用户名: 密码: 验证码:
以脂代谢相关受体为靶点的抗动脉粥样硬化药物筛选及药物作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,心脑血管疾病是世界发病率最高的疾病之一,其致死、致残率高居各类疾病之首。其中,动脉粥样硬化(Atherosclerosis,AS)的发生是心脑血管疾病的主要病理基础。脂质代谢紊乱尤其是胆固醇代谢紊乱是目前公认的主要致病因子。调脂药物的早期研究主要集中于针对低密度脂蛋白受体(low densitylipoprotein receptor,LDLR)通路,他汀类药物是其代表药物,具有出色的降胆固醇疗效,可明显降低心脏病及卒中的风险。但是他汀类药物总的有效率仅为20~40%,因此,心血管疾病远未解决,亟需发现新作用机制的药物。近年来,在新型调脂药物研发过程中,血浆脂蛋白代谢过程中的另两个关键步骤:胆固醇逆向转运(reverse cholesterol transport,RCT)通路及泡沫细胞形成(foam cellformation)过程受到越来越多的关注。本论文围绕着这两个方面开展了相关药物筛选和作用机制研究。
     高密度脂蛋白(high density lipoprotein,HDL)是胆固醇逆向转运中最主要的胆固醇携带者,在这一过程中,B族I型清道夫受体SR-BI(人的同源基因命名为CLA-1)发挥了重要作用。作为HDL的受体,SR-BI参与调节肝脏对脂质的选择性摄取,介导HDL胆固醇酯选择性进入细胞;另外,在外周细胞,SR-BI能通过结合HDL促进胆固醇的外流。由于SR-BI在RCT的起始及终末步骤中都发挥了重要作用,因此被认为是抗动脉粥样硬化药物的潜在靶点之一。本研究室构建了基于细胞的高密度脂蛋白受体表达上调剂高通量筛选模型,对化合物及微生物次级代谢产物进行了大规模筛选,其中阳性菌株04-9179可有效上调CLA-1启动子的活性,从该菌株发酵液中分离得到阳性化合物9179A及阳性组分B和C。
     本论文第一部分针对CLA-1表达上调剂9179A进行结构确证,活性检测及相关分子作用机制研究。在前期工作基础上,经化学及生物学分析进一步确证,9179A为已知化合物Trichostatin A。检测9179A对人肝癌细胞HepG2及小鼠巨噬细胞RAW 264.7中CLA-1/SR-BI表达水平的影响,结果表明9179A可分别上调HepG2及RAW 264.7中CLA-1/SR-BI mRNA及蛋白水平。在此基础上,进一步检测9179A对HepG2和RAW 264.7细胞的脂质摄取能力以及RAW 264.7细胞胆固醇外流能力的影响,结果表明,9179A可上调HepG2细胞和RAW 264.7细胞对DiI-HDL的摄取,还可上调RAW 264.7细胞的胆固醇外流能力。对9179A分子作用机制的进一步研究提示,9179A可能通过调控含有SRE/SP1等顺式元件的启动子区域发挥上调CLA-1/SR-BI转录的作用。此外,我们还对阳性菌株04-9179中阳性组分B和C进行了分离纯化、结构鉴定和活性测定,结果表明,化合物9179B和9179C对CLA-1启动子活性的上调作用较低。
     细胞泡沫化是AS形成的关键步骤。巨噬细胞上存在的清道夫受体A(SR-A)和B族清道夫受体CD36可导致oxLDL被细胞无限制摄取(即在摄取时不受负反馈调控),因此它们在泡沫细胞形成中发挥重要作用。体内、外研究显示,60~90%的巨噬细胞泡沫化是由CD36介导的。因此CD36被认为是抗动脉粥样硬化药物的潜在靶点之一。
     在本论文第二部分中,我们在大肠杆菌中成功表达了重组CD36可溶性受体蛋白,并以此为靶点建立了CD36拮抗剂高通量筛选模型。分别扩增人CD36全长及可溶性片段(sCD36)cDNA,将它们克隆至pGEM-T载体并测序,分别与大肠杆菌表达载体pET-30a(+)连接,构建CD36及sCD36的重组表达质粒,并将重组质粒分别转化大肠杆菌表达宿主BL21(DE3),表达目的蛋白。经SDS-PAGE及Western Blot检测获得成功表达sCD36的重组菌株E.coliBL21(DE3)/pET-sCD36。该菌株表达的sCD36蛋白经配基结合实验及油红O染色实验证实具有配基结合活性。随后,利用该重组蛋白建立并优化了基于受体-配基竞争性结合的ELISA-like高通量药物筛选模型,并应用此模型筛选化合物640个。其中,具有抑制CD36配基结合活性的阳性化合物27个,阳性率为4.22%。对部分阳性化合物进行了活性验证,结果显示,受试化合物在细胞水平上具有抑制RAW 264.7细胞摄取oxLDL及DiI-acLDL的能力,进一步证实了构建模型的可行性。
Atherosclerosis is a progressive disease that is characterized by the accumulation of lipid-rich plaques within the walls of arteries.Despite substantial therapeutic progress resulting from the widespread use of statins,which primarily lower plasma levels of low density lipoprotein(LDL) cholesterol,atherosclerosis is still one of the leading causes of mortality in industrialized and developing nations.In recent years,the reverse cholesterol transport(RCT) pathway and modified low density lipoprotein (mLDL) induced foam cell formation,two processes other than LDLR pathway were extensively studied and concerned as major targets for the development of novel therapies.
     Plasma concentrations of high density lipoprotein(HDL) cholesterol(HDL-C) are inversely proportional to the risk for atherosclerotic cardiovascular disease.One of the major atheroprotective actions of HDL particles involves the transport of excess cholesterol from peripheral tissues to the liver for excretion,a process known as reverse cholesterol transport.Scavenger receptor class B typeⅠ(SR-BI) and its human homologue CLA-1 are the high-affinity HDL receptor.CLA-I/SR-BI,which plays an important role in reverse cholesterol transport,has been suggested as a new preventative and/or therapeutic target for atherosclerosis.
     Using a previously established cell-based CLA-1 up-regulator screening assay,one of the positive strains,04-9179,presented potent activity in elevating CLA-1 transcriptional level.Three pure compounds,designated as 9179A,9179B and 9179C, were purified from the strain.The structures and bioactivities of these compounds were analyzed,and 9179A showed highest activity.9179A was demonstrated chemically and biologically identical to a known compound trichostatin A(TSA).The effects of 9179A on CLA-1/SR-BI expression both in HepG2 human hepatoma cells and RAW 264.7 murine macrophage cells were detected in vitro.The results showed that the mRNA and protein level of CLA-1/SR-BI were significantly up-regulated by 9179A both in HepG2 and RAW 264.7 cells.Corresponding to this,the uptake of fluorescent labeled-HDL(DiI-HDL) was increased by 9179A in dose-dependent manner in HepG2 and RAW 264.7 cells.The cholesterol efflux was also increased by 9179A in RAW 264.7 cells.Using a combination of reporter assays with various deletion in CLA-1 promoter