用户名: 密码: 验证码:
根癌农杆菌介导的柑橘转化体系优化与转LFY、AP1基因植株的培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是世界上最重要的常绿果树之一,其种植面积和总产量均居水果之首。长期以来,运用传统的育种手段进行柑橘遗传改良受到珠心胚干扰、性器官败育、育种周期长以及遗传上高度杂合等因素的影响,导致育种进程缓慢。转基因技术自1983年应用到植物育种以来,发展迅猛,已经成为基因功能鉴定不可缺少的手段,也是实现植物目标性状改良的一种快速和直接的途径。植物童期长短受开花基因调控,将开花调节基因转入植物有望改变童期。本研究以拟南芥花分生组织特异基因LEAFY(LFY)、APETALA1(AP1)为目标基因,以胚性愈伤组织和实生苗上胚轴分别为外植体,通过根癌农杆菌介导法进行柑橘遗传转化研究,采用GUS组织化学染色和PCR、Southern blotting等技术对转基因材料进行鉴定,采用real-time PCR技术进行基因表达分析;对不同基因型愈伤组织转化率存在差异的原因进行了探讨:对API、LFY基因与内源开花相关基因间的互作进行了分析,并对APl促进早花的机理进行初步研究;主要结果如下:
     1.柑橘基因型、愈伤组织褐化影响转化率。对15种不同基因型柑橘胚性愈伤组织的转化特性进行研究的结果表明,a)在筛选过程中,抗性愈伤组织多从褐化组织中再生;b)不同基因型愈伤组织褐化程度不同,其中宽皮橘类及其杂种类基因型愈伤组织的褐化最为严重,山金柑和葡萄柚次之,澳洲指橘和伏令夏橙与金柑体细胞杂种的愈伤组织不褐化,甜橙类愈伤组织的褐化表现为褐化、轻微褐化和不褐化;c)褐化严重的柑橘基因型转化率较高,而不褐化类型转化率较低,表明愈伤组织的褐化程度与转化率有关:d)愈伤组织的褐化与其本身的总多酚含量有关,总多酚含量高的易表现褐化,而总多酚含量受基因型的影响。综上所述,推测在根癌农杆菌介导的柑橘胚性愈伤组织的遗传转化中,基因型通过愈伤组织的褐化间接影响转化率。而柑橘愈伤组织转化pBIN-mGFP5的GFP瞬时表达结果,表明总多酚含量高的宽皮橘类及其杂种类基因型的转化率显著高于总多酚含量低的柑橘基因型,与前面结果相一致。
     2.在前人研究基础上,进一步优化了柑橘愈伤组织转化再生体系,建立了5步筛选再生法。基于该体系,获得19种基因型的转基因细胞系245个,其中6种基因型再生,获得120个转基因芽系,有34个转基因株系移栽成活,主要表现在,
     1)冰糖橙胚性愈伤组织转化:a)获得转AP1基因的转化细胞系7个,胚状体再生率高达88%:再生芽经GUS染色、PCR分析鉴定为阳性,Southern杂交结果表明所检测的4个转化细胞系中AP1基因均以单拷贝插入;再生芽生根困难,通过试管嫁接获得了完整植株,但嫁接苗在生长后期表现落叶、芽枯、死亡:b)获得转LFY基因的转化细胞系2个,其中一个获得再生植株,经GUS染色、PCR分析鉴定为阳性,Southern杂交结果表明LFY基因以3个拷贝插入;再生植株初期生长健壮,移栽后表现株形矮小,分枝多,叶片小,整株成丛状。以上结果表明AP1、LFY对植株生长有较大影响。
     2)椪柑胚性愈伤组织转化:a)获得转LFY基因的转化细胞系9个,其中4个细胞系获得再生植株,有3个细胞系经PCR检测为阳性,Southern杂交结果表明外源基因以单拷贝插入;b)获得转AP1基因的转化细胞系113个,其中再生细胞系61个,移栽植株104棵,源自29个株系;移栽株系经GUS染色、PCR分析,表明有93%为阳性,经Southern杂交表明外源基因以1-2个拷贝插入;转基因植株腋生组织生长旺盛,多有2-4个分枝/株,与未转化对照形态差异较大;real-time RT-PCR结果表明AP1基因在芽中表达量最高,其次是根,而在愈伤组织与胚状体中表达量较低,内源开花基因CiAP1、CiLFY、CiFT、CiTFL受APl基因影响发生上调或下调表达。
     3)其他基因型愈伤组织转AP1基因获得转化植株的有,伏令夏橙、Succari甜橙、改良橙与尾张杂种、茶枝柑。
     3.以实生苗上胚轴为试材进行转化,获得3种基因型的GUS阳性株系42个,其中21个株系移栽成活,18个株系经PCR鉴定为阳性。一株转AP1基因的金柑表现早花性状。Real-time RT-PCR结果表明转基因(LFY、AP1)对内源开花相关基因的表达有较大影响。以上结果主要表现在,
     1)金柑实生苗上胚轴转化AP1基因:从1021个外植体中获得GUS阳性芽19个,平均转化率为1.86%;从移栽的8株GUS阳性植株中,有6株经PCR鉴定为阳性,其中3株(J3、J10、J17)进行了Southern杂交鉴定,表明外源基因以1-5个拷贝插入。转基因植株生长正常,但平均分枝数/株大于未转化对照。转基因植株(J3)在移栽11个月后开花,而正常植株需3年左右才可开花,表明金柑中异位表达AP1基因可以促进早花。Real-time RT-PCR结果表明AP1基因表达量与其插入的拷贝数成正相关,而与开花早晚无关;AP1基因通过促进CiLFY与CiFT的表达,抑制CiTFL的表达促进开花。
     2)冰糖橙上胚轴切段转化LFY基因:最终转化率为8.88%;获得1株转AP1基因和12株转LFY基因的GUS阳性植株;转化植株生长正常,与未转化对照无明显差异;PCR分析表明,除一株转化LFY基因的植株为阴性外,其余均为阳性:转LFY基因植株(B1)经Southern杂交鉴定,表明外源基因以单拷贝形式插入;real-time RT-PCR结果表明LFY基因在不同转基因株系中表达量不同,根中表达量略低于芽;内源开花基因CiAP1、CiLFY、CiFT在不同转化株系中分别表现上调或下调表达,CiTFL在所有转化株系中均表现下调表达,表明LFY基因影响内源开花相关基因的表达。
     3)山金柑转化AP1基因:从50个外植体中获得8个抗性芽,其中3个经GUS染色鉴定为转化子,但再生芽弱小,未能获得植株。
     4.本文还对如何提高根癌农杆菌介导的柑橘转化效率,T-DNA插入整合的拷贝数,转基因植株群体建立的必要性,以及开花基因在植物童期控制方面的应用潜力进行了探讨。
Citrus is one of the most important ever green fruit crops in the world, which ranks the first in both acreage and yield. The conventional breeding program in citrus has long been hampered by such problems as polyembryony, apomixis, long juvenility, high heterozygosity and arthenogenesis. Transgenic technology, first applied to plant breeding in 1983, has developed rapidly, and now is indispensable for gene function analysis and plant genetic modification. The juvenile length is regulated by flowering genes, and ectopic expression of these genes in plants is helpful for altering the transition to flower. In this study, the Arabidopsis flowering identity genes LEAFY (LFY) and APETALA1 (AP1) were introduced into citrus embryogenic calluses or epicotyl segments by Agrobacterium tumefaciens, aiming at achieving transgenic citrus plants with shortened juvenile phase. Histochemical GUS assay, PCR and Southern blotting analysis were used to confirm the integration of transgenes. Real-time RT-PCR was used to analyze the expression of AP1 or LFY and endogenous flowering genes. Studies focused on the causation of diversities of transformation efficiency among different geotypes, the effect of AP1 or LFY on expression of endogenous flowering related genes, and the mechanism of early-flowering by ectopic expression of AP1. The main results are as follows:
