用户名: 密码: 验证码:
无线局域网中竞争窗口控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线局域网凭借其移动性强、灵活性好、易于扩展、成本低廉等特点,近年来得到了迅速的发展并被广泛地应用,被看作是未来个人通信系统的重要组成部分。IEEE 802.11系列标准是无线局域网中应用最为广泛的技术标准。
     IEEE 802.11系列标准在MAC层采用CSMA/CA机制,通过二进制指数退避算法控制竞争窗口的大小,以此安排无线局域网中每个节点接入无线信道的顺序。但是,这种竞争窗口控制方法使得IEEE 802.11系列无线局域网的实际吞吐量远远低于其物理层速率所能达到的吞吐量,而且使得无线局域网的公平性较差,这些在网络中的竞争节点数量较多时尤为明显,而且,随着IEEE 802.11系列标准增加了对服务质量以及多速率等的支持,竞争窗口对这些方面的影响也值得关注。本文对于IEEE 802.11系列无线局域网中的竞争窗口控制问题进行了研究,主要研究成果如下:1)IEEE 802.11系列无线局域网中的竞争窗口参数调整问题:针对目前在IEEE 802.11系列无线局域网中,大多数竞争窗口的控制方法较为复杂,从而难以在实际中实现的问题,分析了使用指数退避算法时,竞争窗口的参数(包括竞争窗口最小值和最大值)对无线局域网的饱和吞吐量的影响,提出了易于实现的竞争窗口参数调整算法CWPA。CWPA只需要通过对二进制指数退避算法中的竞争窗口的最小值和最大值做简单调整,就能够使网络获得更好的性能。模拟实验表明,与原有的IEEE 802.11的MAC层机制相比较,CWPA在吞吐量和公平性方面,都能够获得更好的结果。
     2)IEEE 802.11e无线局域网中竞争窗口对确定比例的服务质量的影响:针对目前IEEE 802.11e标准中的二进制指数退避算法无法对确定比例的服务质量提供很好的支持的问题,设计了新的分布式的竞争窗口控制算法。新的竞争窗口控制算法通过侦听信道中的连续空闲时隙数估计信道的忙碌程度,根据已知的吞吐量比率对竞争窗口进行控制,以使信道中的连续空闲时隙数接近理论上的近似最优值,从而在最大化网络吞吐量的同时,实现确定比例的服务质量。模拟实验表明,我们的分布式竞争窗口控制算法可以对确定比例的服务质量提供很好的支持。
     3)IEEE 802.11系列多速率无线局域网中竞争窗口对网络性能的影响:在多速率无线局域网中,帧冲突是影响速率调整算法提高网络性能的重要原因之一。针对目前的速率调整算法无法减少网络中的帧冲突的问题,研究了IEEE 802.11系列多速率无线局域网中竞争窗口对饱和吞吐量的影响,指出了以往的速率调整算法无法减少网络中的帧冲突的原因,提出了在多速率无线局域网中使用竞争窗口控制算法来减少帧冲突,从而改进网络性能的方法。模拟实验表明,在多速率无线局域网中,竞争窗口控制算法的引入,可以在已有的速率调整算法的基础上,使网络性能大大提高,获得更好的吞吐量和公平性。
In recent years, wireless LANs are becoming increasingly prevalent and have been widely used for their mobility, flexibility, easy extension and low cost. Wireless LANs have been interpreted as an integral part of future's personal communication systems. As the most widely used standards, IEEE 802.11x protocols are the most widely used standards in wireless LANs.