and electrophoretic mobility shift assay,we demonstrated that -419~-232 bp fragment of the CLA-1 promoter mediated the effects of 9179A (i.e.,TSA).Combined treatment of CLAp-LUC HepG2 cells with 9179A and rosiglitazone(ROS) confirmed that they up-regulated the promoter activity through different cis-elements.Together,these studies identified a novel up-regulator of CLA-1/SR-BI both in HepG2 and RAW 264.7 cells,suggesting that TSA should be useful in further understanding of the transcriptional regulation of CLA-1/SR-BI,and might serve as a starting point for the development of novel antiatherosclerotic agents. Macrophage foam cell formation is a characteristic event that occurs in the early stage of atherosclerosis.A critical step in foam cell formation is recognition and internalization of oxidized low density lipoprotein(oxLDL) by scavenger receptors CD36 and SR-A.In ex vivo models it has been shown that 60~90%of macrophage foam cell formation may be CD36 dependent.In vivo studies of CD36-null mice showed a major negative impact of CD36 on lesion development.Extensive evidences point to a significant role of CD36 in atherosclerotic lesions and suggest that it could be a lead target for therapeutic treatment.
     In this study,we constructed recombinant plasmid pET-sCD36 using pET-30a(+),and expressed soluble CD36(sCD36) in E.coli BL21(DE3).The protein of sCD36 was expressed in form of inclusion body and refolded by dilution.The ligand binding activity of sCD36 was validated by ligand binding assay and Oil Red O assay.With oxLDL itself as a positive control,sCD36 was used to establish a specific ELISA-like assay in a 96-well microplate format to screen CD36 antagonists.The conditions for the high-throughput screening(HTS) assay were optimized.The evaluating parameter Z' value of 0.84 showed that this cell-free HTS assay was robust and reliable. Screening of 640 chemical compounds identified 27 positive compounds.Active compounds were further validated by Oil Red O assay and DiI-acLDL uptake assay. The active compounds originated from this HTS assay may be developed to drug candidates or lead compounds for new antiatherosclerotic agents.
引文
[1]Brown MS and Goldstein JL.Receptor-mediated endocytosis:insights from the lipoprotein receptor system.Proc.Natl.Acad.Sci.U.S.A.1979,76(7):3330-3337
    [2]Tall AR.Plasma high density lipoproteins.Metabolism and relationship to atherogenesis.J.Clin.Invest.1990,86(2):379-384
    [3]Barter PJ and Rye KA.High-density lipoproteins and coronary heart disease.J.Cardiovasc.Risk.1994,1(3):217-221
    [4]Kwiterovich PO,Jr.The antiatherogenic role of high-density lipoprotein cholesterol.Am.J.Cardiol.1998,82(9A):13Q-21Q
    [5]Acton S,Rigotti A,Landschulz KT,et al.Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.Science.1996,271(5248):518-520
    [6]Brodeur MR,Luangrath V,Bourret G,et al.Physiological importance of SR-BI in the in vivo metabolism of human HDL and LDL in male and female mice.J.Lipid Res.2005,46(4):687-696
    [7]Kozarsky KF,Donahee MH,Rigotti A,et al.Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels.Nature.1997,387(6631):414-417
    [8]Acton SL,Kozarsky KF,and Rigotti A.The HDL receptor SR-BI:a new therapeutic target for atherosclerosis? Mol.Med.Today.1999,5(12):518-524
    [9]Trigatti B,Raybum H,Vinals M,et al.Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology.Proc.Natl.Acad.Sci.U.S.A.1999,96(16):9322-9327
    [10]Tian DF,Hong B,and Si SY.Development of a new high-throughput screening model for human high density lipoprotein receptor(CLA-1) agonists.Biomed.Environ.Sci.2005,18(4):265-272
    [11]Liu XH,Hong B,Wang LF,et al.[Establishment of a drug screening model for identifying up-regulator of human high density lipoprotein receptor].Zhongguo Yi.Xue.Ke.Xue.Yuan Xue.Bao.2004,26(4):354-358
    [12]Yang Y,Zhang Z,Jiang W,et al.Identification of novel human high-density lipoprotein receptor Up-regulators using a cell-based high-throughput screening assay.J.Biomol.Screen.2007,12(2):211-219
    [13]Gao Jie,Xu Yanni,Yang Yuan,et al.Identification of up-regulators of human ATP-binding cassette transporter A1 via high throughput screening of synthetic and natural compound library.J.Biomol.Screen.2008,in press
    [14] Zhang Y, Da S, Jr., Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 2005, 115(10): 2870-2874
    