     1. Citrus genotype and callus browning significantly influenced transformation efficiency. The transformation potentials of embryogenic calluses from 15 citrus genotypes were assessed. The results showed that, a) most resistant calluses regenerated from browning ones; b) genotypes were divided into four groups according to their browning degrees. Severe browning was observed in mandarins and its hybrids, browning in grapefruit and kumquat, and browning, weak or no browning in different sweet oranges, and no browning in microcitrus and the hybrid of Valencia and 'Meiwa' kumquat; c) transformation efficiency was higher in severe browning genotypes and lower in non-browning ones, which indicated that callus browning was related to transformation; d) the browning degree of calluses positively correlated with the total phenolic content which was genotype-dependent, while had nothing with PPO activity. To sum up, callus browning contributed to the effect of genotype on transformation efficiency, in Agrobacterium-mediated transformation of citrus calluses. The high frequency of transient GFP expression in genotype with high content phenolics also confirmed the conclusion above, when embryogenic calluses were transformed with pBIN-mGFP5.
     2. The Agrobacterium-mediated transformation of citrus embryogenic calluses was opitimized and five-step regeneration protocol was established, on the basis of previous researches. A total of 245 transgenic callus lines were achieved from 19 genotypes, of which 120 lines from 6 genotypes were regenerated into shoots and 34 lines were successfully transferred to the greenhouse. These included the following results.
     1) Transformation of Bingtang sweet orange (C. sinensis Osbeck.): a) Seven AP1 transgenic lines were acheived, and the conversion rate from embryo to shoot was 88%. Shoot-tip graft was adopted to regenerate whole plant due to the difficulty in rooting for shoots. Regenerated shoots were confirmed as transformants by GUS, PCR analysis. Single copy of AP1 integrated into the citrus genome, as certificated by Southern blotting analysis. Grafted plants grew rapidly at the initial stages, but later tended to be defoliating and welting, and finally died, while non-transformed plants grew well. b) Two LFY transgenic lines were obtained, of which only one regenerated into plant. Transgenic plant had a strong growth at the beginning, but later grew slowly with small leaves and muti-branches, compared to non-transformed controls. Transformants were confirmed by GUS and PCR analysis, and integrated 3 copies of NPTII certificated by Southern blotting analysis. The results of abnormal growth in transgenic plants indicated that the integration of transgenes (LFY or AP1) could affect the plant growth.
     2) Transformation of Ponkan(C. reticulata Blanco.): a) Nine LFY transgenic cell lines were achieved, four of which regenerated into plants. PCR analysis confirmed the integration of transgenes in 3 lines, and one line was further certificated by Southern blotting. b) One hundred and thirteen AP1 trangenic cell lines were achieved, 61 lines of which regenerated into shoots, and 104 plants from 29 lines were transferred to the greenhouse. All transplanted plants were detected by GUS and PCR analysis, and 93%of which were confirmed as transformant. Most transgenes (AP1, NPTII and GUS) integrated into citrus genome with 1 to 2 copies by Southern blotting analysis. Different from non-transformed controls, transgenic plants had a dominant growth in axillary meristems, which resulted in 2 to 4 branches per plant. Real-time RT-PCR analysis in transgenic tissues showed various accumulation levels of AP1 RNA in different transgenic tissues, with the highest expression level in shoot, followed by root, and then callus and embryo. The expression levels of endogenous flowering genes like CiAP1, CiLFY, CiFT and CiTFL in transgenic tissues were up-regulated or down-regulated due to the different expression levels of AP1.
     3) AP1 transgenic plants were also acheived from calluses of other citrus genotypes, including Valencia and Succari sweet orange, Chazhigan mandarin, and the hybrid of Gailiangcheng orange×Weizhang Satsuma mandarin.
