Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology 2000; 217:331-45.
    [7]Parker GJ. Analysis of MR diffusion weighted images. Br J Radiol 2004;77 (Suppl):S176-S185.
    [8]Tanner JE. Self diffusion of water in frog muscle. Biophys J 1979; 28:107-16.
    [9]Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med.1995 May;33(5):697-712.
    [10]Sykova E, Svoboda J, Polak J, et al. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J Cereb Blood Flow Metab.1994 Mar;14(2):301-11.
    [11]Norris DG, Niendorf T, Leibfritz D. Health and infarcted brain tissues studied at short diffusion times:the origins of apparent restriction and the reduction in apparent diffusion coefficient. NMR Biomed 1994 Nov;7(7):304-10.
    [12]Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med.2000 Jun;43(6):828-36.
    [13]Cheng KH and Hernandez M. Magnetic resonance diffusion imaging detects structural damage in biological tissues upon hyperthermia. Cancer Res 1992;52: 6066-73.
    [14]Dzik-Jurasz AS. Molecular imaging in vivo:an introduction. Br J Radiol. 2003;76Spec No2:S98-109.
    [15]Guo AC, Cummings TJ, Dash RC, et al. Lymphomas and high-grade astrocytomas:comparison of water diffusibility and histologic characteristics. Radiology.2002 Jul;224(1):177-83.
    [16]Turner R, Le Bihan D, Maier J, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology.1990 Nov;177(2):407-14.
    [17]Turner R, Le Bihan D, Chesnick AS. Echo-planar imaging of diffusion and perfusion. Magn Reson Med.1991 Jun;19(2):247-53.
    [18]Morvan D. In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Reson Imaging.1995; 13(2):193-9.
    [19]Thoeny HC, De Keyzer F, Boesch C, et al. Diffusion-weighted imaging of the parotid gland:influence of the choice of b-values on the apparent diffusion coefficient value. J Magn Reson Imaging.2004 Nov;20(5):786-90.
    [20]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.
    [21]Mulkern RV, Vajapeyam S, Haker SJ, et al. Magnetization transfer studies of the fast and slow tissue water diffusion components in the human brain. NMR Biomed.2005 May; 18(3):186-94.
    [22]Niendorf T, Dijkhuizen RM, Norris DG, et al. Biexponential diffusion attenuation in various states of brain tissue:implications for diffusion-weighted imaging. Magn Reson Med.1996 Dec;36(6):847-57.
    [23]Thoeny HC, De Keyzer F, Vandecaveye V, et al. Effect of vascular targeting agent in rat tumor model:dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology.2005 Nov;237(2):492-9.
    [24]Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planar MR imaging.Radiology 210:617-623 Radiology.1999 Mar;210(3):617-23.
    [25]Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients. Radiology.2003 Jan;226(1):71-8.
    [26]Bammer R. Basic principles of diffusion weighted imaging. Eur J Radiol.2003 Mar;45(3):169-84.
    [27]Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging.2001 Jul;14(1):42-9.
    [28]Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion weighted MRI of the liver:preliminary experience in healthy volunteers. AJR 2004; 183:677-80.
    [29]Sinha S, Sinha U. In vivo diffusion tensor imaging of the human prostate. Magn Reson Med 2004; 52:530-7.
    [30]Okada Y, Ohtomo K, Kiryu S, et al. T2-weighted MRI of hepatic tumors:value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr 1998; 22:364-71.
    [31]Squillaci E, Manenti G, Di Stefano F, et al. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 2004; 23:39-45.
    [32]Abe Y, Yamashita Y, Tang Y, et al. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors:comparison of echo-planar, HASTE, and spin-echo sequences. Radiat Med 2000; 18:7-14.
    [33]Yamashita Y, Tang Y, Takahashi M. Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging. J Magn Reson Imaging 1998; 8:367-74.
    [34]Ito K, Mitchell DG, Matsunaga N. MR imaging of the liver:techniques and clinical applications. Eur J Radiol 1999; 32:2-14.
    [35]Park SW, Lee JH, Ehara S, et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine:is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging 2004;28:102-8.
    [36]Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors:European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205-16.
    [37]Jaffe CC. Measures of response:RECIST, WHO, and new alternatives. J Clin Oncol 2006;24:3245-51.
    [38]Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment:A quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol 2004;183:1619-28.
    [39]Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005;23:965-72.
    [40]Daisne JF, Duprez T, Weynand B, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma:Comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93-100.
    [41]Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol 2006;24:3282-92.
    [42]Padhani AR. MRI for assessing antivascular cancer treatments. Br J Radiol. 2003;76 Spec No 1:S60-80.
    [43]Leach MO, Brindle KM, Evelhoch JL, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging:issues and recommendations. Br J Cancer 2005; 92(9): 1599-610.
    [44]O'Connor JP, Jackson A, Parker GJ, et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 2007;96:189-95.
    [45]Curt GA. The use of animal models in cancer drug discovery and development. Stem Cells 1994;12(1):23-9.
