用户名: 密码: 验证码:
温敏性二氧化硅—透明质酸微凝胶的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机-透明质酸(HA)核壳纳米颗粒融合了无机纳米材料和HA的优异性能,甚至可能具有原组分不具备的特殊性质。若在无机-HA核壳颗粒的壳层引入N-异丙基丙烯酰胺,并聚合交联成凝胶,则壳层既保持HA的生物相容性、高保水性、高粘性等特点,又具有PNIPAM的温度敏感性。
     本论文采用纳米SiO2作为核材料,通过溶胶-凝胶法原位改性纳米SiO2后得到表面带正电的纳米SiO2颗粒(SiN),利用静电作用在其表面吸附HA形成核壳结构颗粒(SiNHA),进一步以SiNHA为核,在其表面聚合NIPAM形成温敏性核壳结构微凝胶(SiNHA-PNIPAM).通过扫描电镜(SEM)、透射电镜(TEM)以及傅立叶红外光谱(FTIR)表征了纳米SiO2、SiNHA、SiNHA-PNIPAM的形貌和结构组成,动态光散射(DLS)表征了其相应的粒径和zeta电位变化,最后用AFM表征微凝胶成膜性。结果表明,纳米SiO2经过KH550修饰后分散性良好,吸附HA形成表面带负电的无机-有机核壳结构颗粒,加入NIPAM后壳层聚合成温敏性微凝胶,临界温度为32℃,发现在25℃时,微凝胶在云母表面呈球形颗粒,温度升高到临界温度以上(37℃)时,微凝胶在云母表面发生相变化沉淀成膜,有望成为一种新型的可注射生物体软、组织修复的替代材料。
Inorganic-hyaluronic acid (HA) core-shell nano-particles posses the excellent properties of both inorganic nano-materials and HA, and may even have the special properties which the original components do not have. N-isopropyl acrylamide was introduced into the core-shell nano-particles and this caused the shell to be cross-linked resulting in the formation of microgels. These microgels maintained the properties of HA, such as the biocompatibility, good water retention, high-viscosity and had a temperature sensitivity of PNIPAM.
     In this paper, the nano-SiN particles, whose surface were positively charged, were fabricated by modifying nano-SiO2 through the sol-gel method in situ. HA was coated onto the particles by electrostatic adsorption to form core-shell nanoparticles (SiNHA), which were selected as nuclear. Furthermore, N-isopropylacylamide was polymerized on the surface to form thermo-sensitive core-shell microgels (SiNHA-PNIPAM). The shape and conformation of SiO2, SiNHA and SiNHA-PNIPAM was determined by Scanning electron microscope(SEM), Transmission electron micrograph(TEM) and Fourier transform infrared spectroscopy(FTIR). The corresponding changes in particle size and zeta potential were characterized by Dynamic light scattering (DLS). At last the AFM was used to observe the film-forming of microgel above the critical temperature. The results indicated that nano-SiO2 had good dispersion after modifiying by KH550 and the core-shell nanoparticles(SiNHA-PNIPAM) was negatively charged. By polymerizing NIPAM onto the shell of particles, the thermo-sensitive core-shell microgels were formed and their critical temperature was 32℃. AFM and SEM observation revealed that the microgels were spherical on the mica surface at 25℃, but there was a phase-change and a film was depositing on the mica surface above the critical temperature (37℃). These nano-particles are hoped to be used in the soft and hard tissue replacement implants.