     3. Transformation of epicotyl segments were performed in four genotypes. Fourty-two GUS positive lines of from 3 genotypes were obtained, 21 lines of which were regenerated into whole plants and transferred to the greenhouse. 18 lines were confirmed by PCR analysis. Among transgenic plants, one 'Meiwa' kumquat plant transformed with AP1 exhibited early-flowering. Over-expression of AP1 or LFY affected the expression of endogenous flowering genes, like CiLFY, CiFT, CiTFL, and CiAP1, as revealed by real-time RT-PCR. These results were elucidated as follows.
     1) Transformation of AP1 in 'Meiwa' kumquat(Fortunella crossifolia Swing.): Nineteen GUS positive shoots were achieved from 1, 021 explants, with a transformation efficiency of 1.86%. Eight GUS positive plants were transferred to the greenhouse, 6 of which were confirmed as transformants by PCR analysis. Southern blotting analysis indicated that the transgenes integrated into citrus genome with 1 to 5 copies. No differences were observed on the growth between transgenic plants and non-transformed controls. One transgenic plant(J3) flowered 11 months after transfer to the greenhouse, while it needs 3 years for wild type to bolssom, this indicated that ectopic expression of AP1 promoted early-flowering in 'Meiwa' kumquat. Expression levels of AP1 in transgenic lines were positively correlated with its copy number revealed by real-time RT-PCR analysis, while was irrelative to the precocity. The promotion of flowering by over-expression of AP1 was due to the up-regulation of CiLFY and CiFT and down-regulation of CiTFL, independent of CiAP1.
     2) Transformation of LFY in Bingtang sweet orange(Citrus sinensis Osbeck.): The ultimate transformation efficiency of this genotype was 8.88%. One GUS positive plant transformed with AP1 and 12 GUS positive plants transformed with LFY were achieved. All GUS positive plants, except one with transformed with LFY, were positive by PCR analysis. One LFY transgenic plant B1 was further confirmed by Southern blotting analysis with single copy of transgene integration. Real-time RT-PCR analysis showed that various accumulation levels of LFY RNA in different transgenic lines, and the expression level was higher in the shoot than in the root. The expression of endogenous CLAP1, CiLFY and CiFT was up-regulated or suppressed in different transgenic lines, while CiTFL was suppressed in all transgenic lines. These results indicated that LFY affected the expression of endogenous flowering genes.
     3) Transformation of AP1 in Hongkang kumquat: Eight resistant shoots regenerated from 50 explants, 3 of which was GUS positive, but all of them showed weak growth and failed to regenerate into whole plant in the end.
     4. Aspects favorite for improving the efficiency of Agrobacterium-mediated transformation in citrus, the copy number of T-DNA integrated into citrus genome, the necessity of construction of transgenic plant populations, and the potential usage of flowering genes in shortening juvenility were also discussed.
引文
1.曹秋芬,和田雅人,孟玉平,黄静,孙毅,王果萍.苹果LEAFY同源基因的cDNA克隆与表达分析.园艺学报,2003,30(3):267-271
    2.陈大明,金勇丰,张上隆.柑桔LEAFY同源基因片段分离及特性研究。园艺学报,2001,28(4):295-300
    3.陈善春,张进仁,黄自然,高峰,陈风珍,隆有庆.根癌农杆菌介导柞蚕抗菌肽D基因转化柑橘的研究.中国农业科学,1997,30(3):7-13
    4.程运江.柑橘体细胞胞质遗传及叶绿体SSR引物开发研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    5.邓秀新.世界柑橘品种改良的进展.园艺学报,21305,32(6):1140-1146
    6.付春华.原生质体融合创造柑橘新材料及其遗传分析.[博士学位论文].武汉:华中农业大学图书馆,2003
    7.何永睿,邹修平,彭爱红,徐忠强,许兰珍,彭祝春,陈善春.根癌农杆菌介导的柑橘遗传转化技术.热带作物学报,2004,25(1):11-16
    8.贺红,潘瑞炽,韩美丽,李耿光.枳壳外植体离体再生及农杆菌介导的遗传转化.云南植物研究,1998,20(4):459-463
    9.贺红,李耿光.根癌农杆菌对枳壳遗传转化的影响因素.中国中药杂志,1999,24(3):140-142
    10.蒋迪,徐昌杰,陈大明,张上隆.柑橘转基因研究的现状及展望.果树学报,2002,19(1):48-52
    11.李东栋.根癌农杆菌介导愈伤组织遗传转化获得带有雄性不育基因的柑橘植株.[博士学位论文].武汉:华中农业大学图书馆,2002
    12.李东栋,邓秀新.柑橘不同品种对根癌农杆菌介导遗传转化的反应差异.分子植物育种,2005,3(1):52-56
    13.李东栋,石玮,邓秀新,伊华林.不同根癌农杆菌菌株对柑橘愈伤组织遗传转化效率的影响.华中农业大学学报,2002,21(4):379-381
    14.刘歆.绿色荧光蛋白基因(GFP)转化柑橘及植株再生.[硕士学位论文].武汉:华中农业大学图书馆,2005
    15.彭秀玲,袁汉英,谢毅,王洪海.基因工程实验技术,第二版.长沙,湖南科学技术出版社,1997
    16.瞿金旺.根癌农杆菌介导亚精胺合成酶基因MdSPDS1的柑橘遗传转化及离体再生.[硕士学位论文].武汉:华中农业大学图书馆,2006
    17.邵寒霜,李继红,郑学勤,陈守才.拟南芥LFYcDNA的克隆及转化菊花的研究.植物学报,1999,41(3):268-271
    18.石玮,李东栋,邓秀新,伊华林.根癌农杆菌介导绿色荧光蛋白转化印度酸橘的研究.园艺学报,2002,29(2):109-112
    19.宋士任,王华.葡萄多酚含量和多酚氧化酶活性与组培苗生根关系的初步研究.农业生物技术科学,2005,21(9):70-73
    20.王峰,朱祯,李向辉,章文才.不同调控序列控制下的GUS基因在柑橘原生质体中的瞬间表达.福建农业学报,1998,13(2):1-5
    21.杨莉,徐昌杰,陈昆松.果树转基因研究进展与产业化展望.果树学报,2003,20(5):331—337
    22.张俊娥.柑橘愈伤组织DNA含量变异\体细胞胚胎发生及同源四倍体的诱导研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    23.郑启发,陈大成,黄自然,胡桂兵.人工合成柞蚕抗菌肽D基因转化沙田柚.华南农业大学学报,1999,20(1):103-107
    24. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, and Araki T. FD, a b ZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309:1052-1056
    25. Almeida W A B, Filho F A A M, Mendes B M J, Pavan A, Rodriguez A P M. Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments. Scientia Agricola, 2003, 60(1): 23-29
    26. Alvarez J, Gull C L, Yu X H, Smyth D R. TERMINAL FLOWER : A gene affecting inflorescence development in Arabidopsis thaliana. Plant J, 1992, 2:103
    27. Amador V, Monte E, Garcia-Martinez J L, and Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiodresponsive protein with homology to Drosophila armadillo. Cell, 2001, 106:343-354
    28. Anthony R G, James P E, Jordan B R. Cauliflower curd devdopment-the expression of meristem identity genes. J Exp Bot, 1996, 47:181-188
    29. Araki T: Transition from vegetative to reproductive phase. Curt Opin Plant Biol, 2001, 4:63-68