    [15] Christiansen-Weber TA, Voland JR, Wu Y, et al. Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency. Am. J.Pathol. 2000, 157(3): 1017-1029
    
    [16] Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 1999, 22(4): 347-351
    
    [17] Coutinho JM, Singaraja RR, Kang M, et al. Complete functional rescue of the ABCA1 -/- mouse by human BAC transgenesis. J. Lipid Res. 2005,46(6): 1113-1123
    
    [18] Young SG and Fielding CJ. The ABCs of cholesterol efflux. Nat. Genet. 1999,22(4): 316-318
    
    [19] Malerod L, Sporstol M, Juvet LK, et al. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor gamma and hepatocyte nuclear factor 4alpha. Biochem. Biophys. Res. Commun. 2003, 305(3): 557-565
    
    [20] Varban ML, Rinninger F, Wang N, et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc.Natl. Acad. Sci. U. S. A. 1998,95(8): 4619-4624
    
    [21] Kelly WK and Marks PA. Drug insight: Histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat. Clin. Pract. Oncol. 2005, 2(3): 150-157
    
    [22] Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999, 401(6749):188-193
    
    [23] Marks PA, Richon VM, and Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst. 2000, 92(15):1210-1216
    
    [24] Tsuji N, Kobayashi M, Nagashima K, et al. A new antifungal antibiotic,trichostatin. J. Antibiot. (Tokyo). 1976, 29(1): 1-6
    
    [25] Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol.Chem. 1990,265(28): 17174-17179
    [26] Nakamura C, Matsushita I, Kosaka E, et al. Anti-arthritic effects of combined treatment with histone deacetylase inhibitor and low-intensity ultrasound in the presence of microbubbles in human rheumatoid synovial cells. Rheumatology.(Oxford). 2008, 47(4): 418-424
    
    [27] Nasu Y, Nishida K, Miyazawa S, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthritis. Cartilage. 2008,16(6): 723-732
    
    [28] Mishra N, Reilly CM, Brown DR, et al. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/Ipr mouse. J. Clin. Invest. 2003, 111(4): 539-552
    
    [29] Doris B, Parks J, Rankin C, et al. Histone Deacetylase Inhibitors may Prevent Atherosclerosis while Treating Lupus. Arthritis Rheum. 2005, 52(9 Suppl): S698
    
    [30] Goldstein JL, Ho YK, Basu SK, et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. U. S. A. 1979, 76(1): 333-337
    
    [31] Fogelman AM, Shechter I, Seager J, et al. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc. Natl. Acad. Sci. U. S. A. 1980, 77(4): 2214-2218
    
    [32] Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993,268(16): 11811-11816
    
    [33] Febbraio M, Guy E, Coburn C, et al. The impact of overexpression and deficiency of fatty acid translocase (FAT)/CD36. Mol. Cell Biochem. 2002, 239(1-2):193-197
    
    [34] Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem.1999,274(27): 19055-19062
    
    [35] Kashiwagi H, Honda S, Take H, et al. Detection of Naka antigen and GP IV (CD36) mRNA in monocytes of Naka-negative subjects. Thromb. Haemost. 1992,67(3): 384-385
    
    [36] Kashiwagi H, Tomiyama Y, Kosugi S, et al. Family studies of type II CD36 deficient subjects: linkage of a CD36 allele to a platelet-specific mRNA expression defect(s) causing type II CD36 deficiency. Thromb. Haemost. 1995, 74(2): 758-763
    
    [37] Kashiwagi H, Honda S, Take H, et al. Presence of the entire coding region of GP IV mRNA in Nak(a)-negative platelets. Int. J. Hematol. 1993, 57(2): 153-161
    [38] Greenwalt DE, Lipsky RH, Ockenhouse CF, et al. Membrane glycoprotein CD36:a review of its roles in adherence, signal transduction, and transfusion medicine.Blood. 1992, 80(5): 1105-1115
    
    [39] Febbraio M, Hajjar DP, and Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin.Invest. 2001, 108(6): 785-791
    
    [40] Ge Y and Elghetany MT. CD36: a multiligand molecule. Lab Hematol. 2005,11(1): 31-37
    
    [41] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice.J. Clin. Invest. 2000, 105(8): 1049-1056
    
    [42] Huh HY, Pearce SF, Yesner LM, et al. Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation. Blood. 1996, 87(5): 2020-2028
    
    [43] Kunjathoor W, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 2002,277(51): 49982-49988
    
    [44] Guy E, Kuchibhotla S, Silverstein R, et al. Continued inhibition of atherosclerotic lesion development in long term Western diet fed CD36o /apoEo mice.Atherosclerosis. 2007, 192(1): 123-130
    