引文
[1]Roy R. Ceramics by the solution-sol-gel route[J]. Science,1987,283:1664-1669
    [2]Glotov O G, Zarko V E, Karasev V V. Problems and prospects of investigating the formation and evolution of agglomerates by the sampling method[J]. Combust, Explos, Shock Waves,2000,36:146-156
    [3]马光辉,苏志国.高分子微球材料[M].化学工业出版社.2005,6:201-283
    [4]赵红晓.核-壳纳米复合材料的制备与表征.西北师范大学硕士学位论文.2005
    [5]Liu G G, Zhang X Z, Xu Y J, Niu X S, Zheng L Q, Ding X J. Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2[J]. Chemospere,2004,55:1287-1291
    [6]Cheng P, Li W, Liu H Z, Gu M Y, Shangguah W F. Influence of zinc ferrite doping on the optical properties and phase transformation of titania powders prepared by sol-gel method[J]. Sci. Eng. A,2004,386:43-47
    [7]Venimadhavan S, Amarnath K, Harvey N G, Cheng J P, Arnett E M. Heterolysis, homolysis, and cleavage energies for the cation radicals of some carbon-sulfur bonds[J]. J. Am. Chem. Soc.,1992,114:221-229
    [8]Zheng H Z, Zhang J, Lu S Q, Wang G C, Xu Z F. Effect of core-shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS[J]. Mater. Lett.,2006,60:1219-1223
    [9]Aimin Y, Ian R. Gentlea, Gao Q L. Biocompatible polypeptide microcapsules via templating mesoporous silica spheres[J]. J. Colloid Interface Sci.,2009,333:341-345
    [10]牛宗伟,张建华,任升峰,李丽,徐明刚.晶须取向对HAP/SiCw复合生物陶瓷力学性能的影响[J].材料科学与工程学报,2005,1:1-3
    [11]李金望,田杰馍.Si3N4/SiC纳米复合陶瓷的制备,结构和性能[J].功能材料,1998,5:452-457
    [12]袁龙飞,甄卫军,徐月,李进,李楠,方祥.聚乳酸/蒙脱石复合材料的溶液插层法制备及其性能表征[J].硅酸盐通报,2009,28(4):679-685
    [13]李伟,黄玉东,陈平.熔体插层法制备EPDM/蒙脱土纳米复合材料[J].高分子材料科学与工程,2008,24(2):136-139
    [14]李超,聚合物核壳乳胶粒的制备及其性能表征.济南大学硕士学位论文,2008
    [15]赵雯,卢婷利,张宏,陈涛.核壳结构有机/无机复合微球的制备与应用进展[J].材料导报,2009,23(4):106-110
    [16]Stiller S, Gers-Barlag H, Lergenmueller M, Pfliicker F, Schulz J, Wittern K P, Daniels R. Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J]. Colloids Surf. A,2004,232:261-267
    [17]Chen M H, Chen C R, Hsu S H, Sun S P, Su W F. Low shrinkage light curable nanocomposite for dental restorative material[J]. Dent. Mater.,2006,22:138-145
    [18]Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting[J]. Compos. Sci. Technol.,2005,65:2385-2406
    [19]Krager J K, Fischer C, Coutre A L. The mono-crystalline state of polyvinylidene fluoride/trifluoroethylene on nano-structured Teflon[J]. Applied Physics A,2000,70(3): 297-305
    [20]David L, Burris W, Sawye G Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles[J]. Wear,2006,260(7):915-918
    [21]Mizushima Y. Preparation of alkoxide-derived silica-chitosan complex membrane[J]. Non-Cryst Solids,1992:144:305-307
    [22]Park S B, You J O, Park H Y, Haam S J, Kim W S. A novel pH-sensitive membrane from chitosan-TEOS IPN; preparation and its drug permeation characteristics [J]. Biomaterials, 2001,22:323-330
    [23]Lee E J, Shin D S, Kim H E, Kim, H W, Koh Y H, Jang J H. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration[J]. Biomaterials,2009,30:743-750
    [24]Wei E G, Liu Q, Cui H X. Chitosan coated silica nanoparticles a potential protein carrier[J]. Nano-processing Technique,2008,5:32-35
    [25]Laurent T C, Laurent U B G, Fraser J R E. Functions of hyaluronan[J]. Ann Rheum Dis., 1995,54(5):429-432