    30. Aráujo S S, Duque A S R, Santos D M M F, Fevereiro M P S. An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tissue Organ Cult, 2004, 78:123-131
    31. Arencibia A D, Carmona E R, Llez P T, Chart M T, Yu S M, Trujillol L E and Oramas P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Trans Res, 1998, 7:213-222
    32. Azpiroz-Leehan R, Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis: going backand forth. Trends Genet, 1997, 13:152-156
    33. Ballester A, Cervera M, Pena L. Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep, 2006, DOI 10.1007/s00299-006-0197-3
    34. Barbulova A, D'Apuzzo E, Rogato A and Chiurazzi M. Improved procedures for in vitro regeneration and for phenotypic analysis in the model legume Lotus japonicus. Functional Plant Biol, 2005, 32(6): 529-536
    35. Berbel A, Navarro C, Ferrandiz C, Canas L A, Madueno F, Beltran J P. Analysis of PEAM4, the pea APl functional homologue, supports a model for APl-like genes controllong both floral meristem and floral organ identity in different plant species. Plant J, 2001, 25(4): 441-451
    36. Belarmino M M and Mii M. Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep, 2000, 19:435-442
    37. B1ázquez M A and Weigel D. Integration of floral inductive signals in Arabidopsis. Nature, 2000, 404: 889-892
    38. Blázquez M A, Soowal L N, Lee I, Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development 1997, 124:3835-3844
    39. Bolton G W, Nester E W & Gordon M P. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science, 1986, 232:983-985
    40. Bond J E, Roose M L. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep, 1998, 18:229-234
    41. Boscariol R L, Almeida W A B, Derbyshire M T V C, Mourao Filho F A A, Mendes B M J. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep, 2003, 22:122-128
    42. Bowman J L,Alvarez J, Weigel D, Meyerowitz E M, Smyth D R. Control of flower development in Arabidopsis thaliana by APETALA 1 and interacting genes. Development, 1993, 119(3): 721-743
    43. Bradley D, Vincent C, Carpenter R, Coen E. Pathways for inflorescence and floral induction in Antirrhimun. Development,1996b, 122:1535-1544
    44. Buck S D, Jacobs A, Montagu M V, Depicker A. The DNA sequences of T-DNAjunctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J, 1999, 20:297-304
    45. Bustin S A. Absolute quantification of mRNAusing real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol, 2000, 25:169-193
    46. Calonje M, Cubas P, Martinez-Zapater J M, Carmona M J. Floral medstem identity genes are expressed during tendril development in grapevine. Plant Physiol, 2004, 135(3): 1491-501
    47. Carmona M J, Cubas P, Martinez-Zapater J M. VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol, 2002, 130(1):68-77
    48. Cervera M, Juarez J, Navarro A, Navarro L, Pena L. Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res, 1998a, 7: 51-59
    49. Cervera M, Lopez M, Navarro L. Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiol Mol Plant Pathol, 1998b, 52:67-78
    50. Cervera M, Pina J A, Juarez J, Navarro A, Navarro L, Pena L. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep, 1998c, 18:271-278
    51. Cervera M, Ortega C, Navarro A, Navarro L, Pena L. Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol, 2000, 75:26-30
    52. Cevik B V, Lee R, Niblett C L. Genetic Transformation of Citrus paradise with Antisense and Untranslatable RNA-dependent RNA Polymerase Genes of Citrus tristeza closterovirus. Turk J Agric For, 2006, 30: 173-182
    53. Chabaud M, Larsonneau C, Marmouget C and Huguet T. Transformation of barrel medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep, 1996, 15:305-310
    54. Chalfie M, Tu Y, Euskirchen G, Ward W W, and Prasher D C. Green fluorescent protein as a marker for gene expression. Science, 1994, 263:663-664
    55. Cheng Y J, Guo W W, Yi H L, Pang X M, and Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177a-177g
    56. Cirvilleri G, Gentile A, Gennari M, Deng Z N, Rizzitano A, Spina S, Domina F, Ahbate C, La Rosa R. Influence of transgenic RolABC citrus plants on root-associated bacteria. J Plant Pathol, 2003, 85(4): 288
    57. Cho S, Jang S, Chae S, Chung K M, Moon Y H, An G, Jang S K. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol, 1999, 40:419-429
    58. Coseteng MY and Lee C Y. Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. J Food Sci, 1987, 52:985-989
    59. Costa M G C, Otoni W C, Moore G A. An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep, 2002, 21(4): 365-373
    60. Debnath S C. Strawberry sepal: another explant for thidiazuron- induced anventitious shoot regeneration. In Vitro Cell Dev Biol - Plant, 2005, 41(5): 671-676
    61. Deng X X, Xiao S Y and Zhang W C. Interspeeifie somatic hybrid of Ichang Papeda with Valencia orange. Chinese J Biotech, 1993, 9:128-131 (in Chinese with English summary)
    62. Deng X X, Guo W W, Yu G H. Citrus somatic hybrids regenerated from protoplat electro fusion. Acta Hortic, 2000, 1:535
    63. Deng X X and Duan Y X. Modification of perennial fruit trees. In Fladung M and Ewald D (eds) Tree transgenesis: Recent Developments. Springer-Vedag Berlin Heidelberg, Germany, 2006, 47-66
    64. Dominguez A, Guerri J , Cambra M, Navarro L, Moreno P, Pena L. Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep, 2000, 19: 427-433
    65. Dominguez A, Hermoso de Mendoza A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L. Pathogen derived resistance to citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed, 2002a, 10: 1-10
    66. Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol Genet and Genom, 2002b, 267 (4): 544-556