     IEEE 802.11 standards use CSMA/CA mechanism in MAC layer. Each node is scheduled to access the wireless channel through the contention window control algorithm, which is named as binary exponential back-off algorithm. But using this mechanism, wireless LANs achieve not only lower throughput comparing with physical rate, but also poor fairness, especially when the number of contending nodes is large. Furthermore, some other functions have been added to support QoS and multi-rate, so the impact of the contention window control on these aspects also should be focused. The main results of the dissertation are as follows:
     1) Contention window parameters control in IEEE 802.11 wireless LANs: Most of current contention window control algorithms are complicated to realized in practical environment. So this dissertation studies the impact of contention window parameters(including the minimum contention window and the maximum contention window) on the saturation throughput of wireless LANs when using binary exponential back-off algorithm. CWPA(Contention Window Parameters Adaptation), which may be easy to implement, is presented. In CWPA, only the minimum contention window and maximum contention window are adapted to improving the performance of wireless LANs. The simulation results show that, comparing with the MAC mechanism of IEEE 802.11 standards, CWPA obtains higher throughput and better fairness.
     2) The impact of contention window on the derterministic proportional QoS: In wireless LANs, IEEE 802.11e can't properly support deterministic proportional QoS because of the binary exponential back-off algorithm used in it. To solve this problem, this dissertation presents a distributed algorithm of contention window control. In our algorithm, each node estimates the number of consecutive idle slots in wireless LANs, and then controls the contention window based on the throughput ratio of each node. By converging the average number of consecutive idle slots to its approximately optimal value through contention window control, deterministic proportional QoS in wireless LANs can be supported. Simulation results also demonstrate that the proposed method can support deterministic proportional QoS.
     3) The impact of contention window control on the performance of IEEE 802.11 multi-rate wireless LANs: Collisions have negative impact on the performance of wireless LANs, and it can't be eliminated by rate adaptation. This dissertation studies the impact of contention window on the saturated throughput in IEEE 802.11 multi-rate wireless LANs. The ineffectiveness of rate adaptation on collisions is investigated, and present to improve the performance of multi-rate wireless LANs by decreasing collisions through the contention window control. Simulation results show that, combining rate adaptation with contention window control can achieve much better network performances, including throughput and fairness, than only using rate adaptation in IEEE 802.11 multi-rate wireless LANs.
引文
[1]IEEE Computer Society.IEEE 802.11:the working group setting the standards for wireless LANs:http://www.ieee802.org/11/.2008.5.
    [2]Gast M S.2006.802.11 wireless networks[M].2nd ed.南京:东南大学出版社.
    [3]刘乃安,李晓辉,张联峰,王多华,何广法.2004.无线局域网:原理、技术与应用[M].西安:西安电子科技大学出版社.
    [4]Geier J.2001.无线局域网[M].王群,李馥娟,叶清扬译.北京:人民邮电出版社.
    [5]金纯,陈林星,杨吉云.2004.IEEE 802.11无线局域网[M].北京:电子工业出版社.
    [6]康凯.2007.IEEE 802.11系列无线局域网MAC层的研究[D]:[博士].北京:清华大学.
    [7]ETSI.ETSI Collaborative Portal:http://portal.etsi.org/bran/.2008.5.
    [8]Bluetooth Special Interest Group.Bluetooth.org:http://www.bluetooth.org/.2008.5.
    [9]HomeRF Resource Center.http://www.palowireless.com/homerf/.2008.5.
    [10]IEEE Computer Society.1999.IEEE Std 802.11-1999:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)Specifications[S].New York:IEEE press.
    [11]IEEE Computer Society.1999.IEEE Std 802.11 b-1999:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)Specifications-Higher-Speed Physical Layer Extension in the 2.4GHz Band IS].New York:IEEE press.
    [12]IEEE Computer Society.1999.IEEE Std 802.11a-1999:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)Specifications-Higher-Speed Physical Layer Extension in the 5GHz Band[S].New York:IEEE press.
    [13]IEEE Computer Society.2003.IEEE Std 802.11g-2003:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)Specifications-Amendment 4:Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band[S].New "York:IEEE press.
    [14]IEEE Computer Society.2001.IEEE Std 802.11d-2001:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)Specifications-Amendment 3:Specification for operation in additional regulatory domains[S].New York:IEEE press.
