用户名: 密码: 验证码:
光学卫星遥感数据高精度自动定位关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着SPOT、IKONOS、QuickBird等高分辨率遥感卫星的成功发射,卫星对地观测技术在空间分辨率、光谱分辨率、时间分辨率以及观测模式上的不断发展,高分辨率卫星影像逐渐成为了空间地理信息的主要数据来源。卫星遥感数据的高精度几何定位问题已经成为众多遥感应用领域亟待解决的瓶颈问题。卫星遥感数据高精度几何定位技术是卫星遥感数据定量化处理的关键支撑技术之一,其精度将直接影响定量化处理及增值处理的深度。
     长期以来,对卫星遥感影像的几何定位主要是根据控制点采用多项式拟合等方法,此方法在具有足够数量且分布良好的地面控制点的条件下能够达到较好的定位精度。但是,在境外、我国西部无图区以及广阔的海域等地区,地面控制点的获取非常困难,甚至是不可能获取到;因此,研究在无地面控制点情况下的高精度定位是卫星观测数据处理与应用中需要直接面对的首要问题。
     本文以高分辨率光学遥感卫星观测数据为对象,研究无控制点的系统定位技术。
     首先,根据光的直线传播原理,通过相应的坐标变换,建立基于轨道模型、姿态模型、地球模型、高程模型的无控制点的系统定位模型。通过对SPOT卫星数据进行实验,结果证明此方法具有很高的定位精度。
     其次,针对卫星遥感数据在获取时存在的各种误差源分析其对定位精度的影响。根据已知的SPOT-5实验数据,分析了误差产生的原因,并进行了系统误差的校正,使定位精度进一步得以提高。
     最后,分析了大气折射对遥感数据获取的影响,本文首先根据地面控制点,建立了一组特征库,然后利用此特征库对另外一幅SPOT-5遥感数据进行了大气折射的补偿校正,校正后的精度达到了1个像素,实验结果表明此方法对于大气折射的校正具有可行性,有非常好的应用前景。
With the launching of high resolution remote sensing satellites such as SPOT、IKONOS、QuickBird, which have the higher spatial, spectral, time resolution, and more advanced observation mode, the high resolution satellites images are one of the most important geographic-spatial data resource. The remote sensing data is widely applied in digital surveying, urban planning, agriculture, forestry, natural disaster monitoring, military .etc. As one of the key basic support technology of the quantitative remote sensing data processing, the high accuracy geolocation of the remote sensing data is an urgent bottleneck problem to be solved, which have great influence on quantitative and incremental processing.
     For a long time, using ground control points and fitting algorithm to gain relatively accurate geolocation information is applicable when enough, well distributed ground control points are available. However in the west region and the ocean region, ground control points are hard to obtain, finding a new method without ground control point is the primary problem for the satellites observed data processing.
     This paper analyzed the algorithm without ground control point to realize the system geolocation for high resolution spaceborne optical remote sensing data.
     Firstly, according to the light straight-line propagation, this paper establishes the system geolocation model by coordinate transformation based on orbit model, posture model, earth model and elevation model.The experiment results for SPOT data prove this algorithm has high geolocation accuracy.
     Secondly, since there are some measurement error in the satellite remote sensing data, this paper analyzes the SPOT-5 measurement error and do some correspondent correction to improve the geolocation results.
     Finally, this paper analyzes how the atmospheric refraction influence the satellite observing data. Atmospheric density changes in different environment, so it is difficult to do quantitative analysis. Firstly, we use ground control points to establish a feature library, and then do compensation correction for another SPOT-5 image. After compensation correction the accuracy is in one pixel, the experiment shows good result. So, the method has promising application prospect.
引文
[1] David P S, Saumeul F A. Accuracy of rectification using topographic map versus GPS ground control points. Photogrammetric Engineering & Remote Sensing. 2001, 67:565-570.
    [2] Jay G. Non-differential GPS as an alternative source of planimetric control for rectifying satellite imagey. Photogrammetric Engineering & Remote Sensing. 2001, 67:49-55.
    [3] Baltsavias E S. Metric information extraction from SPOT images and the role of polynomial mapping functions. International Archives of Photogrammetry and Remote Sensing. 1992,29:358-364.
    [4] Yasser E-M, Kurt N. Precision rectification of SPOT imagery using the direct linear transformation model. Photogrammetric Engineering & Remote Sensing. 1996, 62(1):67-72.
    [5] Savopol F, Armenakis C. Modelling of IRS-1C Satellite pan imagery using the DLT approach. International Archives of Photogrammetry and Remote Sensing. 1998,32(4):511-514.
    [6] Wang Y N. Automated triangulation of linear scanner imagery. Proceedings of ISPRS Work Groups I/1,I/3,IV/4 on "Sensors and Mapping from Space 1999". 1999:158-162.