    67. Domínguez A, Cervera M, Pérez R M, Romero J, Fagoaga C, Cubero J, López M M, Juárez J A, Navarro L, Pena L. Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed, 2004, 14:171-183
    68. Elo A, Lemmetyinen J, Turunen, ML, Tikka L, Sopanen T. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Planta, 2001, 112(1): 95-103
    69. Ellul P, Angosto T, García-Sogo B, García-Hurtado N, Martín-Trillo M, Salinas M, Moreno V, Lozano R, Martínez-Zapater J M. Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Mol Breed, 2004, 13:155-163
    70. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Trans Res, 2005, 14:703-712
    71. Escalettes V, Dosba F. In vitro adventitious shoot regeneration from leaves of Prunus spp.. Plant Sci, 1993, 90:201-209
    72. Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset J J, Amau J, Pina J A, Navarro L, Pena L. Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PRo5. Molecular Breed, 2001,7(2): 175-85
    73. Fagoaga C, López M, Moreno P, Navarro L, Flores R, Pena U Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact, 2005, 18:435-445
    74. Fagoaga C, Lopez C, Mendoza A H, Moreno P, Navarro L, Flores R and Pena L. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol, 2006, 60:153-165
    75. Fan H Y, Hu Y, Tudor M, and Ma H. Specific interactions between K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J, 1997, 12, 999-1010
    76. Febres V J, Niblett C, Lee R F, Moore G A. Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza clostero virus genes. Plant Cell Rep, 2002, 21:421-428
    77. Fleming G H, Olivares-Fuster O, Fatta Del-Basco S, Grosset J W. An alternative method for the genetic transformation of sweet orange. In Vitro Cell Dev Biol Plant, 2000, 36:450-455
    78. Gairi A and Rashi A. TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2,4-D. Plant Cell Tiss Org Cult, 2004, 76:29-33
    79. Garfinkel D J & Nester E W. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol, 1980, 144:732-743
    80. Ghorbel R, JuaHrez J, Navarro L, Pena L. Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet, 1999, 99: 350-358
    81. Ghorbel R, Dominguez A, Navarro L, Pena L Efficiency genetic transformation of sour orange (Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol, 2000, 20:1183-1189
    82. Ghorbel R, La-Malfa S, Lopez M M, Petit A, Navarro L, Pena L Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiol and Mol Plant Pathol, 2001a, 58(3): 103-110
    83. Ghorbel R, Lopez C, Fagoaga C, Moreno P, Navarro L, Flores R, Pena L. Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Physiol Mol Plant Pathol, 2001b, 2(1): 27-36
    84. Gilll R and Saxena P K. Somatic embryogenesis in Nicotiana tabacum L.: induction by thidiazuron of direct embryo differentiation from cultured leaf discs. Plant Cell Rep, 1993, 12(3): 154-159
    85. Gorinstein S, Haruenkit R, Park Y S, Jung S T, Zachwieja Z, Jastrzebski Z, Katrich E, Trakhtenberg S and Martin O. Belloso Bioactive compounds and antioxidant potential in fresh and dried Jaffa sweeties, a new kind of citrus fruit. J Sci Food Agric, 2004, 84:1459-1463
    86. Grosser J W, Chandler J L. Somatic hybridization of high yield, cold-hardy and disease resistant parents for citrus rootstock improvement. J Hort Sci Biotech, 2000, 75(6): 641-644
    87. Guo W W, Deng X X. Intertribal hexaploid somatic hybrid plant regeneration from electrofusion between diploids of Citrus sinensis and its sexually incompatible relative, Clausena lansium. Theor Appl Genet, 1999, 98:581-585
    88. Guo W W, Cheng Y J, and Deng X X. Regeneration and molecular characterization of intergeneric somatic hybrids between Citrus reticulata and Poncirus trifoliata. Plant Cell Rep, 2002, 20:829-834
    89. Guo W W, Duan Y X, Olivares-Fuster O, Wu Z C, Arias C R, Bums J K, Grosser J W. Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing the juice quality related pectin methylesterase gene. Plant Cell Rep, 2005, 24:482-486
    90. Gutiérrez E M A, Lath D E, Moore G A. Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of Citrus Tristeza Virus. Plant Cell Rep, 16: 745-753, 1997
    91. Hayama R and Coupland G. Shedding light on the circadian clock and the photopedodic control of flowering. Curr Opin Plant Biol, 2003, 6:13-19
    92. He Z, Zhu Q, Dabi T, Weigel D, Lamb C. Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res, 2000, 9(3): 223-227
    93. Hempel F D, Welch D R, Feldman L J. Floral induction and determination: Where is flowering controlled? Trends Plant Sci, 2000, 5:17-21
    94. Hidaka T, Omura M, Ugaki M. Agrobacterium tumefaciens mediated transformation and regeneration of Citrus spp. from suspension cells. Japan J Breed, 1990, 40:199-207
    95. Hidaka T, Omura M. Transformation of Citrus by electroporation. J Jpn Soc Hort Sci, 1993, 62: 371-376
    96. Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacteriura tumefaciens. Plant Mol Biol, 1997, 35 (1-2): 205-218
    97. Hsu H F, Huang C H, Chou L T, Yang C H. Ectopic expression of an orchid (Oncidiura Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol, 2003, 44 (8): 783-794
    98. Hsu C Y, LiuY, Luthe D S, and Yuceera C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell, 2006, 18:1846-1861
    99. Iwanami T, Shimizu T, Ito T, Hirabayashi T. Tolerance to citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Dis, 2004, 88(8): 865-868
    100. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, and Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Development, 2002, 16:2006-2020