    [26]于学丽,王传栋,李保陆,曹成波.透明质酸的改性及其应用[J].生物医学工程研究,2005,24:61-66
    [27]赵乐军,白硕佳,曹红英,奚廷斐.透明质酸钠交联凝胶的制备[J].透析与人工器官,2002,13(1):44-46
    [28]Bergman K, Elvingson C, Hilborn J, Svensk G, Bowden T. Hyaluronic acid derivatives prepared in aqueous media by triazine-activated amidation[J]. Biomacromolecules,2007, 8:2190-2195
    [29]Liu L, Liu D, Wang M, Du G C, Chen J. Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide[J]. Eur. Polym. J.,2007,43:2672-2681
    [30]Jeon O, Song S J, Lee K J. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities[J]. Carbohydr. Polym.,2007,70:251-257
    [31]Segura T, Andersona B C, Chung P H, Webber R E, Shull K R, Shea L D. Crosslinked hyaluronic acid hydrogels:a strategy to functionalize and pattern[J]. Biomaterials,2005, 26:359-371
    [32]Choi K Y, Lee S, Park K, Kim K, Park J H, Kwon I C, Jeong S Y. Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles[J]. J. Phys. Chem. Solids,2008,69:1591-1595
    [33]Luo Y, Kirker K R, Prestwich G D. Cross-linked hyaluronic acid hydrogel films:new biomaterials for drug delivery[J]. J. Controlled Release,2000,69:169-184
    [34]Joester D, Klein E, Geiger B, Addadi L. Temperature-sensitive micrometer-thick layers of
    hyaluronan grafted on microspheres[J]. J. Am. Chem. Soc.,2006,128(4):1119-1124
    [35]胡帼颖,顾汉卿.透明质酸交联、酯化衍生物的制备及医学应用进展[J].透析与人工器官,2003,14(3):30-46
    [36]Pasqui D, Atrei A, Barbucci R. A novel strategy to obtain a hyaluronan monolayer on solid substrates[J]. Biomacromolecules,2007,8(11):3531-3539
    [37]Lee Y, Lee H, Kim Y B, Kim J, Hyeon T, Park H W, Messersmith P B, Park T G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging[J]. Adv. Mater.2008,20:4154-4157
    [38]Kubo K, Kuroyanagi Y. Spongy matrix of hyaluronic acid and collagen as a cultured dermal substitute:evaluation in an animal test[J]. J. Artif. Organs.,2003,6:64-70
    [39]吴炜,毛天球,封兴华,陈富林,岳进.胶原-透明质酸支架的制备及其与软骨细胞复合培养的实验研究[J].中国修复重建外科杂志,2007,21(4):401-405
    [40]Wei A L, Ye X F, Liu S Q, Peng H, Tao H Y A comparative study on repairing bone defect with autograft and the composite of beta-tricalcium phosphate-hyaluronic acid-type I collagen-bone marrow stromal cells[J]. Journal of clinical rehabilitative tissue engineering research,2007,9:1779-1782
    [41]Jin S M, Liu H F, Yu J Y, Kang D Y. The properties of chitosan-gelatin membranes and scafolds modified with hyaluronan acid by diferent methods[J]. Biomaterials,2003,24(9): 1621-1629
    [42]Lee S Y, Jung H O, Kim J C, Kim Y H, Kim S H, Choi J W. In vivo conjunctival reconstruction using modified PLGA grafts for decreased scar formation and contraction[J]. Biomaterials,2003,24:5049-5059
    [43]胡英主编,物理化学参考,北京,高等教育出版社,2003,617-618
    [44]傅献彩,沈文霞,姚天扬编,物理化学,第四版,北京,高等教育出版社,1995,1073
    [45]Tanaka T, Nishio I, Sun S T, Ueno N S. Collapse of gels in an electric field[J]. Science, 1982,218:467-473
    [46]Mamytbekov G, Bouchal K, Sedlakova Z, Ilavsky M. Phase transition in swollen gels, 25.effect of the anionic comonomer concentration on the first-order phase transition of poly(1-vinyl-2-pyrrolidone) hydrogels[J]. Eur. Polym. J.,1999,35:451-459
    [47]Funke W E. Microgels-intramolecularly crosslinked macromolecules:potent components of organic coatings[J]. J. Coat Tech.,1988,60(767):69-76
