用户名: 密码: 验证码:
针刺持续性神经响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针刺医学是中华民族优秀传统文化的瑰宝,是我国医疗卫生事业中独具特色和优势的巨大卫生资源。随着全球性日益增长的医疗费用,特别是现代医学,在征服各种危害人类疾病的同时所带来的种种医源性和药源性的病症,促使医学界和患者对毒副作用小、经济、以调节见长的中医针刺产生浓厚兴趣。但由于中医针刺理论,本质上产生于实践又经过中国古典哲学的深加工,使得其与现代医学在很多方面难以相融,已逐渐成为制约中医针刺理论发展的桎梏。得益于现代医学影像特别是功能核磁共振成像技术的快速发展,使得探寻经穴-大脑-脏腑之间的相互作用关系成为可能。该技术以其无创、无辐射、图像分辨率高等优势,已经成为活体研究人脑高级皮层功能活动的重要手段。目前fMRI的针刺研究刚刚起步,研究方法学还有待进一步完善。
     以往的针刺影像学研究,着重在探讨针刺特定穴位与大脑对应功能皮层的空间对应关系,即针刺机理的脑功能定位研究;而根据中国传统中医理论以及大量的临床报道,针刺治疗效应存在持续性,因此对于针刺中枢神经时间维度特征信息的考量在深入理解针刺作用机理方面具有重要的研究意义。本文以针刺持续性效应假说的验证为切入点,采用多组块实验设计结合逐段分析方法证明了针刺持续性效应存在的假说,指出以往基于模型的多组块分析由于忽略针刺的时间维度特征信息而违背了减法原理的基线选取原则,进而有可能导致实验结果产生偏差的事实;由于基于模型的多组块实验设计方法已不再适合fMRI针刺研究,本文又通过引入非重复事件相关的实验设计模式以及全新的动态检测算法初步构建了针刺中枢神经的动态响应模型,并推测针刺作用过程涉及多个神经脑网络的参与;为了进一步阐明针刺持续性效应对多个神经系统之间交互关系的调节作用,我们采用同步涨落脑网络分析方法对针刺大脑核团动态激活响应的协同加工作用机制进行了深入分析,提出了针刺具有反相关脑网络调节模式的神经表象,并对占针刺机理研究主导地位的负激活边缘系统理论提出质疑;最后,为了深入说明针刺持续性神经表象的具体生理加工机制,本文运用fMRI研究技术与生理行为指标相结合的分析方法,通过构建经典的恶心负性情绪模型,实现了对针刺持续性效应中枢神经调控机制及其对应生理机制的探索性研究。具体的实验设计及研究成果包括:
     实验一:基于多组块实验设计的针刺持续性效应假说的验证。此实验通过对多组块实验设计各个阶段针刺神经响应模式的提取,验证了针刺持续性效应存在的假说;指出由于针刺持续性效应的存在,以往研究分析方法违背了减法原理基线的选取原则,从而可能导致分析结果的偏差。我们的研究结果表明,基于模型的多组块实验分析方法已不再适合fMRI针刺研究。
     实验二:针刺持续性效应神经时变响应特征模型的初步建构。由于以往基于模型的多组块实验分析方法已不再适合针刺持续性效应的研究,该实验引入了非重复事件相关的实验设计以及基于指数加权的滑动平均检测算法,深入分析了针刺中枢神经的时间响应特征信息。我们的研究结果表明,针刺可引发大脑随时间变化的复杂动态响应模式,对针刺中枢神经响应的考察应综合其时空二维特征信息。
     实验三:建立针刺反相关脑网络调节模式的假说。本实验采用非重复事件相关的实验设计模式以及同步动态脑网络分析算法,对针刺大脑核团动态激活响应的交互作用机制进行深入分析。研究结果表明,针刺持续性效应以大脑反相关组织形式实现其协同加工作用机制,而并非对大脑产生单向调节作用,我们对占针刺主导地位的负激活边缘系统理论提出质疑。
     实验四:建构了针刺持续性效应神经调控途径以及生理加工机制的研究模型。针对现有针刺研究模式因为缺乏对实验因素的有效控制,从而可能导致结果一致性低,而且以往研究可能无法真正探明针刺具体调控途径这一研究现状。本实验通过构造恶心负性情绪模型,实现了对实验因素以及个体机能水平差异的有效控制;并运用生理行为指标与功能磁共振相结合的分析方法,不仅在针刺多个穴位上再次验证了针刺持续性效应存在的假说,而且深入分析了针刺不同穴位所引发的持续性效应对该模型的调节作用以及潜在的生理加工机制。研究结果表明,针刺不同穴位可引发对恶心负性情绪模型的选择性调节机制,并且与恶心生理指标以及焦虑水平的变化直接相关,据此得出针刺穴位发挥功能为导向的神经调节机制的结论。该研究不仅可以为解密针刺作用发挥复杂多系统效应提供全新的研究途径,而且为针刺神经影像学研究结果指导临床应用提供实证性理论依据。
Acupuncture, as a treasure of the splendid traditional culture of Chinese nations, possesses massive health resources with characters and advantages in Chinese medical and health care undertakings. Because of the globally increasing medical expenditure and the iatrogenic and drug-induced diseases caused by modern medication in conquering hazardous diseases, the medical community and patients are becoming very interested in the economic, low toxic and side-effect acupuncture subsectioned in Traditional Chinese Medicine good at regulation. The traditional Chinese Medicine of acupuncture theories, growing out of practices and deeply processed by Chinese classical philosophy, make it hard to reconcile with modern medicines in many aspects, which sets up shackles for the development of acupuncture theories. With the advanced development of the modern neuroimaging techniques, particularly the functional magnetic resonance imaging (fMRI), the exploration of the relations among acupoints, brain and viscera has become possible. The fMRI technique, with its non-invasive and higher resolution characterstics, has been widely applied in the detection of the brain functions. However, the fMRI acupuncture investigation is still in its early stage, and needs further improvements.