    [15]IEEE Computer Society.2005.IEEE Std 802.11e-2005:Wireless LAN Medium Access Control(MAC)and Physical Layer(PHY)Specifications-Medium Access Control(MAC)Quality of service Enhancements[S].New York:IEEE press.
    [16]Miu A,Tan G,Balakrishnan H,Apostolopoulos J.2004.Divert:fine-grained path selection for wireless LANs[C].Proc.of MOBISYS'04.Paris:IEEE press,203-216.
    [17] Aguayo D, Bicket J, Biswas S, Judd G, Morris R. 2004. Link-level measurements from an 802.11b mesh network [C]. Proc. of ACM SIGCOMM. Boston: ACM press, 121-132.
    [18] Kotz D, Newport C, Gray R S, Liu J, Yuan Y, Elliott C. 2004. Technical Report TR2004-507: Experimental evaluation of wireless simulation assumptions [Z]. Hanover: Dartmouth College.
    [19] Tan G, Guttag J. 2004. Time-based fairness improves performance in multi-rate wireless LANs [C]. Proc. of USENIX'04. Boston: USENIX assoc, 269-282.
    [20] Kochut A, Vasan A, Shankar U, Agrawala A. 2004. Sniffing out the correct physical layer capture model in 802.11b [C]. Proc. of ICNP'04. Berlin: IEEE computer society press, 252-261.
    [21] Bianchi G. 1998. IEEE 802.11 -saturation throughput analysis. IEEE Communications Letters [J], 2(12): 318-320.
    [22] Bianchi G. 2000. Performance analysis of the IEEE 802.11 distributed coordination function [J]. IEEE J. Select. Areas Commun., 18(3): 535-547.
    [23] Foh C H, Tantra J W. 2005. Comments on IEEE 802.11 saturation throughput analysis with freezing of back-off counters [J]. IEEE Communications Letters, 9(2): 130-132.
    [24] Foh C H, Zukerman M. 2002. Performance analysis of the IEEE 802.11 MAC protocol [C]. Proc. Eur. Wireless. Florence: 190-194.
    [25] Ho T S, Chen K C. 1996. Performance analysis of IEEE 802.11 CSMA/CA medium access control protocol [C]. Proc. IEEE personal indoor mobile radio communications. Taipei: IEEE press, 407-411.
    [26] Wu Haitao, Peng Yong, Long Keping. 2002. Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement [C], Proc. of IEEE INFOCOM. New York: IEEE press, 599-607.
    [27] Choi J, Yoo J, Kim C K. 2006. A novel performance analysis model for an IEEE 802.11 wireless LAN [J]. IEEE Communication Letters. 10(5): 335-337.
    [28] Zheng Y, Lu K, Fang D W. 2006. Performance analysis of IEEE 802.11 DCF in imperfect channels [J]. IEEE Transactions on Vehicular Technology. 55(5): 1648-1656.
    [29] Carvalho M M, Garcia-Luna-Aceves J J. 2003. Delay analysis of IEEE 802.11 in single-hop networks [C]. Proc. IEEE ICNP. Atlanta: IEEE press, 146-155.
    [30] Cheng Y, Ling X, Cai L, Song W, Zhuang W, Shen X, Leon-Garcia A. 2006. Statistical multiplexing, admission region, and contention window optimization in multi-class wireless LANs [C]. Proc. QShine'06. Waterloo: ACM press.
    [31] Ziouva E, Antonakopoulos T. 2002. CSMA/CA performance under high traffic conditions: throughput and delay analysis [J]. Computer Communications. 25(3): 313-321.
    [32] Xiao Yang, Pan Yi. 2005. Differentiation, QoS guarantee, and optimization for real-time traffic over one-hop ad hoc networks [J]. IEEE Transactions on Parallel and Distributed System. 16(6): 538-549.