    [45] Nicholson AC, Han J, Febbraio M, et al. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann. N. Y. Acad. Sci. 2001, 947 224-228
    
    [46] Martin CA, Longman E, Wooding C, et al. Cd36, a class B scavenger receptor,functions as a monomer to bind acetylated and oxidized low-density lipoproteins.Protein Sci. 2007,
    
    [47] Zhao Z, de Beer MC, Cai L, et al. Low-density lipoprotein from apolipoprotein E-deficient mice induces macrophage lipid accumulation in a CD36 and scavenger receptor class A-dependent manner. Arterioscler. Thromb. Vasc. Biol. 2005, 25(1):168-173
    
    [48] Rahaman SO, Lennon DJ, Febbraio M, et al. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006, 4(3):211-221
    [49] Pearce SF, Roy P, Nicholson AC, et al. Recombinant glutathione S-transferase/CD36 fusion proteins define an oxidized low density lipoprotein-binding domain. J. Biol. Chem. 1998, 273(52): 34875-34881
    
    [50] Parathath S, Connelly MA, Rieger RA, et al. Changes in plasma membrane properties and phosphatidylcholine subspecies of insect Sf9 cells due to expression of scavenger receptor class B, type I, and CD36. J. Biol. Chem. 2004, 279(40):41310-41318
    
    [51] Asch AS, Liu I, Briccetti FM, et al. Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science. 1993,262(5138): 1436-1440
    
    [52] Frieda S, Pearce A, Wu J, et al. Recombinant GST/CD36 fusion proteins define a thrombospondin binding domain. Evidence for a single calcium-dependent binding site on CD36. J. Biol. Chem. 1995, 270(7): 2981-2986
    
    [53] Pearce SF, Roy P, Nicholson AC, et al. Recombinant glutathione S-transferase/CD36 fusion proteins define an oxidized low density lipoprotein-binding domain. J. Biol. Chem. 1998, 273(52): 34875-34881
    
    [54] Daviet L, Malvoisin E, Wild TF, et al. Thrombospondin induces dimerization of membrane-bound, but not soluble CD36. Thromb. Haemost. 1997, 78(2): 897-901
    
    [55] Pearce SF, Wu J, and Silverstein RL. A carboxyl terminal truncation mutant of CD36 is secreted and binds thrombospondin: evidence for a single transmembrane domain. Blood. 1994, 84(2): 384-389
    
    [56] Gruarin P, De ML, and Alessio M. CD36 folding revealed by conformational epitope expression is essential for cytoadherence of Plasmodium falciparum-infected red blood cells. Parasite Immunol. 2000, 22(7): 349-360
    
    [57] Stewart BW and Nagarajan S. Recombinant CD36 inhibits oxLDL-induced ICAM-1-dependent monocyte adhesion. Mol. Immunol. 2006,43(3): 255-267
    
    [58] Martin CA, Longman E, Wooding C, et al. Cd36, a class B scavenger receptor,functions as a monomer to bind acetylated and oxidized low-density lipoproteins.Protein Sci. 2007, 16(11): 2531-2541
    
    [59] Romanos MA, Scorer CA, and Clare JJ. Foreign gene expression in yeast: a review. Yeast. 1992, 8(6): 423-488
    
    [60] Cregg JM, Cereghino JL, Shi J, et al. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 2000, 16(1): 23-52
    [61] Holub MC, Hegyesi H, Igaz P, et al. Soluble interleukin-6 receptor enhanced by oncostatin M induces major changes in gene expression profile of human hepatoma cells. Immunol. Lett. 2002, 82(1-2): 79-84
    
    [62] Jablonska E, Jablonski J, and Holownia A. Role of neutrophils in release of some cytokines and their soluble receptors. Immunol. Lett. 1999, 70(3): 191-197
    
    [63] Sporri B, Wiesmann UN, Ochsenbein RM, et al. Soluble IL-1 receptor type I binds to human dermal fibroblasts and induces calcium flux. FEBS Lett. 1998, 434(3):283-288
    
    [64] Heaney ML and Golde DW. Soluble receptors in human disease. J. Leukoc. Biol.1998, 64(2): 135-146
    
    [65] Brown SJ, Becherer KA, Blumeyer K, et al. Expression and ligand binding assays of soluble cytokine receptor-immunoglobulin fusion proteins. Protein Expr.Purif. 1998, 14(1): 120-124
    
    [66] Thibault V, Terlain B, Graham FL, et al. Construction and characterization of a replication-deficient adenovirus expressing rat-soluble interleukin-6 receptor. Mol.Med. 1997, 3(8): 519-529
    
    [67] Zhang Y, Hu J, and Li Y. [Expression of the human soluble interleukin 4 receptor in methylotropic yeast]. Sheng Wu Gong. Cheng Xue. Bao. 2004, 20(2): 197-202
    
    [68] Moller HJ, Peterslund NA, Graversen JH, et al. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood. 2002, 99(1):378-380
    
    [69] Handberg A, Levin K, Hojlund K, et al. Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: a novel marker of insulin resistance. Circulation. 2006, 114(11): 1169-1176
    
    [70] Sankala M, Brannstrom A, Schulthess T, et al. Characterization of recombinant soluble macrophage scavenger receptor MARCO. J. Biol. Chem. 2002, 277(36):33378-33385
    