     Previous neuroimaging acupuncture studies have mainly focused on the correlations between acupuncture at certain acupoint and the functional brain cortice, as the spatially localized studies. According to the Traditional Chinese Medicine and abundant clinical evidence, the effect of acupuncture can sustain beyond the needle manipulation period. Therefore, the consideration of temporal information of the central nervous system in acupuncture bears vital theoretical importance in the deep understading of acupuncture mechanism. This paper, with the verification of acupuncture sustained effect hypothesis as the breakthrough point and through the multi-block design, confirmed the existence of the prolonged effects of acupuncture, demonstrated the fact that previous model-based multi-block studies violated the baseline princinple in the substracte technique reckoning without temporal information, and caused the errors of experiment results; next, the article adopted the new non-repeted event-related experiment paradigm and dynamic detection algorithm to construct the dynamic neutral response to acupuncture, and then the author speculated that acupuncture action involved participation of multi-neuro brain networks; further, we employed the spontaneous oscillation network analysis to investigate the intergrated mechanism of these dynamic nuclei responses induced by acupuncture, and advanced the nervous representation of the anti-correlated brain networks to doubt the dominant decreased limbic-system theory of acupuncture; finally, for the purpose of explaination about the real physiological mechanism of the nervous representation of sustained effects of acupuncture, we constructed the disgust affective model and combined the fMRI data with physiological indices to explore both the neural modulatory and the potential physiological mechanism underlying the longer-lasting effects of acupuncture. The details of the design paradigms and corresponding results are listed as follows:
     The first experiment“the validation of the sustained effects of acupuncture by the multi-block design”aimed to validate the hypothesis about the sustained effects of acupuncture. To achieve this goal, we designed separate models to evaluate the baseline activities (prior to stimulation) and neural activities in sequential epochs via the block-designed paradigm to confirm the existence of the prolonged effects of acupuncture. This finding indicated that previous studies violate the baseline princinple in the substracte technique and may cause errors of experiment results, which make the model-based multi-block designed analysis improper in acupuncture studies.
     The second experiment“the construction of the time-varying neural responses model of the sustained effects of acupuncture”attempted to construct the time-varying neural responses to the sustained effects of acupuncture. We introduced the non-repeated event-related design and hierarchical exponentially weighted moving-average method to investigate the temporal characteristics of neural responses to acupuncture. Resullts showed that acupuncture can evoke the complex time-dependent neural responses, and an accurate interpretation of acupuncture actions depended on how effectively we can characterize the nature of temporal variations underlying neural activities that give rise to hemodynamic responses, rather than simply detect the occurrence of such changes.
     The third experiment“the proposed hypothesis of the anti-correlated brain networks following acupuncture and the doubt of the hypothesis of the dominant decreased limbic-system theory”, employed the non-repeated event-related design and spontaneous oscillation network analysis to investigate the intergrated processing mechanism of the dynamic neural responses induced by acupuncture. Its findings demonstrated the sustained effects of acupuncture can achieve the intergrated processing mechanism through the anti-correlated organization mechanism of brain networks, rather than exert unidirectional modulatory effects on human brain. Therefore, we made concluded doubt of the dominant theory of decreased limbic-system following acupuncture.
     The fourth experiment“the construction of neural pathways and physiological mechanism of the prolonged effects of acupuncture”constructed the novel disgust affective model and realized the effective control of experimental factors and individual functional differences,with respect of the deficient control of experimental factors, low consistency of analysis results, and lack of real understanding of acupuncture modulatory pathways; it also validated the existence of sustained effects of acupuncture, and investigated the modulatory mechanism on this disgust affective model and the potential physiological mechanism, after acupuncturing at different acupoints,by ways of combined method of fMRI data and physiological indices. Our findings indicated that acupuncture at different acupoints can cause selective modulatory effects on the disgust affective model, which have high relations to the changes of physiological disgust and anxiety indices. According to these observations, we inferred that acupuncture can exert the function-guided neural modulatory mechanisms. This investigation can not only disclose the complex multiple system effects underlying the acupuncture, but also provide meaningful theoretical evidence for the clinical applications of acupuncture neuroimaging.
引文
[1]林昭庚.针灸医学史.北京:中国中医药出版社, 1995.
    [2] National Institute of Health Consensus Development Panel. NIH Consensus Statement, 1997, 15, 1-34.
    [3] BM. Berman, CM. B. Clinical Acupuncture. Springer, 2000.
    [4] Beijing College of Traditional Chinese Medicine. Essentials of Chinese Acupuncture. Foreign Language Press, Beijing, 1993.
    [5]曹小定,针刺研究大有可为―从美国NIH召开针刺疗法听证会谈起.中国中西医结合杂志. 1998, 18 (8): 87-89.