    [33] Xiao Yang. 2004. Performance analysis of IEEE 802.11e EDCF under saturation condition [C]. Proc. IEEE International Conference on Communications. Paris: IEEE press, 170-174.
    [34] Bianchi G, Tinnirello I.2005. Remarks on IEEE 802.11 DCF performance analysis [J]. IEEE Communications Letter. 9(8): 765-767.
    [35] Barghavan V, Demers A, Shenker S, Zhang L. 1994. MACAW: a media access protocol for wireless LAN's [C]. Proc. ACM SIGCOMM. London: ACM press, 212-225.
    [36] Nandagopal T, Kim T, Gao X, Bharghavan V. 2000. Achieving MAC layer fairness in wireless packet networks [C]. Proc. of ACM MOBICOM'00. Boston: ACM press, 87-98.
    [37] Song N O, Kwak B J, Song J, Miller L E. 2003. Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease back-off algorithm [C]. Proc. of VTC 2003 (Spring). New Orleans: IEEE press, 2775-2778.
    [38] Aad I, Ni Q. Barakat C, Turletti T. 2005. Enhancing IEEE 802.11 MAC in congested environments [J]. Elsevier Comput. Commun. J.. 28(14): 1605-1617.
    [39] Kwon Y, Fang Y, Latchman H. 2003. A novel MAC protocol with fast collision resolution for wireless LANs [C]. Proc. of INFOCOM'03. San Francisco: IEEE press, Vol2: 853-862.
    [40] You T, Yeh C H, Hassanein H. 2003. A new class of collision-prevention MAC protocols for ad hoc wireless networks [C]. Proc. of ICC'03. San Francisco: IEEE press, Vol2: 1135-1140.
    [41] Cali F, Conti M, Gregori E. 2000. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit [J]. ACM/IEEE Transactions on Networking. 8(6): 785-799.
    [42] Bianchi G, Tinnirello I. 2003. Kalman filter estimation of the number of competing terminals in an IEEE 802.11 Networks [C]. Proc. of INFOCOM'03. San Francisco: IEEE press, Vol2: 844-852.
    [43] Bononi L, Conti M, Gregori E. 2004. Runtime optimization of IEEE 802.11 wireless LANs performance [J]. IEEE Transactions on Parallel and Distributed Systems. 15(1): 66-80.
    [44] Heusse M, Rousseau F, Guillier R, Duda A. 2005. Idle sense: an optimal access method for high throughput and fairness in rate diverse wireless LANs [C]. Proc. of SIGCOMM. Philadelphia: ACM press, 121-132.
    [45] Ma H, Li H, Zhang P, Luo S, Yuan C, Li X. 2004. Dynamic optimization of IEEE 802.11 CSMA/CA based on the number of competing stations [C], Proc. of ICC'04. Paris: IEEE press, Vol1: 191-195.
    [46] Abeysekera H, Matsuda T, Takine T. 2006. Window control for fairness issue between uplink and downlink flows in IEEE 802.11 wireless LANs [J]. Technical Report of IEICE. 105(628): 91-96.
    [47] Abeysekera H, Matsuda T, Takine T. 2007. Dynamic contention window control to achieve fairness between uplink and downlink flows in IEEE 802.11 WLANs [C]. Proc. WCNC'07. Hong Kong: IEEE press, 2109-2114.
    [48] Lim C, Choi C. 2004. TDM-based coordination function (TCF) in WLAN for High Throughput [C], Proc. of GLOBECOM 2004. Dallas: IEEE press, Vol5: 3235-3239.
    [49] Cali F, Conti M, Gregori E. IEEE 802.11 wireless LAN: Capacity analysis and protocol enhancement [C]. Proc. IEEE INFOCOM'98. San Francisco: IEEE press, Vol1: 142-149.
    [50] Aad I, Castelluccia C. 2001. Differentiation mechanisms for IEEE 802.11 [C]. Proc. IEEE INFOCOM'01. Anchorage: IEEE press, 209-218.