    [48]Pelton R. Temperature-sensitive aqueous microgels[J]. Adv. Colloid Interface Sci.,2000, 85:1-33
    [49]Zhou J, Wang G N, Zou L. Viscoelastic behavior and in vivo release study of microgel dispersions with inverse thermoreversible gelation[J]. Biomacromolecules,2008,9: 142-148
    [50]Duan L L, Chen M, Zhou S X, Wu L M. Synthesis and characterization of poly(N-isopropylacrylamide)/silica composite microspheres via inverse pickering suspension polymerization[J]. Langmuir,2009,25 (6):3467-3472
    [51]Kraan P M, Buma P, Kuppevelt T, Berg B. Interaction of chondrocytes, extracellular matrix and growth factors:relevance for articular cartilage tissue engineering[J]. Osteoarthritis Cartilage,2002,10(8):631-637
    [52]Kobayashi M, Toguchida J, Oka M. Development of an artificial meniscus using polyvinyl alcohol-hydrogel for early return to, and continuance of, athletic life in sportspersons with severe meniscus injury. II:Animal experiments[J]. Knee,2003,10(1): 53
    [53]王明波,李玉,牟元华,许凤兰,周钢,李鸿.纳米羟基磷灰石/聚乙烯醇/明胶复合水凝胶的结构与性能研究[J].功能材料,2006,9:1477-1480
    [54]Meyer D E, Kong G A, Dewhirst M W, Zalutsky M R, Chilkoti A. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia[J]. Cancer Res., 2001,61:1548-1554
    [55]李曦,刘连利,王莉莉.纳米二氧化硅[J].无机硅化合物,2007,4:7-10
    [56]Hiramatsu H, Osterloh F E. pH-controlled assembly and disassembly of electrostatically ainked CdSe-SiO2 and Au-SiO2 nanoparticle clusters[J]. Langmuir,2003,19:7003-7011
    [57]毋伟,陈建峰,李永生.溶胶-凝胶法纳米二氧化硅原位改性研究[J].材料科学与工艺,2005,13(1):41-44
    [58]邵金良,黎其万,董宝生.茚三酮比色法测定茶叶中游离氨基酸总量[J].中国食品添加剂,2008,2:162-165
    [59]Iijima M, Tsukada M, Kamiya H. Effect of surface interaction of silica nanoparticles modified by silanecoupling agents on viscosity of methylethylketone suspension[J]. J. Colloid Interface Sci.,2007,305:315-323
    [60]刘桂强,杨冠玲,何振江.动态光散射在颗粒检测中的应用[J].中国粉体技术,2005,11:76-80
    [61]余锡宾,吴虹.正硅酸乙酯水解、缩聚过程研究[J].无机材料学报,1990,11(4):703-707
    [62]赵丽,余家国,程蓓.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-566
    [63]吉小利,王君,李爱元.纳米二氧化硅粉体的表面改性研究[J].安徽理工大学学报(自然科学版),2004,24:83-87
    [64]Gautier C, Abdoul-Aribi N, Roux C, Lopez P J, Livage J, Coradin T. Biomimetic dual templating of silica by polysaccharide/protein assemblies[J]. Colloids Surf., B,2008, 140-145
    [65]Shchipunov Y A, Karpenko T Y. Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique[J]. Langmuir,2004,20:3882-3887
    [66]Gamini A, Paoletti S, Toffanin R, Micali F, Michielin L, Bevilacqua C. Structural investigations of cross-linked hyaluronan[J]. Biomaterials,2002,23:1161-1167
    [67]Schneider A, Picart C, Senger B, Schaaf P, Voegel J C, Frisch B. Layer-by-layer films from hyaluronan and amine-modified hyaluronan[J]. Langmuir,2007,23:2655-2662
    [68]Nakaji-Hirabayashi T, Kato K, Iwata H. Hyaluronic acid hydrogel loaded with
    genetically-engineered brain-derived neurotrophic factor as a neural cell carrier[J]. Biomaterials,2009,30(27):4581-4589
    [69]Fang J Y, Chen J P, Leu Y L, Hu J W. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery[J]. Eur. J. Pharm.Biopharm.,2008,68:626-636