    [71] Hu J and Li Y. [Expression of the human soluble low density lipoprotein receptor in methylotropic yeast]. Sheng Wu Gong. Cheng Xue. Bao. 2002,18(1): 40-44
    
    [72] Hu J, Hong B, and Li Y. [Expression of the human extracellular domain of high density lipoprotein receptor in methylotropic yeast]. Yi. ChuanXue. Bao. 2003, 30(1):20-24
    
    [73] Liu Ming, Hong Bin, Wu Yexiang, et al. Secretory Expression of Extracellular Domains of Human Scavenger Receptor Class A Type II in Pichia pastoris. Chinese Journal of Biotechnology. 2004, 20(6): 868-874
    [1]Babiak J and Rudel LL.Lipoproteins and atherosclerosis.Baillieres Clin.Endocrinol.Metab.1987,1(3):515-550
    [2]Dresel HA,Friedrich EA,Otto I,et al.The low density lipoprotein and low density lipoprotein receptors and their possible importance in the pathogenesis of atherosclerosis.Arzneimittelforschung.1985,35(12A):1936-1940
    [3]Tall AR.Plasma high density lipoproteins.Metabolism and relationship to atherogenesis.J.Clin.Invest.1990,86(2):379-384
    [4]Barter PJ and Rye KA.High-density lipoproteins and coronary heart disease.J.Cardiovasc.Risk.1994,1(3):217-221
    [5]Kwiterovich PO,Jr.The antiatherogenic role of high-density lipoprotein cholesterol.Am.J.Cardiol.1998,82(9A):13Q-21Q
    [6]Brown MS and Goldstein JL.Receptor-mediated endocytosis:insights from the lipoprotein receptor system.Proc.Natl.Acad.Sci.U.S.A.1979,76(7):3330-3337
    [7]Faust JR,Goldstein JL,and Brown MS.Squalene synthetase activity in human fibroblasts:regulation via the low density lipoprotein receptor.Proc.Natl.Acad.Sci.U.S.A.1979,76(10):5018-5022
    [8]Goldstein JL,Ho YK,Basu SK,et al.Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein,producing massive cholesterol deposition.Proc.Natl.Acad.Sci.U.S.A.1979,76(1):333-337
    [9]Fogelman AM,Shechter I,Seager J,et al.Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages.Proc.Natl.Acad.Sci.U.S.A.1980,77(4):2214-2218
    [10]Yui S,Sasaki T,Miyazaki A,et al.Induction of murine macrophage growth by modified LDLs.Arterioscler.Thromb.1993,13(3):331-337
    [11]Shashkin P,Dragulev B,and Ley K.Macrophage differentiation to foam cells.Curr.Pharm.Des.2005,11(23):3061-3072
    [12]Brown MS,Dana SE,and Goldstein JL.Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins.Proc.Natl.Acad.Sci.U.S.A.1973,70(7):2162-2166
    [13] Lindgren V, Luskey KL, Russell DW, et al. Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes.Proc. Natl. Acad. Sci. U. S. A. 1985, 82(24): 8567-8571
    
    [14] Francke U, Brown MS, and Goldstein JL. Assignment of the human gene for the low density lipoprotein receptor to chromosome 19: synteny of a receptor, a ligand,and a genetic disease. Proc. Natl. Acad. Sci. U. S. A. 1984, 81(9): 2826-2830
    
    [15] Sudhof TC, Goldstein JL, Brown MS, et al. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985,228(4701): 815-822
    
    [16] Gilbert W. Genes-in-pieces revisited. Science. 1985,228(4701): 823-824
    
    [17] Soutar AK and Knight BL. Structure and regulation of the LDL-receptor and its gene. Br. Med. Bull. 1990,46(4): 891-916
    
    [18] Mustad VA, Ellsworth JL, Cooper AD, et al. Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs. J. Lipid Res. 1996, 37(11): 2310-2323
    
    [19] Dhawan P, Chang R, and Mehta KD. Identification of essential nucleotides of the FP1 element responsible for enhancement of low density lipoprotein receptor gene transcription. Nucleic Acids Res. 1997, 25(20): 4132-4138
    
    [20] Yamamoto T, Davis CG, Brown MS, et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984, 39(1):27-38
    
    [21] Wilson GM, Vasa MZ, and Deeley RG Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3' untranslated region.J. Lipid Res. 1998, 39(5): 1025-1032
    
    [22] Tolleshaug H, Goldstein JL, Schneider WJ, et al. Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell.1982, 30(3): 715-724
    
