用户名: 密码: 验证码:
钢渣粉活性与胶凝性及其混凝土性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种各样废弃的工业固渣,正极大威胁着我们的生存环境,钢渣就是典型的代表。钢渣由于化学成分及矿物组成波动大、含有少量不利成份、易磨性差且原料的预处理较困难等多种原因,特别是仍然缺乏钢渣利用的基本理论,因此严重阻碍了其在现代混凝土中的广泛应用。本文依托国家“十五”科技攻关计划项目(2003BA652C)“钢渣矿粉的工业化生产成套技术与工程应用开发”,针对上述钢渣粉再资源化利用的技术难题,开展了钢渣粉复合活化技术、钢渣粉活性、钢渣粉胶凝性、钢渣粉混凝土性能以及钢渣粉混凝土微结构形成机理的系统研究,主要工作成果如下。
     系统研究了钢渣粉机械—化学复合活化技术和工艺参数,同比表面积情况下,该技术能显著提高钢渣粉颗粒的圆形度,并能改善钢渣粉颗粒的表面形状,从而提高钢渣活性;通过研究钢渣粉的物理填充效应、吸附效应、化学键合及其与水泥之间的相互作用,确定钢渣的活性效应;深入研究多种因素对钢渣胶凝性能的影响,发现不仅活性矿物组成对钢渣胶凝性有很大影响,钢渣的结构特征、颗粒形状,以及预处理方式和活化技术也对钢渣的胶凝性发挥起到关键作用;提出以钢渣掺量与掺加钢渣后水泥浆体强度变化率两个独立变量相结合的钢渣活性因子评价方法,并由此可确定有利钢渣活性的比表面积和掺量范围。
     研究了钢渣粉及钢渣与矿渣或粉煤灰复掺对混凝土性能的影响,研究结果表明,对于本研究中高活性的钢渣粉,以10-50%取代42.5普通硅酸盐水泥可配制出强度等级为C20-C55、初始坍落度在20cm左右的大流动度混凝土;钢渣粉与矿渣粉、粉煤灰有较好的适应性,采取二元复合制备混凝土时,可以改善单掺钢渣粉混凝土的工作性能,在保持相应的早期强度情况下,也提高了混凝土的后期强度增长率;钢渣粉若与粉煤灰复合,则可明显降低混凝土各龄期收缩;钢渣粉与矿渣粉、粉煤灰一样可以提高混凝土抗氯离子扩散能力,且钢渣粉与矿渣粉、粉煤灰复合后,抗氯离子扩散能力更高。
     在上述宏观性能研究基础上,利用XRD、DTA-TG、SEM、水化热等测试技术,深入研究了含钢渣粉、矿渣粉和粉煤灰水泥浆体水化产物的组成及微观结构特征,实验结果表明,水化早期掺合料的活性大小顺序为:钢渣粉>矿渣粉>粉煤灰,而水化后期活性大小顺序为:矿渣粉>钢渣粉>粉煤灰;对于填充效果,矿渣粉的填充作用最强,其次是钢渣粉,粉煤灰最差;在相同水化龄期内,钢渣粉与矿渣粉复合具有的填充效应比单掺矿渣粉还高,即二者具有良好的超叠加效应;钢渣粉、矿渣粉及粉煤灰三种掺合料单掺或复掺均能不同程度地降低水泥水化热;若综合考虑三种掺合料的早期活性,可以认为用钢渣粉配制早期强度要求相对较高的大体积混凝土更具有优势。
     运用群子统计理论和渗流理论方法,揭示了钢渣水泥水化过程中的粒子相互作用、水泥石微结构形成规律,阐述了它们与宏观性能之间的关系。钢渣水泥石微结构与宏观性能之间的关系可以看成是分散增强相、分散劣化相及连续相在空间内的多色渗流问题,各相在空间内所占分数体积变化,尤其分数体积在渗流的临界阈值左右变化,均在较大程度上影响到钢渣水泥石宏观性能,本文首次运用水泥石孔隙率强度模型对含钢渣粉水泥浆体微结构进行验证,结果表明,钢渣在水泥水化早期即开始了水化,但因其水化活性相对较低,使其水泥石有一定向大孔隙率方向偏移,而水化活性低也使未水化钢渣颗粒在水化后期体现出一定的正效应(微集料效应),这在一定程度上说明了钢渣是一种“劣质熟料”。另外,从粉体运动角度看,水泥基复合材料实质是由不同各类、不同层次的群子组成,材料的性质决定于各级各类群子的竞争作用,可以建立各级各类群子参数与材料性能的关系,本文首次运用群子理论研究含钢渣粉水泥基复合胶凝材料的水化过程,其实质是“反应物和生成物所构成的群子竞争能力随时间变化的过程”,加水拌和后,浆体水化取决于水泥和钢渣粒子的凝聚和分散竞争作用,任何影响浆体水化的因素都可通过改变不同粒子凝聚与分散双方的竞争能力来实现,运用群子参数——群聚性标度可以有效地表示这种粒子间的竞争作用,当钢渣等掺合料引入时,复合体系粒子的粒径明显减小,即复合体系粒子的分散能力较好,掺合料活性越差,群聚性标度越小,这意味着水泥粒子处于该分散体系时的竞争能力高,即水泥粒子的分散性得到加强,根据这个理论,为了得到适宜的分散条件,在高值化利用钢渣过程中,必须进行钢渣组成与结构特性的分析,同时应进行钢渣细度和掺量的优化,由此获得性能优良的钢渣混凝土。
Our environment is deteriorated by the various industries wastes such as Steel-making slag (SMS). But so far reutilization of SMS is still being limited because of the fluctuation of mineral and chemical components, bad trace elements, difficult pretreatment, worse milling-resistant and so on.
     Aiming at such difficult problems in high efficient reutilization of SMS, the activity agitated technique of SMS and the industrialization parameter were mainly discussed in this thesis. With the same specific surface, the degree of roundness and the particle morphology of fine SMS particle prepared by polarization milling can be improved greatly and the cementitious property of SMS is improved further. The activity of SMS can be confirmed by the physical quantity correlation which is consisted of the physical filling, physical-chemical absorption, chemical linage and coactions between cement particles. The relationship between components, structure and performance of SMS are studied thoroughly and relationship between composition and cementitious property of SMS is discussed. The results indicate that alkalinity parameter can determine the content of active mineral, but it can not determine cementitious property of SMS, which is determined by its mineral composition calculated from chemical composition and pretreatment method. Then the activity factor is put forward to evaluate the activity of SMS, which can obtain the feasible the specific surface and dosage of SMS.