    [6]曹小定.针刺符合麻醉的产生和发展.针刺研究, 1997, 22 (1): 9-11.
    [7]韩济生,针刺机理研究的最新进展.针刺研究, 1988, 1: 36-41.
    [8]经络十讲.上海:上海人民出版社, 1976.
    [9]王启才,高俊雄.经络的研究及临床应用.中国古籍出版社, 1998.
    [10]山海经史科比较研究.中国边疆史地研究, 1996.
    [11]张仁.中国针刺麻醉发展史.上海:上海科学技术文献出版社, 1989.
    [12]董厚吉,马云涛.科学性针刺疗法.北京:中国医药科技出版社, 2000.
    [13] L. Lao, S. Bergman, GR. Hamilton, et al. Evaluation of acupuncture for pain control after oral surgery: a placebo-controlled trial. Arch Otolaryngol Head Neck Surg, 1999, 125(5): 567-572.
    [14] B. Berman, L. Lao, P. Langenberg, et al. Effectiveness of acupuncture as adjunctive therapy in osteoarthritis of the knee: a randomized, controlled trial. Ann Intern Med, 2004, 141(12): 901-910.
    [15]韩济生.针刺镇痛原理.上海:上海科学教育出版社, 1998.
    [16]王启才,高俊雄.经络的研究及临床应用.北京:中国古籍出版社, 1998.
    [17]费伦,承焕生,蔡德亨等.经络物质基础及其功能性特征的实验探索和研究展望.科学通报, 1998, 43(6): 658-672.
    [18] JW. Belliveau, DN. Kennedy, RC. McKinstry, et al. Functional mapping of the man visual cortex by magnetic resonance imaging. Science, 1991, 25(4): 716-719.
    [19] JW. Belliveau, MS. Cohen, RM. Weisskoff, et al. Functional studies of the human brain using high-speed magnetic resonance imaging. J Neuroimaging, 1991, 1: 36-41.
    [20] JF. Demonet, Q. Thieny, D. Cardebat. Renewal of the neurophysiology of language: fu nctional neuroimaging. Physiol Rev, 2005, 85(1): 49-95.
    [21] BR. Rosen, RL. Buckner, AM. Dale. Event-related functional MRI: past, present and future. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 773-780.
    [22] CJ. Aline. A conceptual overview and critique of functional neuroimaging technique in humans: I. MRI/fMRI and PET. Critical Reviews in Neurobiology, 1995, 9: 229-309.
    [23] PL. Nunez. Localization of brain activity with electroencephalography. In. Sato S, ed. Advances in Neurology, vol 54: Magnetoencephalography. New York: Raven Press, 1990, 39-65.
    [24] M. Hamalainen, R. Hari. Magnetoencephalographic characterization of dynamic brain activation: Basic principles and methods of data collection and source analysis in: AW. Toga, JC. Mazziotta, eds: Brain Mapping: The Methods, 2nd ed. San Diego: Academic Press, 2002.
    [25]张香桐.针灸针麻研究.北京:科学出版社, 1986.
    [26] MT. Wu, JC. Hsieh, J. Xiong, et al. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain-preliminary experience. Radiology, 1999, 212(1): 133-141.
    [27] KKS. Hui, J. Liu, N. Makris, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Human Brain Mapping, 2000, 9(1): 13-25.
    [28] KKS. Hui, J. Liu, O. Marina, et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST36 as evidenced by fMRI. Neuroimage, 2005, 27(3): 479- 496.
    [29] SS.Yoo, EK. Teh, RA. Blinder, et al. Modulation of cerebellar activation by acupuncture stimulation: evidence from fMRI study. Neuroimage, 2004, 22: 932-940.
    [30] JL. Fang, Z. Jin, Y. Wang, et al. The salient characteristics of the central effects of acupuncture needling: Limbic-paralimbic-neocortical network modulation. Human Braim Mapping, 2009, 30(4):1196-1206.
    [31] WT. Zhang, Z. Jin, J. Huang, et al. Modulation of cold pain in human brain by electric acupoint stimulation: evidence from fMRI. NeuroReport, 2003, 14(12): 1591-1596
    [32] WT. Zhang, Z. Jin, GH. Cui, et al. Relations between brain network activation and analgesic effect induced by low versus high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study.Brain Research, 2003, 982(2): 168-178.
    [33] ZH. Cho, SC. Chung, JP. Jones, et al. New findings of the correlation between acupuncture and corresponding brain cortices using functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 2670-2673.
    [34] G. Li, H.L.Liu, R.T. Cheung, Y.C. Hung, K.K. Wong, G.G. Shen, Q.Y. Ma, E.S. Yang. An fMRI study comparing brain activation between word generation and electrical stimulation of language-implicated acupoints. Human Brain Mapping, 2003, 18: 233-238.
    [35] G. Litscher, D. Rachbauer, S. Ropels, et al. Acupuncture using laser needles modulates brain function: first evidence from functional transcranial Doppler sonography and functional magnetic resonance imaging. Lasers in Medical Science, 2004, 19: 6-11.
    [36] CM. Siedentopf, SM. Golaszewski, FM. Mottaghy, et al. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans, Neuroscience Letters, 2002, 327: 53-56.
    [37]尹岭,金香兰,石现等.针刺足三里穴PET和fMRI.中国康复理论与实践, 2002, 8(9): 523-524.