    [7] Okamoto A. Orientation theory of CCD line-scanner images, International Archives of Photogrammetry and Remote Sensing. 1988,27(B3):609-617.
    [8] Okamoto A, Hattori S, Hasegawa H, et al. Orientation and free network theory of satellite CCD linescanner imagery, International Archives of Photogrammetry and Remote Sensing. 1996, 31(B3):604-610.
    [9] Okamoto A, et al. Geometric characteristics of alternative triangulation models for satellite imagery. ASPPS 1999 Annual Conferece Proceedings. 1999:64-72.
    [10] Fraser C S, Yamakawa T. Insights into the affine model for high-resolution satellite sensor orientation. ISPRS Journal of Photogrammetry and Remote Sensing. 2004,(58):275-288.
    [11] Susumu H, et al. Orientation of high-resolution satellite images based on affine model. International Archives of Photogrammetry and Remote Sensing. 2000,359-366.
    [12] Testu Ono, et al. Digital mapping using high resolution satellite imagery based on 2D affine projection model. International Archives of Photogrammetry and Remote Sensing. 2000:672-677.
    [13]张剑清,张祖勋.高分辨率遥感影像基于仿射变换的严格几何模型.武汉大学学报.信息科学报. 2002,27(6),555-558.
    [14]张剑清,张勇,程莹.基于新模型的高分辨率遥感影像光束法区域网平差.武汉大学学报.信息科学报. 2005,30(8):659-663.
    [15]胡安文,张祖勋,张剑清.三线阵CCD卫星影像的模拟研究.武汉大学学报.信息科学报. 2006,31(2):104-107.
    [16] Tao C V. Yong H., Ivestigation on the rational function model. ASPRS 2000 Annual conference Proceedings, http://www.gis.usu.edu/docs/protected/procs/asprs/asprs2000/pdffiles/papers/039.pdf
    [17] Tao C V, Yong H. Use of the rational function model for image rectification. Canadian Journal of Remote Sensing. 2001,27(6):593~602.
    [18] Tao C V, Yong H. 3D reconstruction methods based on the rational function model. Photogrammetric Engineering & Remote Sensing. 2002,68(7):705-716.
    [19] Tao C V, Yong H. Updating solutions of the rational function model using additional control information. Photogrammetric Engineering & Remote Sensing. 2002,68(7):715-724.
    [20] Clive S F, Happy B, and Hanley T Y. Three-dimensional geopositioning accuracy of IKONOS imagery. Photogrammetric Record. 2002,17(99):465-479.
    [21] Dowman I J. High resolution satellite data:Status and Issues. Proceedings of ISPRS Working Groups I/2,I/5 and I/7 on“High Resolution Mapping from Space 2001”. 2001.
    [22] Grodecki J, Dial G. Block adjustment of high-resolution satellite images described by rational functions. PE&RS. 2003,69:59-70.
    [23]刘军,王冬红,毛国苗.基于RPC模型的IKONOS卫星影像高精度立体定位.测绘通报. 2004,(2004):1-4.
    [24]朱述龙,史文中,张艳,朱宝山.线阵推扫式影像近似几何校正算法的精度比较.遥感学报. 2004,8(3):220-225.
    [25] Radhadevi P V, Ramachandran R, et al. Restitution of IRS-1C PAN Data Using An Orbit Attitude Model and Minimum Control [J]. ISPRS Journal of Photogrammetry & Remote Sensing. 1998,53(2):262-271.
    [26]钱曾波,刘静宇,肖国超.航天摄影测量.北京:解放军出版社.1990.
    [27]黄玉琪.基于SPOT卫星1A/1AP级影象的全数字处理技术的研究.郑州:中国人民解放军测绘学院.1997.
    [28]游扬声,王新洲.广义岭估计的直接解法.武汉大学学报.信息科学版. 2002,27(2):175-178.
    [29]舒宁,林宗坚,陶闯.利用SPOT影像提取高程信息的研究.武汉测绘科技大学学报.1992,17(2):50-59.
    [30]郭海涛.基于卫星遥感影像的单片测图与修测技术的研究:[硕士学位论文].郑州:中国人民解放军测绘学院. 2002.
    [31] Kratky V. Rigourous photogrammetric processing of SPOT images at CCM canada. ISPRS Journal of Photogrammetry and Remote Sensing. 1989, (44):53~71.
    [32] Baltsavias E P, Stallmann D. Geometric potential of MOMS-02/D2 data for point positioning,DTM and orthoimage. IAPRS. 1996, 31:110-116.
    [33] Poli D. General model for airborne and spaceborne linear array sensors. IAPRS, Denver, CO. 2002, 34:177-182.
    [34] Fritsch D, Stallmann D. Rigorous photogrammetric modelling processing of high resolution satellite imagery. IAPRS, 2000, 33:313-321.