     In addition, the effect of single SMS or SMS combining with Blast Furnace Slag (BFS) or Fly Ash (FA) on mechanical and long-term durability property is investigated systematically. The results indicate that SMS is a kind of high activity mineral additive. Excellent flowing concrete of C20-C55 strength grade range with about 20cm initial slump can be obtained by replacing 42.5 OPC with 10-50% SMS. The SMS has the good accommodation with BFS and FA. The workability and rate of latter strength growth of concrete with the compound SMS is better than that of concrete with the single SMS. The compound SMS with BFS and FA can improve the shrinkage of concrete at each age. Its resistant to chloride ion permeability of concrete is superior to the single mineral additive.
     Basing on the study of the macro-performance, composition feature of hydration products and microstructure characteristic of cementitious materials with SMS are studied by XRD, DTA-TG, SEM and hydration heat. The results indicate that Sequence of activity in early age is SMS> BFS> FA and sequence of activity in later age is BFS>SMS> FA. For filling effect, the BFS is the best, the SMS is the next in order and the FA is the worst. At the hydration age, the filling effect of compound of SMS and BFS is higher than that of the BFS only, i.e. the ultra superposition of them is excellent. Single or compound of these three mineral additives can decrease the hydration heat to some extent. Comparing to SMS and FA, reducing hydration heat of BFS is not very obvious, however reducing hydration heat of SMS is similar to FA. Considering the earlier activity of three mineral additives, it can be believed that the SMS has the advantage on preparing the big volume concrete with higher earlier strength.
     The percolation theory and sub-cluster statistics theory is put forward in the thesis, which can be showed the interaction between the cement particles during the hydration process and the relationship between the microstructure of cement stone and the macro-performance. The relationship between the microstructure and the performance can be described as the percolation problem of the confirm phase, degradation phase and continuous phase in cement stone interspaces. The pore percolation-strength model is used to study the cement containing SMS firstly in the thesis. The results indicate that the SMS begin hydration at earlier age. But with its low hydration activity, there is the big pore in cement structure, meanwhile, there is the positive effect of unhydrated SMS particles impersonation, which prove that the SMS is a kind of faulty clinker.