    [23] Gent J and Braakman I. Low-density lipoprotein receptor structure and folding.Cell Mol. Life Sci. 2004, 61(19-20): 2461-2470
    [24]Rudenko G,Henry L,Henderson K,et al.Structure of the LDL receptor extracellular domain at endosomal pH.Science.2002,298(5602):2353-2358
    [25]Kurniawan ND,Aliabadizadeh K,Brereton IM,et al.NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor.J.Mol.Biol.2001,311(2):341-356
    [26]Rudel LL,Parks JS,Johnson FL,et al.Low density lipoproteins in atherosclerosis.J.Lipid Res.1986,27(5):465-474
    [27]Spady DK.Hepatic clearance of plasma low density lipoproteins.Semin.Liver Dis.1992,12(4):373-385
    [28]Vaziri ND and Liang K.Effects of HMG-CoA reductase inhibition on hepatic expression of key cholesterol-regulatory enzymes and receptors in nephrotic syndrome.Am.J.Nephrol.2004,24(6):606-613
    [29]Crisby M.Modulation of the inflammatory process by statins.Timely.Top.Med.Cardiovasc.Dis.2005,9 E3
    [30]Lin HS,Rampersaud AA,Archer RA,et al.Synthesis and biological evaluation of a new series of sterols as potential hypocholesterolemic agents.J.Med.Chem.1995,38(2):277-288
    [31]Koguchi Y,Nishio M,Kotera J,et al.Trichostatin A and herboxidiene up-regulate the gene expression of low density lipoprotein receptor.J.Antibiot.(Tokyo).1997,50(11):970-971
    [32]Murakami S,Nitanai I,Uchida S,et al.Up-regulation of low density lipoprotein receptor by a novel isobenzofranone derivative,MD-700.Atherosclerosis.1999,146(2):281-290
    [33]Bensch WR,Gadski RA,Bean JS,et al.Effects of LY295427,a low-density lipoprotein(LDL) receptor up-regulator,on LDL receptor gene transcription and cholesterol metabolism in normal and hypercholesterolemic hamsters.J.Pharmacol.Exp.Ther.1999,289(1):85-92
    [34]Kong W,Wei J,Abidi P,et al.Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.Nat.Med.2004,10(12):1344-1351
    [35]Abidi P,Zhou Y,Jiang JD,et al.Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine.Arterioscler.Thromb.Vasc.Biol.2005,25(10):2170-2176
    [36]Abidi P,Chen W,Kraemer FB,et al.The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms.J.Lipid Res.2006,47(10):2134-2147
    [37]Krieger M and Herz J.Structures and functions of multiligand lipoprotein receptors:macrophage scavenger receptors and LDL receptor-related protein(LRP).Annu.Rev.Biochem.1994,63 601-637
    [38]Peiser L and Gordon S.The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation.Microbes.Infect.2001,3(2):149-159
    [39]Gough PJ and Gordon S.The role of scavenger receptors in the innate immune system.Microbes.Infect.2000,2(3):305-311
    [40]Matsumoto A,Naito M,Itakura H,et al.Human maerophage scavenger receptors:primary structure,expression,and localization in atherosclerotic lesions.Proc.Natl.Acad.Sci.U.S.A.1990,87(23):9133-9137
    [41]Emi M,Asaoka H,Matsumoto A,et al.Structure,organization,and chromosomal mapping of the human macrophage scavenger receptor gene.J.Biol.Chem.1993,268(3):2120-2125
    [42]Moulton KS,Semple K,Wu H,et al.Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif.Mol.Cell Biol.1994,14(7):4408-4418
    [43]Wu H,Moulton K,Horvai A,et al.Combinatorial interactions between AP-1 and ets domain proteins contribute to the developmental regulation of the macrophage scavenger receptor gene.Mol.Cell Biol.1994,14(3):2129-2139
    [44]Horvai A,Palinski W,Wu H,et al.Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.Proc.Natl.Acad.Sci.U.S.A.1995,92(12):5391-5395
    [45] Hiltunen TP, Gough PJ, Greaves DR, et al. Rabbit atherosclerotic lesions express scavenger receptor AIII mRNA, a naturally occurring splice variant that encodes a non-functional, dominant negative form of the macrophage scavenger receptor.Atherosclerosis. 2001, 154(2): 415-419
    
    [46] Horiuchi S, Sakamoto Y, and Sakai M. Scavenger receptors for oxidized and glycated proteins. Amino. Acids. 2003,25(3-4): 283-292
    
    [47] Robbins AK and Horlick RA. Macrophage scavenger receptor confers an adherent phenotype to cells in culture. Biotechniques. 1998,25(2): 240-244
    
    [48] Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 1997, 386(6622):292-296
    
    [49] de Winther MP, van Dijk KW, van Vlijmen BJ, et al. Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice,using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages. Atherosclerosis. 1999, 147(2): 339-347
    
    [50] Suzuki H, Kurihara Y, Takeya M, et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J. Atheroscler. Thromb. 1997,4(1): 1-11
    
    [51] Suzuki K, Doi T, Imanishi T, et al. The conformation of the alpha-helical coiled coil domain of macrophage scavenger receptor is pH dependent. Biochemistry. 1997,36(49): 15140-15146
    
    [52] Laukkanen J, Lehtolainen P, Gough PJ, et al. Adenovirus-mediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified low-density lipoprotein degradation and foam-cell formation in macrophages.Circulation. 2000, 101(10): 1091-1096
    