    [38] IK. Gareus, MD. Lacour, AC. Schulte, et al. Is there a BOLD response of the visual cortex on stimulation of the vision-related acupoint GB 37? Journal of Magnetic Resonance Imaging, 2002, 15: 227-232.
    [39] J. Kong, TJ. Kaptchuk, JM. Webb, et al. Functional neuroanatomical investigation of vision-related acupuncture point specificity-a multisession fMRI study. Human Brain Mapping. 2009, 30(1): 38-46.
    [40] S. Beijing. Nanjing Colleges of Traditional Chinese Medicine. Essentials of Chinese Acupuncture. Beijing: Foreign Language Press, 1980.
    [41] DD. Price, A. Rafii, LR. Watkins, et al. Apsychophysical analysis of acupuncture analgesia. Pain, 1984, 19: 27-42.
    [42] B. Pomeranz, D. Chiu. Naloxone blockade of acupuncture analgesia: endorphin implicated. Life sciences, 1976, 19: 1757-1758.
    [43] F. Bloch. Nuclear induction. Physical Review, 1946, 70(8): 460-474.
    [44] G. William. Introduction to interventional MRI. Journal of Medical Imaging. 2002, 12(2): 19-24.
    [45] N. Technology. Revolution of MRI in Medicine: The introduction of the 2003 Nobel Prize in Physiology or medicine. Progress in Biochemistry and Biophysics,2003, 30(6): 47-53.
    [46] W. Narozny, J. Mechlinska-Baczkowska, B. Kowalska. Introduction of MRI in pre-operative assessment of parotid tumours: our experience. Otolaryngol, 1999, 53: 620-623.
    [47] AD. Kumar, et al. Buildup rates of the nuclear overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. Journal of the American Chemical Society, 1981, 103(13): 3654-3658.
    [48] AD. Kumar, D. Welti, RR. Ernst. NMR fourier zeugmatography. Journal of Magnetic Resonance, 1975, 18(1): 6983.
    [49] V. Pejcev, D. Rassi, KJ. Ross. High-resolution ejected-electron spectrum of cadmium autoionising levels following two-electron excitation by low-energy impact. Journal of Physics B: Atomic, Molecular, and Optical Physics, 1977, 10(16): 1629-1633.
    [50] PC. Lauterbur, MH. Mendonca-Dias, AM. Rudin. Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. Frontiers of Biological Energetics. New York: Academic Press, 1978, 752-759.
    [51] JR. Mallard. The evolution of medical imaging. Perspectives in Biology and Medicine, 2003, 46(3): 349-370.
    [52] WA. Edelstein, JMS. Hutchison, G. Johnson, et al. Spin warp NMR imaging and application to human whole-body imaging. Physics in Medicine and Biology, 1980, 25: 751-756.
    [53] CL. Dumoulin, Methods of. and pulse sequences for. The suppression of undesired resonances by generation of quantum coherence in NMR imaging and spectroscopy. European Patent EP0239724, 1990.
    [54] D. Limitations. Manatee Population Estimates for the State of Florida, 2001.
    [55] P. Jezzard, PM. Matthews, SM. Smith. Functional MRI: An Introduction to Methods. Oxford Uninversity Press, USA, 2003.
    [56] MA. Yassa. Functional MRI User’s Guide. 2005.
    [57] MD. Fox, AZ. Snyder, JL. Vincent, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 9673-9678.
    [58] AW. Anderson, R. Marois, ER. Colson, et al. Neonatal auditory activation detected by functional magnetic resonance imaging. Magnetic Resonance Imaging, 2001, 19(1): 1-5.
    [59] MS. Cohen, SM. Kosslyn, HC. Breiter, et al. Changes in cortical activity during mental rotation: a mapping study using functional MRI. Brain, 1996, 119(1): 89-100.
    [60] GK. Aquirre, E. Zarahn, M. D’esposito. The variability of human BOLD hemodynamic responses. Neuroimage, 1998, 8(4): 360-369.
    [61] HJ. Aizenstein, KA. Clark, MA. Butters, et al. The BOLD hemodynamic response in healthy aging. Journal of Cognitive Neuroscience, 2004, 16(5): 786-793.
    [62] HA. Al-Hallaq, X. Fan, M. Zamora, et al. Spectrally inhomogeneous BOLD contrast changes detected in rodent tumors with high spectral and spatial resolution MRI. NMR in Biomedicine, 2002, 15(1): 28-36.
    [63] J. Alvares-Linera, P. Martin-Plasencia, F. Maestu-Unturbe, et al. Hemispheric dominance for language and fuctional magnetic resonance a comparison of three tasks. Revista de. Neurologia., 2002, 35(2): 115-118.
    [64] A. Amedi, R. Malach, A. Pascual-Leone, et al. Negative BOLD differentiates visual imagery and perception. Neuron, 2003, 48(5): 859-872.
    [65] DJ. Amd, S. Romani. Search for fMRI BOLD signals in networks of spiking neurons. The European Journal of Neuroscience, 2007, 25(6): 1882-1892.
    [66]钱银峰.脑磁共振功能成像的基本原理及应用.国外医学:神经病学.神经外科学分册, 2000, 27(6): 327-329.