     In addition, the cementing compound material is made of the different kinds and hierarchy sub-cluster from the angle of the powder movement. The property of material is determined to exist the competition of the different sub-cluster. So the relationship between them can be established accordingly. The sub-cluster statistic theory is used to study the hydration process of cement containing SMS firstly in the thesis. The essence of the cement hydration process is that the competition capacity is changed with the time collapse process between cement and hydration productions. After adding water, cement hydration is relied on the competition action between the cohesion and disperse. The influences of any factors on the hydration process are realized by changing its competition ability. This competition action can be demonstrated efficiently by the sub-cluster parameter-cybotaxis scale.
     The particle diameter of compound material reduces greatly when mixing compound SMS, i.e. disperse ability of compound material is very well. The activity of mineral additives is worse, the cybotaxis scale is smaller, and the competition capacity of cement particles being disperse is high, i.e. the dispersion of cement particles becomes stronger. Basing on the sub-cluster statistic theory, it is necessary to analyze the component and structural characteristic of SMS, optimize the fineness and dosage of the SMS in order to gain the optimized dispersancy, further the excellent performance of the SMS concrete in the most effective usage process of the SMS.
引文
[1]龙燕.我国危险废物管理与处置发展历程.有色冶金设计与研究.2007(28)23:1-7,17
    [2]范文虎.我国工业固体废物现状及管理对策研究.科技情报开发与经济.2007(17)33:93-94
    [3]秦萍.钢渣的治理与利用技术进展.沿海环境.2003(1):42-43
    [4]朱桂林,孙树杉.中国钢铁渣利用的现状和发展方向.冶金渣处理与利用国际研讨会议论文集.1999:9-14
    [5]方德瑞,黄大能.工业废渣在中国水泥工业中的应用.冶金渣处理与利用国际研讨会议论文集.199:21-25
    [6]毕琳,林海.钢渣的综合利用.矿产保护与利用.1999(3):51-52
    [7]石青.美国钢铁渣工业的发展概况——钢铁渣综合利用考察报告.硅酸盐建筑制品.1980(4):31-35
    [8]Rustu S.Kalyoncu.Iron and steel slag.U.S.Geological Survey,Mineral Commodity Summaries,January 2003,92-93
    [9]Annual report 1999.Nippon Steel Chemical Co.Ltd.1999,10-11
    [10]H.Motz,J.Geiseler.Products of steel slags on opportunity to save natural resources.Waste Management.2001,(21):285-293