    [53] Lysko PG, Weinstock J, Webb CL, et al. Identification of a small-molecule,nonpeptide macrophage scavenger receptor antagonist. J. Pharmacol. Exp. Ther. 1999,289(3): 1277-1285
    [54]Liu M,Hong B,Wu Y.X,et al.Secretory Expression of Extracellular Domains of Human Scavenger Receptor Class A Type Ⅱ in Pichia pastoris.Chinese Journal of Biotechnology.2004,20(6):868-874
    [55]Collot-Teixeira S,Martin J,rmott-Roe C,et al.CD36 and macrophages in atherosclerosis.Cardiovasc.Res.2007,75(3):468-477
    [56]Fernandez-Ruiz E,Armesilla AL,Sanchez-Madrid F,et al.Gene encoding the collagen type Ⅰ and thrombospondin receptor CD36 is located on chromosome 7q11.2.Genomics.1993,17(3):759-761
    [57]Armesilla AL and Vega MA.Structural organization of the gene for human CD36glycoprotein.J.Biol.Chem.1994,269(29):18985-18991
    [58]Andersen M,Lenhard B,Whatling C,et al.Alternative promoter usage of the membrane glycoprotein CD36.BMC.Mol.Biol.2006,7 8
    [59]Sato O,Kuriki C,Fukui Y,et al.Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands.J.Biol.Chem.2002,277(18):15703-15711
    [60]Moore KJ,Rosen ED,Fitzgerald ML,et al.The role of PPAR-gamma in macrophage differentiation and cholesterol uptake.Nat.Med.2001,7(1):41-47
    [61]Chawla A,Barak Y,Nagy L,et al.PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation.Nat.Med.2001,7(1):48-52
    [62]Han J,Hajjar DP,Zhou X,et al.Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression.A new mechanism of action for high density lipoprotein.J.Biol.Chem.2002,277(26):23582-23586
    [63]Tandon NN,Kralisz U,and Jamieson GA.Identification of glycoprotein Ⅳ(CD36) as a primary receptor for platelet-collagen adhesion.J.Biol.Chem.1989,264(13):7576-7583
    [64]Greenwalt DE,Lipsky RH,Ockenhouse CF,et al.Membrane glycoprotein CD36:a review of its roles in adherence,signal transduction,and transfusion medicine.Blood.1992,80(5):1105-1115
    [65] Febbraio M, Hajjar DP, and Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin.Invest. 2001, 108(6): 785-791
    
    [66] Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993,268(16): 11811-11816
    
    [67] Febbraio M, Guy E, Coburn C, et al. The impact of overexpression and deficiency of fatty acid translocase (FAT)/CD36. Mol. Cell Biochem. 2002, 239(1-2):193-197
    
    [68] Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem.1999,274(27): 19055-19062
    
    [69] Curtis BR and Aster RH. Incidence of the Nak(a)-negative platelet phenotype in African Americans is similar to that of Asians. Transfusion. 1996, 36(4): 331-334
    
    [70] Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects.J. Clin. Invest. 1995, 96(4): 1859-1865
    
    [71] Kunjathoor W, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 2002,277(51): 49982-49988
    
    [72] Abumrad N, Coburn C, and Ibrahimi A. Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim.Biophys. Acta. 1999, 1441(1): 4-13
    
    [73] Abumrad NA, Ajmal M, Pothakos K, et al. CD36 expression and brain function:does CD36 deficiency impact learning ability? Prostaglandins Other Lipid Mediat.2005, 77(1-4): 77-83
    
    [74] El Khoury JB, Moore KJ, Means TK, et al. CD36 mediates the innate host response to beta-amyloid. J. Exp. Med. 2003,197(12): 1657-1666
    [75] Coraci IS, Husemann J, Berman JW, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am. J. Pathol. 2002,160(1): 101-112
    
    [76] Oquendo P, Hundt E, Lawler J, et al. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell. 1989, 58(1): 95-101
    
    [77] van Schravendijk MR, Handunnetti SM, Barnwell JW, et al. Normal human erythrocytes express CD36, an adhesion molecule of monocytes, platelets, and endothelial cells. Blood. 1992, 80(8): 2105-2114
    
    [78] Hoebe K, Georgel P, Rutschmann S, et al. CD36 is a sensor of diacylglycerides.Nature. 2005, 433(7025): 523-527
    
    [79] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice.J. Clin. Invest. 2000, 105(8): 1049-1056
    
    [80] Febbraio M, Guy E, and Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler.Thromb. Vasc. Biol. 2004,24(12): 2333-2338
    
    [81] Guy E, Kuchibhotla S, Silverstein R, et al. Continued inhibition of atherosclerotic lesion development in long term Western diet fed CD36o /apoEo mice.Atherosclerosis. 2007,192(1): 123-130
    
    [82] Bodart V, Febbraio M, Demers A, et al. CD36 mediates the cardiovascular action of growth hormone-releasing peptides in the heart. Circ. Res. 2002, 90(8): 844-849
    
    [83] Marleau S, Harb D, Bujold K, et al. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions. FASEB J. 2005,19(13): 1869-1871
    
    [84] Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996, 271(5248): 518-520
    
    [85] Calvo D and Vega MA. Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. J. Biol. Chem. 1993,268(25): 18929-18935
    [86] Murao K, Terpstra V, Green SR, et al. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J. Biol. Chem. 1997,272(28): 17551-17557
    
    [87] Out R, Hoekstra M, Spijkers JA, et al. Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice. J. Lipid Res. 2004,45(11): 2088-2095
    
    [88] Cao G, Garcia CK, Wyne KL, et al. Structure and localization of the human gene encoding SR-BI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1.J. Biol. Chem. 1997, 272(52): 33068-33076
    
    [89] Lopez D and McLean MP. Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene.Endocrinology. 1999, 140(12): 5669-5681
    
    [90] Ritsch A, Tancevski I, Schgoer W, et al. Molecular characterization of rabbit scavenger receptor class B types I and II: portal to central vein gradient of expression in the liver. J. LipidRes. 2004,45(2): 214-222
    
    [91] de Beer MC, Durbin DM, Cai L, et al. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI. J. Biol. Chem. 2001, 276(19): 15832-15839
    