    [67]肖学宏.平面回波成像(EPI)技术的基本原理及应用.国外医学:临床放射学分册, 1997, 20(6): 347-351.
    [68]刘虎,张权,张云亭等. BOLD—fMRI在视觉研究中的应用.国外医学:临床放射学分册, 2004(4): 209-212.
    [69] N. Vamauchi, N. Okazzari, T. Sato, et al. The effects of electrical acupuncture on human somatosensory evoked potentials and spontaneous brain waves. Yonago Acta Medica, 1976, 20: 88-100.
    [70] H. Wei, CH. Tu, PP. Chen, et al. Early-latency somatosensory evoked potentials elicited acupuncture after needling acupoint LI-4. Clinical EEG Electroencephalography, 2000, 31: 160-164.
    [71] B. Yan, K. Li, JY. Xu, et al. Acupoint-specific fMRI patterns in human brain. Neuroscience Letters, 2005, 383: 236-240.
    [72] TB. Parrish, A. Schaeffer, M. Catanese, et al. Functional magnetic resonance imaging of real and sham acupuncture: noninvasively measuring cortical activation from acupuncture. IEEE engineering in medicine and biology magazine, 2005, 24: 35-40.
    [73] A. Li, J. Zhang, Y. Xie. Human acupuncture points mapped in rats are associated with excitable muscle/skin-nerve with enriched nerve endings. Brain Research, 2004, 1012: 154-159.
    [74] CA. Vincent, PH. Richardson, JJ. Black, et al. The significance of needle placement site in acupuncture. Journal of Psychosomatic Research, 1989, 33: 489-496.
    [75] J. Kleinhenz, K. Streitberger, J. Windeler, et al. Randomized clinical trial comparing the effects of acupuncture and a newly designed placebo needle in rotator cuff tendonitis. Pain, 1999, 83(2): 235-241.
    [76] J. Hesse, B. Mogevang, H. Simonsen. Acupuncture versus metoprodol in migtaine prophylaxis: a randomized trial of trigger point deactivation. Journal of Internal Medicine, 1994, 235(5): 451-456.
    [77] L. Lao, S. Bergman, R. Anderson, et al. The effect of acupuncture on postoperative oral surgery pain: a pilot study. Acupuncture in Medicine, 1994, 12: 13-17.
    [78] AC. Gaw, LW. Chang, LC. Shaw. Efficacy of acupuncture on ostearthritic pain: a controlled double-blind study. The New England Journal of Medicine, 1975, 293(8): 375-378.
    [79] EK. Farran, C. Jarrold, SE. Gathercole. Block design performance in the Williams syndrome phenotype: a problem with mental imagery? Journal of Child Psychology and Psychiatry, 2001, 42(6): 719-728.
    [80] J. Ashburner, K. Friston, W. Penny. Human Brain Function, second edition. Academic Press, London, 2004.
    [81] MM. Monti. Statistical analysis of fMRI time-series: a critical evaluation of the GLM approach, 2003, 11: 77-89.
    [82] YC. Hong, F. Hua, DZ. Yao. A new general linear convolution model for fMRI data process. Journal of Electronic Science and Technology of China, 2005, 3(1): 68-71.
    [83] DG. Leibovici, S. Smith. Comparing groups of subjects in fMRI studies: a review of the GLM approach. Technical report, www.fmrib.ox.ac.uk/analysis/techrep, 2000.
    [84] IR. Keck, FJ. Theis, P. Gruber, et al. 3D spatial analysis of fMRI data: a comparison of ICA and GLM analysis on a word perception task. International Joint Conference on Neural Networks, 2004, 2495-2499.
    [85] RSJ. Frackowiak, KJ. Friston, CD. Frith, et al . Human Brain Function. San Diego: Academic Press, 1997, 44-48.
    [86] J. Talairach, P. Tournoux. Coplanar Stereotaxic Atlas of the Human Brain. Stuttgart:Thieme Medical, 1988.
    [87] TD. Wager, TE. Nichols. Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage, 2003, 18(2): 293-309.
    [88] JR. Amaro, GJ. Barker. Study design in fMRI: Basic Principles. 2006.
    [89] E. Zarahn, GK. Aguirre, M. D’Esposito. A trial-based experimental design for fMRI. Neuroimage, 1997, 6(2): 122-138.
    [90]秦伟.基于功能磁共振的针刺机理初步研究-从问题到方法.博士学位论文,中国科学院自动化研究所,北京, 2007.
    [91] DA. Gusnard, ME. Raichle. Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci, 2001, 2: 685-694.
    [92] I. Kida, F. Hyder, RP. Kennan, et al. Toward absolute quantitation of bold functional MRI. Adv Exp Med Biol, 1999, 471: 681-689.
    [93] LJ. Bai, W. Qin, J. Tian, et al. Time-Varied Characteristics of Acupuncture Effects in fMRI Studies. Human Brain Mapping, 2009, Published on Line, DOI: 10.1002/hbm.20769.
    [94] KJ. Worsley, KJ. Friston. Analysis of fMRI time-series revisited-again. Neuroimage, 1995, 2: 173-181.
    [95] K. Arfanakis, D. Cordes, VM. Haughton, et al. Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Magn Reson Imaging, 2000, 18: 921-930.
    [96] KJ. Friston, J. Asbburner, CD. Frith, et al. Spatial registration and normalization of images. Human Brain Mapping, 1995(2): 165-189.