    101. James D J, Uratsu S, Cheng J, Negri P, Viss P, Dandekar A M. Acetosyringone and osmoprotectants like betaine or praline synergistically enhance Agrobacteriurn-mediated transformation of apple. Plant Cell Rep, 1993, 12:559-563
    102. Jang S, An K, Lee S, An G. Charaterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol, 2002, 43(2): 230-238
    103. Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant tool Biol, 1987, 5:387-405
    104. Jensen C S, Salchert K, Nielsen K K. A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary medstem identity. Plant Physiol, 2001, 125:1517-1528
    105. Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y. A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.). Plant Cell Rep, 1994, 13:541-545
    106. Kayim M, Ceccardi T L, Berretta M J G, Barthe G A, Derrick K S. Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L) Osbc. × Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation. Plant Cell Rep, 2004, 23:377-385
    107. Kayim M, Koc N K. Improved transformation efficiency in citrus by plasmolysis treatment. J. Plant Bioche. Biotech, 2005, 14:15-20
    108. Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, and Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286, 1962-1965
    109. Kelly A J, Bonnlander M B and Meeks-Wanger D R. NFL, the tabacoo homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell, 1995, 7:225-234
    110. Khanna H K, Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep, 2003, 21(5): 429-436
    111. Khanna H, Becker D, Kleidon J, Dale J. Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed, 2004, 14:1380-3743
    112. Kobayashi S, Nakamura Y, Kaneyoshi J. Ttransformation of kiwifruit and triforliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J Jpn Soc Hort Sci, 1996, 64 (6): 763-769
    113. Kobayashi S, Uchimiya H. Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet, 1989, 64:91-97
    114. Kobayashi A K, Bespalhok J C, Pereira L F P, Vieira L G E. Plant regeneration of sweet orange (Citrus sinensis) from thin sections of mature stem segments. Plant Cell Tissue and Organ Cult, 2003, 74:99-102
    115. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, and Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286:1960-1962
    116. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition. Plant Cell Physiol, 2002, 43:1096- 1105
    117. Korban S S, O'Connor P A, Elobeiday A. Effects of thidiazuron, naphthaleneacetic acid, dark incubation and genotype on shoot organogenesis from Malus leaves. J Hort Sci, 1992, 67: 341-349
    118. Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K. Arabidopsis Terminal Flower 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS to regulate flowering time and several floral homeotic genes. Plant Cell Physiol, 2003, 44 (6): 555-564
    119. Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, and Soejima J. Expression pattern of homologues of floral medstem identity genes LFY and AP1 during flower development in apple. J Amer Soc Hort Sci, 2000, 125(4): 398-403
    120. Kotoda N, Wada M, Kusaba S, Kano-Murrakami Y, Masuda T, Soejima J. Overexpression of MdMADSS, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci, 2002, 162(5): 679-687
    121. Kotoda N and Wada M. MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci, 2005, 168, 95-104
    122. Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Amer Soc Hort Sci, 2006, 131(1): 74-81
    123. Krizkova L, Hrouda M. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J, 1998, 16:673-680
    124. Laufs P, Autran D, Traas J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J, 1999, 18:131-139
    125. Lee C Y, Kagan V, Jaworski A W, and Brown S K. Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars. J Agric Food Chem, 1990, 38, 99-101
    126. Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 2000, 14:2366-2376
    127. Leelavathi S, Sunnichan V G, Kumria R, Vijaykanth G P, Bhatnagar R K, Reddy V S. A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep, 2004, 22(7): 465-470
    128. Li D D, Shi W, Deng X X. Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric dbonuclease gene. Plant Cell Rep, 2002, 21:153-156
    129. Li D D, Shi W, Deng X X. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiol, 2003a, 23:1209-1215
    130. Li D D, Shi W, Deng X X. Agrobacterium-mediated transformation of embryogenic calluses of Anliucheng and regeneration of plants containing the chimeric ribonuclease gene. Agicultural Sciences in China, 2003b, 2(2): 127-131
    131. Lin Y J and Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23 (8): 540-547
    132. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, and Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. PNAS USA, 2006, 103 (16): 6398-6403
    133. Liljegren S J, GUStafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F. Interactions among APEATALA1, LEAFY and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 1999, 11: 1007-1018
    134. Lim H T, Park E J, Lee J Y, Chun I J, An G H. High plant regeneration and ectopic expression of OsMADS1 gene in root chicory (Cichorium intybus L. var.sativus). J Plant Biotech, 2003, 5 (4): 215-219
    135. Lin Y J and Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23(8): 540-547
    136. Liu Y Z, Liu Q, Tat N G, Deng X X. Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J Huazhong Agri Uni, 2006, 25 (3): 300-304
    137. Lu M C. High frequency plant regeneration from callus culture of Pleione formosana Hayata. Plant Cell Tiss Org Cult, 2004, 78:93-96