    [70]Liu Y L, Hsu C Y, Su Y H, Lai J Y. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions[J]. Biomacromolecules,2005,6:368-373
    [71]Xu J B, Spittler D A, Bartley J P, Johnson R A. Alginic acid-silica hydrogel coatings for the protection of osmotic distillation membranes against wet-out by surface-active agents[J]. J. Membr. Sci.,2005,260:19-25
    [72]Irigoyen J, Moya S E, Iturri J J, Llarena I, Azzaroni O, Donath E. Specific-potential response of layer-by-layer coated colloidal particles triggered by polyelectrolyte ion interactions[J]. Langmuir,2009,25:3374-3380
    [73]樊东辉,吴蓓蓓,徐政.透明质酸钠的光谱学分析[J].中国生化药物杂志,2006,27(1):22-25
    [74]Jacoboni I, Valdre'U, Mori G, Quaglino D, Pasquali-Ronchetti I. Hyaluronic acid by atomic force microscopy[J]. J.Struct. Biol,1999,126:52-58
    [75]杨桂兰,郭学平,栾贻宏.不同相对分子质量透明质酸钠的应用[J].食品与药品,2005,7(12):1-2
    [76]Li G, Lei C, Wang C H, Neoh K G, Kang E T, Yang X L. Narrowly dispersed double-walled concentric hollow polymeric microspheres with independent pH and temperature sensitivity[J]. Macromolecules,2008,41:9487-9490
    [77]Zhang W, Shi L, Wu K, An Y L. Thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in water[J]. Macromolecules,2005,38: 5743-5747
    [78]Zha L S, Zhang Y, Yang W L, Fu S K. Monodisperse temperature-sensitive microcontainers, Adv. Mater.,2002,14(15):1090-1092
    [79]Jin Y, Yamanaka J, Sato S, Miyata I, Yomota C, Yonese M. Characteristics of hyaluronate-hydroxyethyl acrylate blend gel and release of cationic amphiphilic solutes[J]. Chem. Pharm. Bull.,2002,50(10):1341-1348
    [80]Leach J B, Schmidt C E. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds[J]. Biomaterials,2005,26:125-135
    [81]Oudshoorn M H M, Rissmann R, Bouwstra J A, Hennink W E. Synthesis of methacrylated hyaluronic acid with tailored degree of substitution[J]. Polymer,2007,48: 1915-1920
    [82]Bencherif S A, Srinivasan A, Horkay F, Hollinger J O, Matyjaszewski K, Washburn N R. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties[J]. Biomaterials,2008,29:1739-1749
    [83]Ma X M, Cui Y J, Zhao X, Zheng S X, Tang X Z. Different deswelling behavior of temperature-sensitive microgels of poly(N-isopropylacrylamide) crosslinked by polyethyleneglycol dimethacrylates[J]. J. Colloid Interface Sci,2004,276:53-59
    [84]Mrkic J, Saunders B R. Microgel particles as a matrix for polymerization:a study of poly(N-isopropylacrylamide)-poly(N-methylpyrrole) dispersions[J]. J. Colloid Interface Sci.,2000,222:75-82
    [85]刘维俊,范娉萍, 周丽绘,黄永民,彭昌军,刘洪来.浊度法表征温敏性微凝胶体积的相转变行为[J].功能高分子学报,2007,19-20(4):352-357
    [86]Singh N, Bridges A W, Garca A J, Lyon L A. Covalent tethering of functional microgel films onto poly(ethylene terephthalate) surfaces[J]. Biomacromolecules,2007,8: 3271-3275
    [87]Kazakov S, Kaholek M, Kudasheva D, Teraoka I, Cowman M K, Levon K. Poly(N-isopropylacrylamide-co-l-vinylimidazole) hydrogel nanoparticles prepared and dynamic light scattering study[J]. Langmuir,2003,19:8086-8093
    [88]FitzGerald P A, Amalvy J I, Armes S P, Wanless E J. Film-forming microgels for pH-triggered capture and release[J]. Langmuir,2008,13:10228-10234
    [89]徐文进,高崇凯.温度敏感型水凝胶[J].现代食品与药品杂志,2007,17(6):60-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700