用户名: 密码: 验证码:
基于多传感器数据融合的路面三维重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国公路建设的发展,公路养护维修的多种任务也伴随而来,尤其是我国修建的一些高等级公路已进入中修或大修期。当前的三维检测技术已基本满足路面管理系统、智能交通系统(ITS)和日益完善的路面评价技术的需要,但落后的路面重构技术却无法将大量的检测数据应用到道路的养护维修中。目前,路面重构技术正向多传感器信息融合的方向发展。研究最新的数字路面重构技术不但可以满足我国日益繁重的路面养护维修的需要,而且对于提高我国的路面评价水平和ITS技术的发展也有着重要的意义。
     路面是一个三维实体,通过将路面三维实体映射到由路面里程、横断面和路面相对高程组成的三维路面坐标系中,可以将路面的三维重构简化为横断面重构、纵断面重构和高程重构。依据路面重构技术提出了路面的三层重构模型:纹理层,断面层和GPS层。由于每个层次具有不同的精度,反映不同的道路信息,因此为了还原真实路型,需要融合GPS信息(经纬度信息和高程信息);为了获取路面信息(车辙、平整度等),需要融合断面信息;为了得到路面细节(纹理,裂缝等),需要融合纹理信息。本文通过多信息融合实现了路面的可视化全频重构。
     通过对数字路面重构的准确性和完整性的研究,提出了GPS与惯导融合的连续定位和精密定位技术。通过对GPS误差的分析,得出引起误差最严重的因素是信号中断。本文利用惯性导航系统的特性,实现了在GPS信号中断时对道路的定位,保证了数据采集的完整性以及重构路面的完整性、连续性。传统的里程定位是通过光电编码器测距仪实现的,此方法在直道上精度很高。然而实际道路中弯道也占了很大一部分,由于内外道里程的差距,使得光电编码器测距仪在长距离定位中累积误差,定位精度越来越低。本文利用GPS和陀螺仪的辅助,解决了误差累积的问题,提高了里程定位的精度。
     传统的路面三维重构大多数仅反映了路面的部分信息,很难建立出立体直观的三维路面模型。真正的路面包括纹理、平整度、车辙、路型、高程、里程等信息。本文基于OpenGL生成了可视化的三维数字路面,为道路的养护维修提供了有效的参考。
With the development of highway construction, road maintenance is also accompanied by a variety of tasks, in particular, some highways have entered a period of repair or overhaul. The three-dimensional measurement technology has basically met the requirements of Pavement Management System, Intelligent Transportation system (ITS) and increasingly sophisticated pavement evaluation. But, as the backward road reconstruction, a large number of detection data can not be applied to the roads maintenance and repair. At present, pavement reconstruction is developing to multi-sensor information fusion stage. We research on the latest digital pavement reconstruction technology, it not only can meet our increasing needs for road maintenance and repair, but also has great significance to improving road assessment level and promoting the development of ITS technology.
     Pavement is a three-dimensional body, under the three-dimensional road coordinate system with the profiling be x-axis, cross-sectional be y-axis and the relative height be z-axis, the three-dimensional reconstruction of road can be simplified to the cross-sectional reconstruction, vertical section reconstruction and height reconstruction. Based on the reconstruction technology, the three layers reconstruction model including texture layer, section layer and GPS layer is introduced. Each layer has the different accuracy and reflects the different road information, so the road needs to integrate GPS information(latitude, longitude and altitude) in order to restore the true road, integrate the section information to obtain the pavement information (rut, roughness, etc.) and integrate the texture information to get the road details (texture, cracks, etc.). In this paper, the full-range visualization reconstruction of road has been achieved by using multi-information fusion.
     By studying the accuracy and integrality of the pavement reconstruction, this paper gives a continuous and precision positioning technology with integration of GPS and INS. By analyzing the GPS error, this paper had made the conclusion that the most serious factor causing error is signal interruption. In this paper, achieved using the inertial navigation system features, though the GPS signal is interrupted, we can position on the road, the integrality of the data acquisition and the integrality and continuity of the pavement reconstruction have been ensured. The traditional road mileage positioning uses photoelectric encoder to achieve, this method is high precision in the straights. But the curve plays a major part in the reality road.Due to the difference of the mileage between inside lane and outside lane, the errors in the long-distance positioning have been accumulated and positioning accuracy is getting lower and lower. In this paper, we use GPS with gyroscope to solve the problem of error accumulation, increase the accuracy of the mileage positioning.
     The traditional three-dimensional pavement reconstruction reflects part of the road information, it is difficult to establish a intuitionistic three-dimensional model. The real road includes texture, smoothness, rut, road type, altitude, mileage, and more. In this paper, based on OpenGL, a three-dimensional visualization of digital road is generated, it provides the man who maintains road with a effective reference.