    138. Luo H, Hu Q, Nelson K, Longo C, Kausch A P, Chandlee J M, Wipff J K, Fricker C R. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep, 2004, 22(9): 645-652
    139. Luth D, Moore G A. Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org, 1999, 57:219-222
    140. Martin-Trillo M and Mattinez-Zapater J M. Growing up fast: Manipulating the generation time of trees. Curr Opin Biotechnol, 2002, 13:151-155
    141. Martineau B, Voelker T, Sanders R. On defining T-DNA. Plant Cell, 1994, 6:1032-1033
    142. Matsuhara S, Jingu F, Takahashi T, Komeda Y. Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J, 2000, 1: 79-86
    143. Mayerhofer R, Konca-Kalman Z, Nawrath C, Bakkeren G. Crameri A, Angelis K, Redei G P, Schell J, Hohn B, Koncz C. T-DNA intergration: a mode of illegitimate recombination in plants. EMBO J, 1991, 10:697-704
    144. Mandel M A and Yanofsky M F. A gene triggering flower formation in Arabidopsis. Nature, 1995, 377(12): 522-524
    145. Mendes B M J, Boscariol R L, Filho F A A M, Almeida W A B. Agrobacterium-mediated genetic transformation of 'Hamlin' sweet orange. Pesq Agropec Brasileira, 2002, 37:955-961
    146. Mithila J, Hall J, Victor J M R, Saxena P. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep, 2003, 21(5): 408-414
    147. Mizukami Y, Ma H: Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell, 1997, 9:393-408
    148. Molinari H B C, Bespalhok J C, Kobayashi A K, Pereira L F P, Vieira L G E. Agrobacterium tumefaciens-mediated transformation of Swingle citrumelo (Citrus paradisi Macf. × Poncirus trifoliata L. Raf.) using thin epicotyl sections. Sci Hort, 2004a, 99:379-385
    149. Molinari H B C, Marur C J, Filho J C B, Kobayashi A K, Pileggi M, Junior R P L, Pereira L F P, Vieira L G E. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing praline. Plant Sci, ,2004b, 167(6): 1375-1381
    150. Moore G A, Jacono C C, Neidigh J, Lawrence S D, Cline K. Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep, 1992, 11: 238-242
    151. Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdaie R D. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acd Sci USA, 1998, 95(11): 6537-6542
    152. Mouradov A, Cremer F, and Coupland G. Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell, 2002, S111-S130
    153. Moussaid M, Caillet S, Nketsia-Tabiri J, Boubekri C and Lacroix M. Phenolic compounds and the colour of oranges subjected to a combination treatment of waxing and irradiation. J Sci Food Agric, 2004, 84:1625-1631
    154. Murashige T andTucker D P H. Growth factor requirements of citrus tissue culture. Proc 1st Int Citrus Syrup, 1969, 3:1155-1161
    155. Murthy B N S, Saxena P K. Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss.). Plant Cell Rep, 1998, 17:469-475
    156. Nakagawa M, Shimamoto K, and Kyozuka J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J, 2002, 29:743-750
    157. Niedz R P, Hyndman S E, Wynn E T, Bausher M G. Normalizing sweet orange [C. sinensis (L.) Osbeck] somatic embryogenesis with semi-permeable membranes. In Vitro Cell Dev Biol Plant, 2002, 38:552-557
    158. Nilsson O, Lee I, Blázquez M A, and Weigel D. Flowering- time genes modulate the response of LEAFY activity. Genetics, 1998,150:403-410
    159. Parcy F, Nilsson O, Busch M A, Lee I, Weigel D. A genetic framework for floral patterning. Nature, 1998, 395:561-566
    160. Pena L, Cervera M, Juarez J, Navarro A, Pina J A, Duran-Vila N. Agrobacteriura-mediated transformation of sweet orange and regeneration of transgenie plants. Plant Cell Rep, 1995a, 14: 616-619
    161. Pena L, Cervera M, Juarez J, Ortega C, Pina J A, Duran-Vila N, Navarro L. High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci, 1995b, 104: 183-191
    162. Pena L, Cervera M, Juarez J, Navarro A, Pina J A, Navarro L. Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep, 1997, 16:13-737
    163. Pena L, Martin-Trillo M, Juarez J, Pina J A, Navarro L, Martinez-Zapater J M. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotech, 2001, 19:263-267
    164. Pena L, Perez R M, Cervera M, Juarez J A, Navarro L. Early events in Agrobacterium-mediated genetic transformation of citrus explants. Ann Bot, 2004, 94:67-74
    165. Pérez-Molphe-Balch E, Ochoa-Alejo N. Regeneration of transgenic plants of Mexican lime from A grobacterium rhizogenes-transformed tissues. Plant Cell Rep, 1998, 17:591-596
    166. Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29 (900): 2003-2007
    167. Pillitteri L J, Walling L L and Lovatt C A. Regulation of Flowering in the 'Washington'Navel Orange: Floral Genes. Proc. Intl. Soc. Crricult. Ⅸ Congr, 2000, 201-204
    168. Pillitteri L J, Lovatt C J and Walling L L. Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck 'Washington'. J Am Soc Hortic Sci, 2004, 129: 846-856
    169. Rai M. Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol, 2006, 61:399-414
    170. Ratcliffe O J, Amaya I, Vincent C A, Rothstein S, Carpenter R, Coen E S, Bradley D J. A common mechanism controls the life cycle and architecture of plants. Development, 1998, 125: 1609-1615
    171. Ratcliffe O J, Brasley D J, Coen E S. Separation of shoot and floral identity in Arabidopsis. Development, 1999, 126:1109-1120
    172. Rhim S L, Kim Gi, Jin T E, Lee J H, Kuo C, Sub S C, Huang L C. Transformation of citrus with coleopteran specific delta-endotoxin gene from Bacillus thuringiensis ssp tenebrionis. J Plant Biotech, 2004, 6(1): 21-24
    173. Riechmann J L, Krizek B A, and Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc NatlAcad Sci USA, 1996a, 93, 4793-4798