    [11]J.N.Murphy,T.R.Meadow croft,et al.Enhancement of the cementitious properties of steelmaking slag.Canada Metallurgical Quarterly.1997,36(5):335-341
    [12]聂永丰.三废处理工程技术手册(固体废物卷).化学工业出版社.2002
    [13]杨华明,张广业.钢渣的资源化与前景.矿产综合利用.1999
    [14]举振明.固体废弃物的处理与处置.高等教育出版社.1988
    [15]蒋元海.钢渣活化技术及其在水泥生产中的应用.硅酸盐通报.1996,(5):61-64
    [16]娄性义.固体废物处理与利用.冶金工业出版社.1996
    [17]乌传和.钢渣的回收利用.金属矿山.1998,(1):40-44
    [18]纪午生等.常用建筑材料试验手册.中国建筑工业出版社.1986,9
    [19]杨南如.无机非金属材料测试方法.武汉工业大学出版社.1990,8
    [20]秦力川.建筑材料微观测试分析基础.1998,9
    [21]廉慧珍,童良,陈恩义.建筑材料物相研究基础.清华大学出版社.1996,6
    [22]戴云阁等.现代转炉炼钢.东北大学出版社.1998,12
    [23]宋民坚.几种钢渣处理技术.上海金属.1999,9
    [24]单志峰.国内外钢渣处理技术与综合利用技术的发展分析.工业安全与防尘.2000,(2):27-32
    [25]王占英,聂永强.转炉钢渣处理风淬工艺的探讨.河北冶金.1995年,12月
    [26]于功德,高怀峰.钢铁渣的资源化利用——安阳钢铁公司炉渣利用研究.粉煤灰综合利用.1997,(3):59-61
    [27]许斌,庄剑鸣等.烧结配加转炉钢渣的研究.烧结球团.2000,(5):20-22
    [28]黄锡槐.钢渣的处理及利用.冶金工业废渣处理工艺和利用(内部资料)第二册
    [29]朱桂林.我国钢铁工业固体废弃物综合利用的现状和发展.中国冶金报.2002,9.18第八版
    [30]岑永权.钢铁渣处理和应用的发展.钢铁.1994,29(5):71-74
    [31]孙树彬等.钢渣矿渣水泥研究.冶金工业废渣处理工艺和利用(内部资料).第一册
    [32]张德成,谢英,丁铸,李顺东.钢渣矿渣水泥的发展与现状.山东建材.1998,2:12-15
    [33]候新凯,李虎森.钢渣水泥生产走出困境的探讨.水泥工程.1997,1:43-45
    [34]徐光亮,钱光人,赖振宇,王海滨.低碱度钢渣基油井及地热井胶凝材料的研究—Ⅰ低碱度钢渣的化学成分、矿物组成和矿相特征.西南工学院学报.2000,15(1),10-14
    [35]徐光亮,赖振宇,钱光人等.低碱度钢渣基油井及地热井胶凝材料的研究—Ⅱ CMS,CFS,C3MS2的水热反应.西南工学院学报.2000,15(2),30-33[36]徐光亮,赖振宇,钱光人等.低碱度钢渣基油井及地热井胶凝材料的研究-Ⅲ富镁低碱度钢渣的水热反应.西南工学院学报.2001,16(2),1-4
    [37]钱光人,徐光亮,王海滨等.低碱度钢渣基油井及地热井胶凝材料的研究—N富铁低碱度钢渣的水热反应及胶凝性.西南工学院学报.2001,16(3),1-6
    [38]钱光人,赖振宇,徐光亮等.低碱度钢渣基油井及地热井胶凝材料的研究—V钢渣的膨胀及抑制.西南工学院学报.2001,16(4),25-28
    [39]Yasumasa Fukashima,et al.Mixing of granulated steelmaking slag with silica-based ash for wet hydration hardening to manufacture road-panning filler and similar materials.Eur.Pat.Appl.EP994.196(C 1.C22B/04)19,Apr.2000
    [40]Kubo,Masaaki,et al.Inorganic hardened bodies and their manufacture from steelmaking slag.Jpn Kakai Tokkyo Koho Jpl1335153[99 335 153](C 1.C04B28/14)
    [41]Takashima,Koichi et al.Modification of steelmaking reducing slag.Jpn Kakai Tokkyo Koho Jp 11310441(99310441)
    [42]Tsuyaki,Naomitsu.Belite slag for concrete.Jpn Kakai Tokkyo Koho Jp11292578(99292578)
    [43]泊正雄,利光孝司等.炼钢渣的利用方法.中国专利,专利申请号:85105246
    [44]霍显刚,郑延春等利用高活性转炉钢渣生产高铁水泥的方法.中国专利,专利申请号:87100826
    [45]建材院,马钢一钢厂,南京化工学院.从矿物组成探讨用钢渣制造水泥.建材院内部资料.1973.4
    [46]王玉吉,叶贡欣.氧气转炉钢渣主要矿物相及其胶凝性能的研究.硅酸盐学报,1981, 9(3):302-308.