    [35]江万寿,张剑清,张祖勋.三线阵CCD卫星影像的模拟研究.武汉大学学报.信息科学版. 2002,27(4):414~419.
    [36] Poli D. General model for multi-Line CCD array sensors. application for cloud-top height estimation. The 3rd International Image Sensing Seminar on New Development in Digtial Photogrammetry,Gifu. 2001.
    [37] Michalis P, Dowman I J. A generic model for along track stereo sensors using rigorous orbit mechanics. Photogrammetric Engineering and Remote Sensing. 2008,74 (3):303-306.
    [38] Gugan D J, Dowman I J. Accuracy and completeness of topographic mapping from SPOT imagery. Photogrammetric Record. 1988,12:787-796.
    [39] Valadan Zoej M J V, Foomani M J. Mathematical modelling and geometric accuracy testing of IRS-1C stereo-pairs. 1999 http://www.ipi.uni-hannover.de/fileadmin/institut/pdf/zoej.pdf.
    [40] Dowman I J, Michalis P. Generic rigorous model for along track stereo satellite sensors, Proceedings of ISPRS Workshop“High Resolution Mapping from Space 2003”. 2003.
    [41] Michalis P, Dowman I. A rigorous model and DEM generation for Spot5/HRS. IAPRS. 2004, 35:410-415.
    [42] Toutin T, Chénier R, Carbonneau Y. 3D models for high resolution images: examples with Quickbird, Ikonos and Eros. IAPRS. 2002, 34:547-551.
    [43] Toutin T, Chenier R. GCP requirement for high-resolution satellite mapping. http://www.isprs.org/new/congresses/istanbul2004/comm3/papers/385.pdf.
    [44] Westin T. Precision Rectification of SPOT Imagery. Photogrammetric Engineering & Remote Sensing.1990,56(2):247~253.
    [45] Radhadevi P V, Ramachandran R, Murali Mohan A.S.R.K.V. Restitution of IRS-1C PAN data using an orbit attitude model and minimum control. ISPRS Journal of Photogrammetry & Remote Sensing. 1998,(53):262~271.
    [46] Rantakokko H, Rosenholm D. Rectification of slant range imagery through a direct image to ground relationship. Photogrammetric Record. 1999,16(94):685~694.
    [47] Bang W. Kompsat-Eoc sensor model analysis. FIG Working Week, 2001. 2001.
    [48] Goncalves J A, Dowman I. Precise orientation of SPOT panchromatic images with tie points to a SAR Image. 2003.
    [49]袁修孝,张过.缺少控制点的卫星遥感对地目标定位.武汉大学学报.信息科学版. 2003,28(5):505-509.
    [50]张斌.极轨气象卫星遥感数据的高精度定位研究:[博士学位论文].北京:清华大学. 1999.
    [51]卫东. MODIS数据的高精度定位方法研究:[硕士学位论文].北京:清华大学. 2002.
    [52]秦绪文,李丽,张过.多传感器卫星遥感影像无控制点区域网平差.辽宁工程技术大学学报. 2007,26(2):187-189.
    [53]郑顺义,李国元.基于严格成像模型的SPOT5 HRS反变换研究.测绘信息与工程. 2008,33(1):40-41.
    [54]张过.缺少控制点的高分辨率卫星遥感影像几何纠正:[博士学位论文].湖北:武汉大学. 2005.
    [55] MODIS Level 1A Earth location: Algorithm theoretical basis document(Version 3.0).
    [56] SPOT satellite geometry handbook. 2002. http://www.spotimage.com.cn.
    [57]张玉祥.人造卫星测轨方法.北京:国防工业出版社. 2007.
    [58]张捍卫,许厚泽,王爱生.天球参考系与地球参考系之间的坐标转换研究进展.测绘科学.2005,30(5):106-109.
    [59] IERS Technical Note No.32. http://www.iers.org/.
    [60] Zhang L, An Y, Ma H B, Sun W D. The application of data fitting in direct geolocation of remote sensing data. The 2009 IEEE InternationalJoint Conference on Computational Sciences and Optimization. 2009,vol1:270-273.
    [61] Berrut J P, Trefethen L N. Barycentric lagrange interpolation. SIAM. 2004, 46:501-517.
    [62] Calvetti D, Reichel L. On the evaluation of polynomial coefficients. Numerical Algorithms. 2004,33:153-161.
    [63] C. de Boor. A practical guide to splines. Springer-Verlag, New York, 1978.
    [64] http://celestrak.com/.
    [65] Kozai Y. Effect precession and nutation on the orbital elements of a close earth satellite. Astron. J. 1960,65(10):621~623.
    [66]章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社. 1998.
    [67] Toutin T. Review paper: Geometric processing of remote sensing images: models, algorithms and methods. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700