    [46]Kim B, Chenevert TL, Ross BD. Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model:a quantitative in vivo study using magnetic resonance imaging. Clin Cancer Res 1995; 1 (6):643-50.
    [47]Mori S,van Zijl PC. Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med 1995;33(1):41-52.
    [48]Wong EC, Cox RW, Song AW. Optimized isotropic diffusion weighting. Magn Reson Med 1995;34(2):139-43.
    [49]Pipe JG, Chenevert TL. A progressive gradient moment nulling design technique. Magn Reson Med 1991;19(1):175-9.
    [50]Anderson AW, Gore JC. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 1994;32(3):379-87.
    [51]Zhao M and Evelhoch JL. Detection of response to 5-fluorouracil by diffusion-weighted 1H-NMR spectroscopy in murine tumours in vivo. Proc Int SocMagn Reson Med Sci Meet Exhib 1996;2:118.
    [52]Galons JP, Altbach MI, Paine-Murrieta GD, et al. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia.1999 Jun;1(2):113-7.
    [53]Jennings D, Hatton BN, Guo J, et al. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia.2002 May-Jun;4(3):255-62.
    [54]Ross BD, Chenevert TL, Kim B, et al. Magnetic resonance imaging and spectroscopy:Application to experimental neuro-oncology. Q Magn Reson Biol 1994 Med 1:89-106.
    [55]Leek RD, Landers RJ, Harris AL, et al.Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer.1999 Feb;79(5-6):991-5.
    [56]Lemaire L, Howe FA, Rodrigues LM, et al. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. MAGMA.1999 Mar;8(1):20-6.
    [57]Roth Y, Tichler T, Kostenich G, et al. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology.2004 Sep;232(3):685-92.
    [58]Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997;3:1457-66.
    [59]Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging:An early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000;92:2029-36.
    [60]Hall DE, Moffat BA, Stojanovska J, et al. Hall DE et al. Therapeutic efficacy of DTI-015 using diffusion magnetic resonance imaging as an early surrogate marker. Clin Cancer Res.2004 Dec 1;10(23):7852-9.
    [61]Zhao M, Pipe JG, Bonnett J, et al. Early detection of treatment response by diffusion weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br J Cancer 1996; 73:61-4.
    [62]Hamstra DA, Tychewicz JM, Lee KC et al.19F Spectroscopy and diffusion weight MRI predict increased tumor response to cytosine deaminase and uracil phosphoribosyl transferase gene dependent enzyme prodrug therapy. Mol Ther 2004;10(5):916-28.
    [63]Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology.2005 Mar;234(3):756-64.
    [64]Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia.2005 Aug;7(8):779-87.
    [65]Chaplin DJ and Hill SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys 2002;54:1491-6.
    [66]Jordan BF, Runquist M, Raghunand N, et al. Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1 alpha using PX-478.Neoplasia.2005 May;7(5):475-85.
    [67]Plaks V, Koudinova N, Nevo U, et al. Photodynamic therapy of established prostatic denocarcinoma with TOOKAD:a biphasic apparent diffusion coefficient change as potential early MRI response marker. Neoplasia 2004:6: 224-33.
    [68]Moffat BA, Chenevert TL, Meyer CR, et al. The functional diffusion map:An imaging biomarker for the early prediction of cancer treatment outcome. Neoplasiab2006;8:259-67.
    [69]Lee KC, Hall DE, Hoff BA, et al. Dynamic imaging of emerging resistance during cancer therapy. Cancer Res 2006;66:4687-92.
    [70]Chinnaiyan AM, Prasad U, Shankar S, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000;97:1754-9.
    [71]Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996 Mar 1;56(5):941-3.
    [72]Swinson DE, Jones JL, Richardson D, et al. Tumour necrosis is an independent prognostic marker in non-small cell lung cancer:correlation with biological variables. Lung Cancer.2002 Sep;37(3):235-40.
    [73]Mardor Y, Roth Y, Lidar Z, et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res.2001 Jul 1;61(13):4971-3.
    [74]Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map:a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 2005; 102:5524-9.
    [75]Schlaug G, Siewert B, Benfield A, et al. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology.1997 Jul;49(1):113-9.
    [76]Hortelano S, Garcia-Martin ML, Cerdan S, et al. Intracellular water motion decreases in apoptotic macrophages after caspase activation. Cell Death Differ. 2001 Oct;8(10):1022-8.
    [77]Bortner CD and Cidlowski JA. Uncoupling cell shrinkage from apoptosis reveals that Na+influx is required for volume loss during programmed cell death. J Biol Chem 2003;278:39176-84.
    [78]Desjardins LM and MacManus JP. An adherent cell model to study different stages of apoptosis. Exp Cell Res 1995;216:380-7.
    [79]Akagi Y, Ito K, Sawada S. Radiation-induced apoptosis and necrosis in Molt-4 cells:a study of dose-effect relationships and their modification. Int J Radiat Biol.1993 Jul;64(1):47-56.