    [92] Thuahnai ST, Lund-Katz S, Williams DL, et al. Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J. Biol. Chem. 2001, 276(47): 43801-43808
    
    [93] Uittenbogaard A, Shaul PW, Yuhanna IS, et al. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem. 2000, 275(15):11278-11283
    
    [94] Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J. Clin. Invest. 2001, 108(6): 793-797
    
    [95] Zhang Y, Da S, Jr., Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 2005,115(10): 2870-2874
    [96] Ohgami N, Nagai R, Miyazaki A, et al. Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J. Biol. Chem. 2001,276(16): 13348-13355
    
    [97] Brodeur MR, Luangrath V, Bourret G, et al. Physiological importance of SR-BI in the in vivo metabolism of human HDL and LDL in male and female mice. J. Lipid Res. 2005,46(4): 687-696
    
    [98] Kozarsky KF, Donahee MH, Rigotti A, et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997,387(6631): 414-417
    
    [99] Nieland TJ, Penman M, Dori L, et al. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc. Natl. Acad. Sci.U. S. A. 2002, 99(24): 15422-15427
    
    [100] Nieland TJ, Shaw JT, Jaipuri FA, et al. Identification of the molecular target of small molecule inhibitors of HDL receptor SR-BI activity. Biochemistry. 2008, 47(1):460-472
    
    [101] Tian DF, Hong B, and Si SY. Development of a new high-throughput screening model for human high density lipoprotein receptor (CLA-1) agonists. Biomed.Environ. Sci. 2005, 18(4): 265-272
    
    [102] Liu XH, Hong B, Wang LF, et al. [Establishment of a drug screening model for identifying up-regulator of human high density lipoprotein receptor]. Zhongguo Yi.Xue. Ke. Xue. Yuan Xue. Bao. 2004,26(4): 354-358
    
    [103] Yang Y, Zhang Z, Jiang W, et al. Identification of novel human high-density lipoprotein receptor Up-regulators using a cell-based high-throughput screening assay.J. Biomol. Screen. 2007, 12(2): 211-219
    
    [104] Luciani MF, Denizot F, Savary S, et al. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics. 1994,21(1): 150-159
    
    [105] Pullinger CR, Hakamata H, Duchateau PN, et al. Analysis of hABC1 gene 5' end: additional peptide sequence, promoter region, and four polymorphisms. Biochem.Biophys. Res. Commun. 2000,271(2): 451-455
    [106] Singaraja RR, James ER, Crim J, et al. Alternate transcripts expressed in response to diet reflect tissue-specific regulation of ABCA1. J. Lipid Res. 2005,46(10): 2061-2071
    
    [107] Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000,289(5484): 1524-1529
    
    [108] Wang N, Chen W, Linsel-Nitschke P, et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J.Clin. Invest. 2003, 111(1): 99-107
    
    [109] Langmann T, Klucken J, Reil M, et al. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun. 1999, 257(1): 29-33
    
    [110] Becq F, Hamon Y, Bajetto A, et al. ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes. J. Biol. Chem. 1997, 272(5): 2695-2699
    
    [111] Szakacs G, Langmann T, Ozvegy C, et al. Characterization of the ATPase cycle of human ABCA1: implications for its function as a regulator rather than an active transporter. Biochem. Biophys. Res. Commun. 2001, 288(5): 1258-1264
    
    [112] Tanaka AR, Ikeda Y, be-Dohmae S, et al. Human ABCA1 contains a large amino-terminal extracellular domain homologous to an epitope of Sjogren's Syndrome. Biochem. Biophys. Res. Commun. 2001, 283(5): 1019-1025
    
    [113] Singaraja RR, Bocher V, James ER, et al. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1. J. Biol. Chem. 2001, 276(36): 33969-33979
    
    [114] Young SG and Fielding CJ. The ABCs of cholesterol efflux. Nat. Genet. 1999,22(4): 316-318
    
    [115] Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 1999, 22(4): 347-351
    [116] Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 1999, 22(4):336-345
    
    [117] Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest.1999,104(8):R25-R31
    
    [118] Joyce C, Freeman L, Brewer HB, Jr., et al. Study of ABCA1 function in transgenic mice. Arterioscler. Thromb. Vasc. Biol. 2003, 23(6): 965-971
    
    [119] Christiansen-Weber TA, Voland JR, Wu Y, et al. Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency. Am. J.Pathol. 2000, 157(3): 1017-1029
    
    [120] Coutinho JM, Singaraja RR, Kang M, et al. Complete functional rescue of the ABCA1 -/- mouse by human BAC transgenesis. J. Lipid Res. 2005,46(6): 1113-1123
    
    [121] Costet P, Luo Y, Wang N, et al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem. 2000, 275(36):28240-28245
    
    [122] Tsutsumi K, Inoue Y, Shima A, et al. The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J. Clin. Invest. 1993, 92(1): 411-417
    
    [123] Zhang C, Yin W, Liao D, et al. NO-1886 upregulates ATP binding cassette transporter A1 and inhibits diet-induced atherosclerosis in Chinese Bama minipigs. J.Lipid Res. 2006,47(9): 2055-2063
    
    [124] Gao J, Xu Y.N, Yang Y, et al. Identification of up-regulators of human ATP-binding cassette transporter A1 via high throughput screening of synthetic and natural compound library. J. Biomol. Screen. 2008,
    
    [125] Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr. Opin. Lipidol. 1997, 8(5): 275-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700