    [97] WC. Liu, SC. Feldman, DB. Cook, et al. fMRI study of acupuncture-induced periaqueductal gray activity in humans. NeuroReport, 2004, 15: 1937-1940.
    [98] ME. Raichle, AZ. Snyder. A default mode of brain function: A brief history of an evolving idea. Neuroimage, 2007, 37: 1083-1090.
    [99] ME. Raichle, AM. MacLeod, AZ. Snyder, et al. A default mode of brain function. Proc Natl Acad Sci USA, 2001, 98: 676-682.
    [100] S. Ogawa, TM. Lee, AR. Kay, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87: 9868-9872.
    [101] RL. Buckner, SE. Petersen, JG. Ojemann, et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J Neurosci, 1995, 15: 12-29.
    [102] T. Shallice, P. Fletcher, CD. Frith, et al. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 1994, 368: 633-635.
    [103] JR. Binder, JA. Frost, TA. Hammeke, et al. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci, 1999, 11: 80-95.
    [104] TR. Toelle, T. Kaufmann, T. Siessmeier, et al. Region-specific encoding of sensory and affective components of pain in the human brain: A positron emission tomography correlation analysis. Ann Neurol, 1999, 45: 40-47.
    [105] KL. Casey. Forebrain mechanisms of nociception and pain: Analysis through imaging. Proc Natl Acad Sci USA, 1999, 96: 7668-7674.
    [106] JD. Talbot, S. Marrett, AC. Evans, et al. Multiple representations of pain in human cerebral cortex. Science, 1991, 251: 1355-1358.
    [107] RK. Hofbauer, P. Rainville, GH. Duncan, et al. Cortical representation of the sensory dimension of pain. J Neurophysiol, 2001, 86: 402-411.
    [108] A. Ploghaus, I. Tracey, JS. Gati, et al. Dissociating pain from its anticipation in the human brain. Science, 1999, 284: 1979-1981.
    [109] AD. Craig, EM. Reiman, A. Evans, et al. Functional imaging of an illusion of pain. Nature, 1996, 384: 258-260.
    [110] PL. Jackson, AN. Meltzoff, J. Decety. How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage, 2005, 24: 771-779.
    [111] TD. Wager, JK. Rilling, EE. Smith, et al. Placebo-Induced changes in fMRI in the anticipation and experience of pain. Science, 2004, 303: 1162-1167.
    [112] ZH. Cho, YD. Son, CK. Kang, et al. Pain dynamics observed by functional magnetic resonance imaging: Differential regression analysis technique. J Magn Reson Imaging, 2003, 18: 273-283.
    [113] P. Fransson, G. Kruger, KD. Merboldt, et al. MRI of functional deactivation: Temporal and spatial characteristics of oxygenation-sensitive responses in human visual cortex. Neuroimage, 1999, 9: 611-618.
    [114] WD. Willis. Central nervous system mechanisms for pain modulation. Appl Neurophysiol, 1985, 48: 153-165.
    [115] HL. Fields, AI. Basbaum. Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R, editor. Textbook of Pain. Edinburgh: Churchill Livingstone, 1999, 309-329.
    [116] CM. Haws, AM. Williamson, HL. Fields. Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation. Brain Res, 1989, 483: 272-282.
    [117] J.Fang, Z. Jin, Y. Wang, et al. The salient characteristics of the central effects of acupuncture needling: Limbic- paralimbic-neocortical network modulation. Human Brain Mapping, 2008, 30: 1196-1206.
    [118] V. Napadow, N. Makris, J. Liu, et al. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Human Brain Mapping, 2005, 24: 193-205.
    [119] R. Melzack. Folk medicine and the sensory modulation of pain. Textbook of Pain. 3rd ed. Edinburgh: Churchill Livingstone, 1994, 1209-1217.
    [120] I. Tracey, PW. Mantyh. The cerebral signature for pain perception and its modulation. Neuron, 2007, 55: 377-392.
    [121] V. Napadow, N. Kettner, J. Liu, et al. Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain, 2007, 130: 254-266.
    [122] DJ. Mayer, DD. Price, A. Rafii. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain research, 1977, 121: 368.
    [123] B. Pomeranz, D. Chiu. Naloxone blockade of acupuncture analgesia: endorphin implicated. Life sciences, 1976, 19: 1757.
    [124] Qin, W., Tian, J., Bai, L., Pan, X., Yang, L., Chen, P., Dai, J., Ai, L., Zhao, B., Gong, Q., 2008. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network. Molecular Pain 4, 55.
    [125] RP. Dhond, C. Yeh, K. Park, et al. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain, 2008, 136: 407-418.
    [126] J. Pariente, P. White, RSJ. Frackowiak. Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage, 2005, 25: 1161-1167.
    [127] Y. Zhang, W. Qin, P. Liu, et al. An fMRI study of acupuncture using independent component analysis. Neurosci Lett, 2008, 449: 6-9.
    [128] MA. Lindquist, C. Waugh, TD. Wager. Modeling state-related fMRI activity using change-point theory. Neuroimage, 2007, 35: 1125-1141.
    [129] RC. Oldfield. The assessment and analysis of handness: the Edinburgh inventory. Neuropsychologia, 1971, 9, 97-113.