    [80]Hamstra DA, Chenevert TL, Moffat BA, et al. Evaluation of the functional diffusion map as an early biomarker of time-to progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA.2005 Nov 15; 102(46):16759-64.
    [81]Armitage PA, Schwindack C, Bastin ME, et al. Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn Reson Imaging 2007;25:303-10.
    [82]Mardor Y, Pfeffer R, Spiegelmann R, et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 2003;21:1094-100.
    [83]Tomura N, Narita K, Izumi J, et al. Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors:Possible prediction of treatment response. J Comput Assist Tomogr 2006;30:496-500.
    [84]Schubert MI, Wilke M, Muller-Weihrich S, et al. Diffusion-weighted magnetic resonance imaging of treatment-associated changes in recurrent and residual medulloblastoma:Preliminary observations in three children. Acta Radiol 2006;47:1100-4.
    [85]Mardor Y, Roth Y, Ochershvilli A, et al. Pretreatment prediction of brain tumors'response to radiation therapy using high b-value diffusionweighted MRI. Neoplasia 2004;6:136-42.
    [86]Einarsdottir H, Karlsson M, Wejde J, et al. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol.2004 Jun;14(6):959-63.
    [87]Naganawa S, Sato C, Kumada H, et al. Apparent diffusion coefficient in cervical cancer of the uterus:comparison with the normal uterine cervix. Eur Radiol.2005 Jan; 15(1):71-8.
    [88]Pickles MD, Gibbs P, Lowry M, et al. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging.2006 Sep;24(7):843-7.
    [89]Manton DJ, Chaturvedi A, Hubbard A, et al. Neoadjuvant chemotherapy in breast cancer:early response prediction with quantitative MR imaging and spectroscopy. Br J Cancer.2006 Feb 13;94(3):427-35.
    [90]Kremser C, Judmaier W, Hein P, et al. Preliminary results on the influence of chemoradiation on apparent diffusion coefficients of primary rectal carcinoma measured by magnetic resonance imaging. Strahlenther Onkol 2003;179:641-9.
    [91]Dzik-Jurasz A, Domenig C, George M, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 2002;360:307-8.
    [92]Hein PA, Kremser C, Judmaier W, et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation:preliminary results of a prospective study. Eur J Radiol.2003 Mar;45(3):214-22.
    [93]DeVries AF, Kremser C, Hein PA, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 2003;56:958-65.
    [94]Chen CY, Li CW, Kuo YT, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization:choline levels and MR diffusion constants-initial experience. Radiology.2006 May;239(2):448-56.
    [95]Deng J, Miller FH, Rhee TK, et al. Diffusionweighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 2006;17:1195-200.
    [96]Kamel IR, Reyes DK, Liapi E, et al. Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol 2007; 18:49-56.
    [97]Theilmann RJ, Borders R, Trouard TP, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 2004;Nov-Dec;6(6):831-7.
    [98]Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma.AJR Am J Roentgenol 2003;181:708-10.
    [99]Kamel IR, Bluemke DA, Eng J, et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006; 17:505-12.
    [100]Wolmark N, Wang J, Mamounas E, et al. Preoperative chemotherapy in patients with operable breast cancer:Nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 2001; 96-102.
    [101]Yeh E, Slanetz P, Kopans DB, et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol 2005;184:868-77.
    [102]Yankeelov TE, Lepage M, Chakravarthy A, et al. Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer:Initial results. Magn Reson Imaging 2007;25:1-13.
    [103]Drew PJ, Kerin MJ, Mahapatra T, et al. Evaluation of response to neoadjuvant chemoradiotherapy for locally advanced breast cancer with dynamic contrast-enhanced MRI of the breast. Eur J Surg Oncol 2001;27:617-20.
    [104]Burcombe RJ, Makris A, Pittam M, et al. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 2002;38:375-9.
    [105]Rieber A, Brambs HJ, Gabelmann A, et al. Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 2002:12:1711-9.
    [106]Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer:Predicting response with in vivo (1)H MR spectroscopy-A pilot study at 4 T. Radiology 2004;233:424-31.
    [107]Picci P, Sangiorgi L, Rougraff BT, et al. Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol 1994;12:2699-705.
    [108]Uhl M, Saueressig U, van Buiren M, et al. Osteosarcoma:Preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion-and perfusion-weighted magnetic resonance imaging. Invest Radiol 2006;41:618-23.
    [109]Byun WM, Shin SO, Chang Y, et al. Diffusion weighted MR imaging of metastatic disease of the spine:Assessment of response to therapy. AJNR Am J Neuroradiol 2002;23:906-12.
    [110]Hayashida Y, Yakushiji T, Awai K, et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image:Initial results. Eur Radiol 2006;16:2637-43.
    [111]Liapi E, Kamel IR, Bluemke DA, et al. Assessment of response of uterine fibroids and myometrium to embolization using diffusion-weighted echoplanar MR imaging. J Comput Assist Tomogr 2005;29:83-6.
    [112]Jacobs MA, Herskovits EH, Kim HS. Uterine fibroids:Diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery-preliminary study. Radiology 2005;236:196-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700