    [51] Deng J, Chang R S. 1999. A priority scheme for IEEE 802.11 DCF access method [J]. IEICE Trans, Commun. E82-B(1): 96-102.
    [52] Veres A, Campbell A T, Barry M, Sun L H. 2001. Supporting service differentiation in wireless packet networks using distributed control [J]. IEEE Journal of Selected Areas in Communications: Special Issue on Mobility and Resource Management in Next-Generation Wireless Systems. 19(10): 2094-2104.
    [53] Bononi L, Conti M, Donatiello L. 2000. Design and performance evaluation of a distributed contention control (DCC) mechanism for IEEE 802.11 wireless local area networks [J]. Journal of Parallel and Distributed Computing. 60(4): 407-430.
    [54] Romdhani L, Ni Q, Turletti T. 2003. Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks. [C]. Proc. IEEE WCNC'03. New Orleans: IEEE press, Vol2: 1145-1148.
    [55] Xiao Yang, Li Haizhou, Choi S. 2004. Protection and guarantee for voice and video traffic in IEEE 802.11e wireless LANs [C]. Proc. IEEE INFOCOM'04. Hong Kong: IEEE press, Vol 3: 2152-2162.
    [56] Zhu Hao, Mathias A D, Cao Guohong. 2004. EDCF-DM: a novel enhanced distributed coordination function for wireless ad hoc networks [C]. Proc. IEEE ICC'04. Paris: IEEE press, Vol7: 3886-3890.
    [57] Vaidya N H, Bahl P, Gupa S. 2000. Distributed fair scheduling in a wireless LAN [C]. Proc. the Sixth Annual International Conference on Mobile Computing and Networking. Boston: ACM press, 167-168.
    [58] Banchs A, Perez X. 2002. Distributed weighted fair queuing in 802.11 wireless LAN [C]. IEEE ICC2002. New York: IEEE press, Vol5:3121-3127.
    [59] Qiao D, Shin K. 2002. Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF [C]. Proc. the Tenth International Workshop on Quality of Service. Miami: IEEE press, 227- 236.
    [60] Li B, Battiti R. 2003. Performance analysis of an enhanced IEEE 802.11 distributed coordination function supporting service differentiation [Z]. QofIS 2003, Stockholm. LNCS 2811:152-161.
    [61] Xiao Yang. 2004. An analysis for differentiated service in IEEE 802.11 and IEEE 802.11e wireless LANs [C]. Proc. IEEE ICDCS'04. Tokyo: IEEE press, 32-39.
    [62] Bianchi G, Fratta L, Oliveri M. 1996. Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs [C]. Proc. IEEE PIMRC. Taipei: IEEE press, Vol2: 392-396.
    [63] Choi S, del Prado J, Shankar S, Mangold S. 2003. IEEE 802.11e contention-based channel access (EDCF) performance evaluation [C]. Proc. IEEE ICC'03. Ottawa: IEEE press, Vol2: 1151-1156.
    [64] Mangold S, Choi S, May P, Hiertz G. 2002. IEEE 802.11e - fair resource sharing between overlapping basic service sets [C]. Proc. IEEE PIMRC'02. Lisbon: IEEE press, Vol1: 166-171.
    [65] Lindgren A, Almquist A, Schelen O.2001. Quality of service schemes for IEEE 802.11 wireless LANs - an evaluation [J]. Special Issue of the Journal on Special Topics in Mobile Networking and Applications (MONET) on Performance Evaluation of QoS Architectures in Mobile Networks. 8(3): 223-235.
    [66] Lindgren A, Almquist A, Schelen 0. 2003. Evaluation of quality of Service schemes for IEEE 802.11 wireless LANs [C]. Proc. the 26th Annual IEEE Conference on Local Computer Networks (LCN 2001). Florida: IEEE press, 348-351.
    [67] Pong D, Moors T. 2003. Call admission control for IEEE 802.11 contention access mechanism [C]. Proc. IEEE GLOBECOM'03. San Francisco: IEEE press, 173-178.