    [130] M. Karst, D. Scheinichen, T. Rueckert, et al. Effect of acupuncture on the neutrophil respiratory burst: a placebo-controlled single-blinded study. Complementary Therapies in Medicine, 2003, 11, 4-10.
    [131] KJ. Sherman, CJ. Hogeboom, DC. Cherkin, et al. Description and validation of anoninvasive placebo acupuncture procedure. J Altern Complement Med, 2002, 8: 11-19.
    [132] K. Streitberger,J. Kleinhenz. Introducing a placebo needle into acupuncture research. Lancet, 1998, 352: 364-365.
    [133] S. Birch. Controlling for non-specific effects of acupuncture in clinical trials. Clinical Acupuncture & Oriental Medicine, 2003, 4: 59-70.
    [134] JR. Foucher, H. Otzenberger, D. Gounot. Where arousal meets attention: a simultaneous fMRI and EEG recording study. Neuroimage, 2004, 22: 688-697.
    [135] L. Bai, L, W. Qin, J. Tian, et al. Detection of dynamic brain networks modulated by acupuncture using a graph theory model. Prog. Nat. Sci., 2009, 19, 827-836.
    [136] JS. Han. Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci, 2003, 26: 17-22.
    [137] JM. Peets, B. Pomeranz. CXBK mice deficient in opiate receptors show poor electroacupuncture analgesia. Nature, 1978, 273: 675-676.
    [138] C. Takeshige, K. Oka, T. Mizuno. The acupuncture point and its connecting central pathway for producing acupuncture analgesia. Brain Res Bull, 1993, 30: 53-67.
    [139] HL. Fields, AI. Basbaum, MM. Heinricher. Central nervous system mechanisms of pain modulation. Wall and Melzack’s textbook of Pain. Elsevier, Amsterdam, 2005.
    [140] T. Wesolowski. Acupuncture reveals no specific effect on primary auditory cortex: a functional magnetic resonance imaging study. Neuroreport, 2009, In Press.
    [141] RC. Coghill, CN. Sang, JM. Maisog, et al. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol, 1999, 82: 1934-1944.
    [142] CA. Porro, V. Cettolo, MP. Francescato, et al. Temporal and intensity coding of pain in human cortex. J Neurophysiol, 1998, 80: 3312-3320.
    [143] F. Cervero, A. Iggo, H. Ogawa. Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain, 1976, 2: 5-24.
    [144] JM. Chung, KH. Lee, Y. Hori, et al. Factors influencing peripheral nerve stimulation produced inhibition of primate spinothalamic tract cells. Pain, 1984, 19: 277-293.
    [145] KH. Lee, JM. Chung, WD. Willis, et al. Inhibition of primate spinothalamic tract cells by TENS. J Neurosurg, 1985, 62: 276-287.
    [146] FA. Lenz, RH. Gracely, AT. Zirh, et al. The sensory-limbic model of pain memory:connections from thalamus to the limbic system mediate the learned component of the affective dimension of pain. Pain Forum, 1997, 6: 22-31.
    [147] A. Schnitzler, M. Ploner. Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol, 2000, 17: 592-603.
    [148] R. Llinas. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science, 1988, 242: 1654-1664.
    [149] A. Arieli, A. Sterkin, A. Grinvald, et al. Dynamics of ongoing activity: explanation of the large variability in evoked cortical response. Science, 1996, 273: 1868-1871.
    [150] T. Kenet, D. Bibitchkov, M. Tsodyks, et al. Spontaneous emerging cortical representations of visual attributes. Nature, 2003, 425: 954-956.
    [151] J. Fiser, C. Chiu, M. Weliky. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature, 2004, 431: 573-578.
    [152] JN. MacLean, BO. Watson, GB. Aaron, et al. Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 2005, 48: 811-823.
    [153] BA. Olshausen, DJ. Field. How close are we to understanding V1? Neural Comput, 2005, 17: 1665-1699.
    [154] ME. Raichle, MA. Mintun. Brain work and brain imaging. Annu Rev Neurosci, 2006, 29: 449-476.
    [155] MD. Hunter, SB. Eickhoff, TWR. Miller, et al. Neural activity in speech-sensitive auditory cortex during silence. Proc Natl Acad Sci USA, 2005, 103: 189-194.
    [156] J. Kong, L. Ma, RL. Gollub, et al. A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods. J Alternative Complementary Med, 2002, 8: 411-419.
    [157] MD. Greicius, B. Krasnow, AL. Reiss, et al. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 2003, 100: 253-258.
    [158] WW. Seeley, V. Menon, AF. Schatzberg, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 2007, 27: 2349-2356.
    [159] D. Sridharan, DJ. Levitin, V. Menon. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A, 2008, 105: 12569-12574.
    [160] MM. Mesulam, EJ. Mufson. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol, 1982, 212: 38-52.
    [161] EJ. Mufson, MM. Mesulam. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol, 1982, 212: 23-37.
    [162] AD. Craig. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci, 2002, 3: 655-666.
    [163] HD. Critchley, S. Wiens, P. Rotshtein, et al. Neural systems supporting interoceptive awareness. Nature Neurosci, 2004, 7: 189-195.
    [164] J. Kong, R. Gollub, T. Huang, et al. Acupuncture de qi, from qualitative history to quantitative measurement. J Alternative Complementary Med, 2007, 13: 1059-1070.