    [47]欧阳东,谢宇平,何俊元转炉钢渣的组成、矿物形貌及胶凝特性.硅酸盐学报.1991,19(6):488-494
    [48]李彬,江景辉,隋智通.钢渣组成与胶凝性能的研究.房材与应用,1997,4:4-5
    [49]张王兴,周土芬,苏慕珍.钢渣的矿相研究.建材研究院院刊,1979,2:47-57
    [50]Caijun Shi,Jueshi Qian.High performance cementing materials fromindustrial slags—a review.Resources,Conservation and Recycling.2000,29:195-207
    [51]蒋元海.钢渣活化新技术及其在水泥生产中的应用.钢铁钒钛.1994,15(2):40-43
    [52]仲晓林,宫武伦,梁富智.磨细钢渣作泵送混凝土掺合料的性能和应用.工业建筑.1993,7:44-54
    [53]徐光亮,陈金祥等.采用分别粉磨提高钢渣细度增加钢渣掺量.山东建材.1998,6:35
    [54]赵三银,赵旭光等.高钢渣掺量钢渣矿渣水泥粉磨工艺的研究.水泥.2002,4:1-5
    [55]马保国.高活性胶凝材料制备工艺及其装置.专利号:03118499.5
    [56]胡曙光,韦江雄,丁庆军.水玻璃对钢渣水泥激发机理的研究.水泥工程.2001,(5):4-7
    [57]Edlinger.Alfred.Waste gas recycling in crushing and reducing slag containing metal oxide to produce hydraulic binder and cement additive.PTC ht.App.Wo 9967,182
    [58]李东旭,吴学权.提高钢渣水泥早期强度的研究.江苏建材.1992,4:24-27
    [59]李东旭.利用工业废渣研制少熟料高标号复号水泥.新型建筑材料.2002,11:810
    [60]林宗寿,陶海征,涂成厚.钢渣粉煤灰活化方法研究.武汉理工大学学报.200l,23(2),47
    [61]Mason B.The Constitution of some open-heart Slags.Journal of Iron and steel institute.1944,(11):69-80
    [62]朱桂林,武光玺,孙树彬.钢渣的性质与胶凝性能的评价方法.1988.9建材院内部资料
    [63]蒲心诚.应用比强度指标研究活性矿物在水泥混凝土中的火山灰效应.混凝土与水泥制品.1997(3):6-14
    [64]王新友,高向东.不同硬化水泥浆体中氯离子扩散和孔溶液的研究(英文).山东建材学院报,1998(12):135-138
    [65]冯乃谦,刑峰.高性能混凝土的氯离子渗透性和导电量.混凝土,200l(11):3-7
    [66]万朝均.新型高效掺合料及其性能的研究.博士学位论文.重庆建筑大学.1999,12
    [67]马保国.海洋高性能混凝土的研究.博士学位论文.武汉理工大学.2000,10
    [68]许仲梓.低孔隙率胶凝材料组成、结构和力学性能的关系及其改性研究.博士学位论文.南京化工学院.1988,3
    [69]唐明,刘普清,李颖.超细钢渣粉体分形特征的测试与评价.沈阳建筑工程学院学报.1999,15(1):51-55
    [70]张洪滔,郭随华,张文生,李永鑫,陈益民.钢渣粉体颗粒形态与钢渣水泥强度关系的研究. 电子显微学报.2002,21(5):780-781
    [71]J.N.Murphy,et al.Waste processing and Recycling.1995,187
    [72]沈威等.水泥工艺学.武汉工业大学出版社,1991
    [73]吴中伟.补偿收缩混凝土.北京:建筑出版社,1979,5-7
    [74]Hua AI and J.Francis Young.Mechanism of shrinkage reduction using a chemical admixture.In:Proceedings of the 10th international congress on the chemistry of cement.Gothenburg,Sweden,June,1997,2-6
    [75]Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration.ASTM C 1202-91
    [76]Faguang Leng,Naiqian Feng and Xinying Lu.An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete.Cement
    [77]C.C.Yang,S.W.Cho and R.Huang.The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test.Cement and Concrete Research.2002,32(2):217-222
    [78]Miguel A.Climent,Guillem de Vera,Jesux F.Lopez.Estanislao viqueira and Carmen Andrade.A test method for measuring chloride diffusion coefficients through nonstruated concrete.2002,32(7):1113-1123
    [79]蒋林华,M.H.Zhang.水泥基材料氯离子渗透扩散性测试技术.建筑材料学报.2002(2):147-154
    [80]Isao Tanaka,Masumi Koishi.Fundamental properties of powder,paste and mortar of surface modified cement and process of the surface modification.Construction and building Material.1999,13:285-292
    [81]Yunsing Shi,Shihao Yang,Zhongnan Song.Effect of characteristics of fine power on rheological properties of HPC.Proceeding of International Conference on Engineering and Technological Sciences Session 5:Civil Engineering in the 2152 Century,October 11,2000,Beijing,China
    [82]H.F.W.Taylor.Cement chemistry.London,Harcourt Brace Jovanovich,Published by.Academic Press Limited.1990.
    [83]S.P.Pandey,R.L.Sharma.The influence of mineral additive on strength and porosity of OPC mortar.Cement and Concrete Research.2000,30(1),19-23
    [84]唐明,王涛,戚无恙.激光仪下矿渣粉颗粒群分形特征的快速评价.沈阳建筑工程学院学报.2003,19(3):200-202
    [85]陆厚根.粉体技术导论.上海:同济大学出版社,1998.23-28.