    174. Rocha A M C N and de Morais A M M B. Polyphenoloxidase activity of minimally processed 'Jonagored' apples (Malus Domestica). J Food Processing and Preservation, 2005, 29:8-19
    175. Rottmann W H, Meilan R, Sheppard L A, Brunner A M, Sakinner J S, Ma C, Cheng S, Jouanin L, Pilate G, Strauss S H. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LFMFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J, 2000, 22 (3): 235-245
    176. Samach A, Coupland G. Time measurement and the control of flowering in plants. Bioessays, 2000, 22:38-47
    177. Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz- Sommer Z, Yanofsky M F, and Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288:1613-1616
    178. Sanford J C and Johnston S A. The concept of parasite-derived resistance-deriving resistance genes from the parasités own genome. J theor boil, 1985, 113 (2): 395-405
    179. Simpson G G, Dean C. Arabidopsis, the Rosetta stone of flowering time? Science 2002, 296: 285-289
    180. Singleton V L and Rossi Jr JA, Colorimetry of total phenolics with phosphomolybdic acid reagents.Am J Enol Vitic, 1965, 16:144-158
    181. Sliwinski M K, White M A, Maizei A, Weigel D, Baum D A. Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia crassa. Plant Mol Biol, 2006, DOI 10.1007/s11103-006-9020-3
    182. Song G Q, Sink K C. Optimizing shoot regeneration and transient-expression factors for Agrobacterium tumefaciens transformation of sour cherry- (Prunus cerasus L.) cultivar. Scientia Hort, 2005,106:60-69
    183. Southerton S G, Strauss S H, Olive MR, Harcourt R L, Decroocq V, Zhu X, Llewellyn D J, Peacock W J, Dennis E S. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol, 1998, 37(6): 897-910
    184. Stachel S E, Nester E W& Zambryski P C. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Nat Acad Sci USA, 1986, 83:379-383
    185. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F and Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410:1116-1120
    186. Sundstrom J, Engstrom P. Conifer reproductive development involves B-type MADS-box gene with distinct and different activities in male organ primordia. Plant J, 2002, 31(2): 161-169
    187. Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the AQUAMOSA subfamily of genes in apple. Plant Physiol, 1999, 120 (4): 969-978
    188. Tandre K, Svenson M, Svensson M E, Engstrom P. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J, 1998, 15 (5): 615-623
    189. Torregrosa L, Iocco P, Thomas M R. Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Amer J Enol Viticult, 2002, 53 (3): 183-190
    190. Victor J M R, Murch S J, KrishnaRaj S and Saxena P K. Somatic embryogenesis and organogenesis in peanut: The role of thidiazuron and N6-benzylaminopurine in the induction of plant morphogenesis. Plant Growth Regulation, 1999, 28(1): 9-15
    191. Volkov R A, Panchuk I I, and Schoffl F. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Experimental Botany, 2003, 54 (391): 2343-2349
    192. Wada M, Cao Q F, Kotoda N, Soejima J I, Masuda T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol, 2002, 49 (6): 567-577
    193. Wagner D, Sablowski R W M and Meyerowitz E M. Transcriptional activation of APETALA1 by LEAFY. Science, 1999, 285:582-584
    194. Wagner D, Wellmer F, Dilks K, William D, Smith M R, Kumar P P, Riechmann J L, Greenland A J, Meyerowitz E M. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J, 2004, 39:273-282
    195. William D A, Su Y, Smith M R, Lu, M, Baldwin D A, and Wagner D. Genomic identification of direct target genes of LEAFY. PANS, USA, 2004, 101:1775-1780
    196. Weigel D, Alvarez J, Smyth D R. Yanofsky M F, Meyerowitz E M. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69:843-859
    197. Weigel D and Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377:495-500
    198. Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, and Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309: 1056-1059
    199. Wong W S, Li G G, Ning W, Xu Z F, Wendy Hsiao W L, Zhang L Y, Li N. Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Sci, 2001, 161(5): 969-977
    200. Wu H, Sparks C, Amoah B, Jones H D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep, 2003, 21:659-668
    201. Yang Z N, Ingelbrecht I L, Louzada E, Skaria M, Mirkov T E. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep, 2000, 19(12): 1203-1211
    202. Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419:308-312
    203. Yao J L, Wu J H, Gleave A P, Morris B A M. Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci, 1996, 113:175-183
    204. Yu C H, Huang S, Chen C, Deng Z A, Ling P, Gmitter F G Jr. Factors affecting Agrobacterium-mediated transformation of sweet orange and citrange. Plant Cell Tissue Organ Cult, 2002, 71:147-155
    205. Zhang B H, Liu F, Liu Z H, Wang H M, Yao C B. Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regul, 2001, 33:137-149
    206. Zhang S, Hu W, Wang L, Lin C, Cong B, Sun C, Lao D. TFL1/CEN-Iike genes control intercalary meristem activity and phase transition in rice. Plant Sci, 2005, 168:1393-1408
    207. Zhang S, Zhu L H, L X Y, Ahlmana A, and Welander M. Infection by Agrobacterium tumefaciens increased the resistance of leaf explants to selective agents in carnation (Dianthus caryophyllus L. and D. chinensis). Plant Sci, 2005, 168:137-144
    208. Zhao Z Y, Tishu C, Tagliani L, Mike M, Ning W, Pang H and Rudert M. Agriobactrium-mediated sorghum transformation. Plant Mol Bio, 2000, 44:789-798
    209. Zupan J, Muth T R, Draper O, Zambryski P. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J, 2000, 23:11-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700