    [165] L. Bai, W. Qin, J. Tian, et al. Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks. Brain Research, 2009, Published on Line, DOI: 10.1016/j. brainres. 2009. 04. 056.
    [166] SA. Bunge, KN. Ochsner, JE. Desmond, et al. Prefrontal regions involved in keeping information in and out of mind. Brain, 2001, 124: 2074-2086.
    [167] E. Koechlin, C. Summerfield. An information theoretical approach to prefrontal executive function. Trends Cogn Sci, 2007, 11: 229-235.
    [168] JS. Antrobus. Information theory and stimulus-independent thought. Br. J. Psychol, 1968, 59: 423-430.
    [169] ME. Raichle, DA. Gusnard. Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp. Neurol, 2005, 493: 167-176.
    [170] W. Takeda, J. Wessel. Acupuncture for the treatment of pain of osteoarthritic knees. Arthritis care and research, 1994, 7: 118-122.
    [171] C. Witt, B. Brinkhaus, S. Jena, et al. Acupuncture in patients with osteoarthritis of the knee: a randomised trial. Lancet, 2005, 366: 136-143.
    [172] H. Lau, RD. Rogers, RE. Passingham. Dissociating response selection and conflict in the medial frontal surface. Neuroimage, 2006, 29: 446-451.
    [173] JR. Augustine. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Rev, 1996, 22: 229-244.
    [174] BH. Manning, DJ. Mayer. The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test. J Neurosci, 1995, 15: 8199-8213.
    [175] L. Becerra, D. Borsook. Insights into pain mechanisms through functional MRI. Drug Discovery Today: Disease Mechanisms, 2006, 3: 313-318.
    [178] P. Dunckley, RG. Wise, Q. Aziz, et al. Cortical processing of visceral and somatic stimulation: Differentiating pain intensity from unpleasantness. Neuroscience, 2005, 133: 533-542.
    [179] G. Hadjipavlou, P. Dunckley, TE. Behrens, et al. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: A diffusion tensor imaging study in healthy controls. Pain, 2006, 123: 169-178.
    [180] KJ. Tracey. The inflammatory reflex. Nature, 2002, 420: 853-859.
    [181] MN. Baliki, PY. Geha, AV. Apkarian, et al. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci, 2008, 28: 1398-1403.
    [181] JS. Han, GX. Xie, ZF. Zhou, et al. Enkephalin and beta-endorphin as mediators of electro-acupuncture analgesia in rabbits: an antiserum microinjection study. Adv. Biochem. Psychopharmacol, 1982, 33: 369-377.
    [182] W. Mao, JN. Ghia, DS. Scott, et al. High versus low intensity acupuncture analgesia for treatment of chronic pain: effects on platelet serotonin. Pain, 1980, 8: 331-342.
    [183] A. Sato, Y. Sato, A. Suzuki, et al. Neural mechanisms of the reflex inhibition and excitation of gastric motility elicited by acupuncture-like stimulation in anesthetized rats. Neurosci. Res, 1993, 18: 53-62.
    [184] MA. Andrykowski. The role of psychological variables in post-chemotherapy nausea: anxiety and expectation. Am Psychosomatic Soc, 1992, 54: 48-58.
    [185] PV. De, C. Chiaradia, E. Carotenuto. The contribution of suggestibility and expectation to placebo analgesia phenomenon in an experimental setting. Pain 2002, 96: 393-402.
    [186] L. Laux, P. Glanzmann, P. Schaffner, et al. Das State-Trait-Angstinventar. Theoretische Grundlagen und Handanweisung. Weinheim: Beltz, 1981.
    [187] WWK. Zung. The depression status inventory: An adjunct to the self-rating depression scale. J Clinical Psychology, 1972, 28(4): 539-543.
    [188] A. Schienle, B. Walter, R. Stark, et al. A questionnaire for the assessment of disgust sensitivity. Z. Klin. Psychol. Psychother, 2002, 31: 110-120.
    [189] G. Stux, B. Pomeranz. Acupuncture: textbook and atlas. Berlin: Springer-Verlag, 1987, 231-244.
    [190] JW. Dundee, WN. Chestnutt, RG. Ghaly, et al. Traditional Chinese acupuncture: a potentially useful antiemetic. BMJ, 1986, 293: 583-584.
    [191] GW. Liu. Acupoints of three Yang meridians of foot. In: Liu GW, et al., editors. Acomplement work of present acupuncture and moxibustion. Tianjin: HuaXia Publishing House 1997, 327-479.
    [191] F. Mann. Reinventing Acupuncture: A New Concept of Ancient Medicine. Biddles Ltd., Great Britain, 1992, 44.
    [192] G. Stux, B. Pomeranz. Basics of Acupuncture. Springer-Verlag, Berlin, 1997, 77-92.
    [193] M. Boehler, G. Mitterschiffthaler, A. Schlager. Korean hand acupressure reduces postoperative nausea and vomiting after gynecological laparoscopic surgery. Anesth. Analg, 2002, 94: 872-875.
    [194] W. Penfield, HH. Jasper. Epilepsy and the functional anatomy of the human brain. Little, Brown, 1954.
    [195] E. Dietrichs, DE. Haines, GK. R?ste, et al. Hypothalamocerebellar and cerebello-hypothalamic projections: circuits for regulating nonsomatic cerebellar activity? Histol. Histopathol, 1994, 9: 603-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700