引文
[1]李盛霖.2010年全国交通工作会议[R].北京:中华人民共和国交通运输部,2010年1月18日
    [2]JTJ 073.2-2001,公路沥青路面养护技术规范[S].北京:人民交通出版社,2001
    [3]JTJ 073.1-2001,公路水泥混凝土路面养护技术规范[S].北京:人民交通出版社,2001
    [4]JTJ073-96,公路养护技术规范[S].北京:人民交通出版社,1996
    [5]纪翠玲,池天河,齐清文.黄土高原地貌形态分形算法三维表达应用[J].地球信息科学,2005,7(4):127-130
    [6]Fritsch Dieter, Schmidt Dieter. Digital terrain model (DTM) integration and three-dimensional query spaces in geographic information systems[J]. Proceedings of SPIE-The International Society for Optical Engineering,1994:235-242
    [7]唐正光,汪洵泽,朱伟明,等.数字地面模型在道路测设中的应用及精度分析[J].昆明理工大学学报(理工版),2008,33(3):62-65
    [8]高勇.浅谈公路的发展与建设[J].建筑工程,2008
    [9]关昌余,肖春阳,金敬东,等.国家高速公路网规划[R].北京:交通部规划研究院,2004
    [10]何建中.聚焦我国改革开放30周年公路发展成就新闻发布会[R].北京:交通运输部,2008
    [11]Hass R., Hudson W. R., Zaniewski J. Modern Pavement Management[M], Florida:Krieger Publishing Company, Malabar,1994
    [12]高又兵,蒋玮,肖晶晶.浅议路面管理系统[J].交通标准化,2007,(9):73-76
    [13]余光喜.路面管理系统在公路养护决策中的应用[J].华东公路,2002,(5):75-77
    [14]王火明,许长有,王秀.路面管理系统在我国的现状及发展[J].中国水运,2007,07(1):71-72
    [15]梁琳.浅谈我国智能交通系统的发展[J].广西质量监督导报,2008,(10):58-59
    [16]李晖,贾辉然,牛晓辉,等.智能交通系统的研究现状及发展趋势[J].产业与科技论坛,2008,7(8):116,251
    [17]陶涛,马静.浅谈中国智能交通系统的发展[J].青海交通科技,2007,(6):3-5
    [18]Lixin Zhou. ITS development in China:Some strategic issues. Proceedings of the Conference on Traffic and Transportation Studies,1998:69-78
    [19]龚德俊,符锌砂.公路CAD技术的现状与发展[J].中南公路工程,1998,2(23):59-62
    [20]付俊卿,王旭,宋应皋.浅谈数字地面模型在公路路线设计中的应用[J].交通科技,2005,(6):25-26
    [21]Parkinson, B, et al., Global Positioning System:Theory and Applications, Vol.Ⅰ, Washington, D.C.: American Institute of Aeronautics and Astronautics,1996
    [22]张延安,段常在.GPS定位原理及误差分析概述[J].内蒙古水利,2006,2:98-100
    [23]鲁纯,毕文生.全球定位系统(GPS)在高速公路测量中的应用[J].北方交通,2008,(3):96-98
    [24]易鸣镝,顾洪夫,陈广飞.GPS定位原理浅析及误差分析[J].网络与应用,2005(3):27-27
    [25]Ward,P.,"The Natural Mearsurements of a GPS Receiver," Proc. of The Institute of Navigation 51st Annual Meeting,Golorado Springs,CO,June 5-7,1995,pp.67-85
    [26]王刚,地球形状的几种说法[J].中学地理教学参考[J],1998,7-8:20
    [27]National Imagery and Mapping Agency, Department of Defense,World Geodetic System 1984(WGS 84):Its Definition and Relationships with Local Geodetic System,NIMA TR8350.2,3rd ed.,Bethesda,MD:National Imagery and Mapping Agency,January 2000
    [28]Kaplan E.D., Hegarty C.J.. Understanding GPS Principles and Applications. Second Edition.寇艳红.电子工业出版社,2007:19-20
    [29]浦天宏,娄雅斌.GIS采用高斯-克吕格地图投影技术的研究[J].鞍山师范学院学报,2008,10(2):38-41
    [30]陈迅.地理信息系统中的地图投影计算[J],福建电脑,2003 (5):7-9
    [31]苗斌、刘海龙.GPS误差产生与修正[J].电子科学,2008:8
    [32]Olynik,M.,et al.,"Temporal Variability of GPS Error Sources and Their Effect on Relative Positioning Accuracy,"Proc. of The Institute of Navigation National Technical Meeting, January 2002
    [33]Coster,A.J.,et al.,"Characterization of Atmospheric Propagation Errors for DGPS,"Proc. of The Institute of Navigation's Annual Meeting,Denver,CO,June 1998
    [34]MOHINDER S. G.,LAWRENCE R. W., ANGUS P. A.. Global Positioning System, Inertial Navigation and Integration[M]. John Wiley & Sons, Inc,2001.
    [35]周徐昌,沈建森.惯性导航技术的发展及其应用[J].自动测量与控制,2006 25(9):55-56,59
    [36]谭卢敏,冯新刚,MEMS陀螺仪在检测小车运动状态中的应用[J].科技广场,2009,1:184-185
    [37]蒋庆仙.关于MEMS惯性传感器的发展及在组合导航中的应用前景.测绘通报,2006,9:5-8
    [38]韩世超,左韬.基于信息融合的GPS航位推算组合导航系统设计[J].科技创新导报,2008,30:23-24
    [39]JTG B01-2003,公路工程技术标准[s].北京:人民交通出版社,2003
    [40]郭兆荣,李菁,王彦.Visual C++OpenGL应用程序开发[M].人民邮电出版社,2006
    [41]林夏菲,吴凤鸣.Catmull-Rom插值算法在基于OpenGL的三维地形绘制中的应用实现[J].电脑知识与技术,20083(4):788-789,793
    [42]汤彬,基于OpenGL的纹理映射研究[J].实验室研究与探索,2006,25(5):556-559
    [43]孙超,在Visual C++中ADO对象如何访问数据库应用程序[J].赤峰学院学报(自然科学版),2008,24(2):50-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700