    [68] Kamerman A, Monteban L. 1997. WaveLAN-II: A high-performance wireless LAN for the unlicensed band [J]. Bell Labs Tech. Journal. 2:118-133.
    [69] Qiao D, Choi S. 2005. Fast-responsive link adaptation for IEEE 802.11 WLANs [C]. Proc. IEEE ICC. Seoul: IEEE press, 3583-3588.
    [70] Lacage M, Manshaei M, Turletti T. 2004. IEEE 802.11 rate adaptation: a practical approach [C]. Proc. MSWiM'04. New York: ACM press, 126-134.
    [71] Kim J, Kim S, Choi S, Qiao D. 2006. CARA: collision-aware rate adaptation for IEEE 802.11 WLANs [C]. Proc. IEEE INFOCOM. Barcelona: IEEE press, 1-11.
    [72] Wong H Y, Yang H, Lu S, Bharghavan V. 2006. Robust rate adaptation for 802.11 wireless networks [C]. Proc. ACM MOBICOM. Los Angeles: ACM press, 146-157.
    [73] Choi J, Na J, Park K, Kim C. 2007. Adaptive optimization of rate adaptation algorithms in multi-rates WLANs [C]. Proc. ICNP. Beijing: IEEE press.
    [74] Holland G, Yaidya N H, Bahl P. 2001. A rate-adaptive MAC protocol for multi-hop wireless networks [C]. Proc. ACM MOBICOM. Rome: ACM press, 236-251.
    [75] Chen D, Zhang Y. 2007. Is dynamic back-off effective for multi-rate WLANs [J]. IEEE Communications Letters. 11(8): 647-649.
    [76] Jain R, Chiu D, Hawe W. 1984. A quantitative measure of fairness and discrimination for resource allocation in shared coputer systems [Z]. DEC Research Report TR-301.
    [77] UC Berkeley. The network simulatior - NS2: http://www.isi.edu/nsnam/ns/. 2007.4.
    [78] Robinson J W, Randhawa T. 2004. Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function [J]. IEEE JSAC. 22(5): 917-928.
    [79] Ge Y. 2004. QoS provisioning for IEEE 802.11 MAC protocols [D]: [PhD]. Columbus: University of Ohio State.
    [80] Hu C, Kim H, Hou J C, Chi D, Nandagopalan S S. 2006. Provisioning quality controlled medium access in ultrawideband WPANs [C]. Proc. IEEE INFOCOM. Barcelona: IEEE press, 99-107.
    [81] Kong Z, Tsang D H, Bensaou B, Gao D. 2004. Performance analysis of IEEE 802.11e contention-based channel access [J]. IEEE JSAC. 22(10): 2095-2106.
    [82] Ge Y, Hou J C, Choi S. 2007. An analytic study of tuning systems parameters in IEEE 802.1 le enhanced distributed channel [J]. Computer Networks Journal. 51(8): 1955-1980.
    [83] Hu C, Hou J C. 2007. A novel approach to contention control in IEEE 802.11e-operated WLANs [C]. Proc. IEEE INFOCOM. Anchorage: IEEE press, 1190-1198.
    [84] Chiu D, Jain R. 1989. Analysis of the increase/decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN. 17(1): 1-14.
    [85] TKN-Telecommunication Networks Group-Prof. Wolisz. An IEEE 802.11e EDCA and CFB Simulation Model for NS2: http://www.tkn.tu-berlin.de/research/802.11e_ns2/. 2008.5.
    [86]Choi S,Park K,Kim C.2007.Cross-layer analysis of rate adaptation,DCF and TCP in multi-rate WLANs[C].Proc.IEEE INFOCOM.Anchorage:IEEE press,1055-1063.
    [87]Marco Fiore.Ns-2.29_wireless_update_patch:http://www.tlc-networks.polito.it/fiore/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700