    [86]于渌,郝佰林.相变和临界现象.北京:科学出版社,1984,60-70
    [87]Itzhak Webman,Joshua Jortner.Numerical simulation of continuous percolation conductivity. Physical Review B.1976,14(10):4737-4740
    [88]Harvey,Scher,Richard,Zallen.Critical density in percolation processes.Journal of Chemistry and Physics.1970,53(10):3759-3761
    [89]Morrel H.Cohen and G.S.Grest.Liquid-glass transition,a free-volume approach.Physical Review B.1979,20(3):1077-1098
    [90]Yoshina T.,Watter M.J.,Katsura T.Nature.2003,422:154-165
    [91]柯善明,顾浩鼎,翟文杰.地震学报.1990,12(4):379-396
    [92]D.罗伯著,项金钟等译.计算材料学.北京:化学工业出版社,2002
    [93]Richard Zallen.The Physics of Amorphous Solids.New York:Willey,1983
    [94]杨进.逾渗现象——一种随机分形.物理.1993,22(2):91-96
    [95]潘国耀,毛若卿,袁坚.分形几何渗流理论在胶凝材料若干领域中的应用.硅酸盐建筑制品.1996.1:1-8
    [96]张东辉,金峰,施明恒,杨浩.多孔介质渗流随机模型.应用科学学报.2003,21(1):88-92
    [97]Richard Zallen.The Physics of amorphous solids.New York:Wiley,1983
    [98]袁润章.胶凝材料学.武汉:武汉工业大学出版社,1989
    [99]E.J.Garbocai.D.P.Bentz.Computational Material Science of Cement-Based Materials.MRS.1993.50
    [100]肖从真,廉慧珍,刘西拉.用有限元方法研究水泥石微结构与力学行为关系的探讨.混凝土.1993,(1):3-10
    [101]Talor H.E W.Discussion of paper "Microstructure and strength of hydrated cement" by Feldman F and Beaudoin J.Cement and Concrete Research.1977,7(5):605-611
    [102]廉慧珍,童良,陈恩义.建筑材料物相研究基础.北京:清华大学出版社,1996
    [103]陆平.水泥材料科学导论.上海:同济大学出版社.1991
    [104]于骁中.岩石和混凝土断裂力学.长沙:中南工业大学出版社.1991
    [105]P.J.Sereda,R.F.Feidman,V.S.Ranachondran.硬化水泥净浆的结构形成和发展.第七届国际水泥化学会议论文选集.北京:中国建筑工业出版社.1985.492-538
    [106]K.K.Schiller.Strength of porous materials.Cement and Concrete Research.1971,1(4):419-422
    [107]贺行洋.混凝土浆状掺合料的研究.博士学位论文.中国建筑科学研究院.2004
    [108]金日光.群集统计理论在某些自然科学领域中的应用.北京化工学院学报.1978,(3):23-26
    [109]金日光,赵学兰.用群子统计理论探讨高分子溶液第二维利系数与分子量关系.北京化工学院学报.1981,(1):
    [110]金目光.第四统计力学一JRG群子统计理论的现状与展望.北京化工学院学报.1993,20(3):12-25
    [111]Li Hangquan,The Fourth Statistical Theory-JRG Sub-cluster Theory,1993JUPAC Proc.A-2
    [112]金日光.第四统计力学—JRG群子统计理论.韩国汉城:韩国宣文梅地亚(株)出版,1998.25-52
    [113]王启宏.材料流变学.中国建筑工业出版社.1985:38-41
    [114]J.Mirza,M.S.Mirza,V.Roy,K.Saleh.Basic rheological and mechanical properties of high-volume fly ash grouts.Construction and Building Materials.2002,16(2):353-363
    [115]De Schutter,G.;Taerwe,L.General hydration model for portland cement and blast furnace slag cement.Cement and Concrete Research.1995,25(3):593-604
    [116]Van Eijk,R.J.,Brouwers,H.J.H.Modelling the effects of waste components on cement hydration Waste Management.2001,21(3):279-284
    [117]Lam,L.,Wong,Y.L.;Poon,C.S.Degree of hydration and gel/space ratio of high-volume fly ash/cement systems.Cement and Concrete Research.2000,30(5):747-756
    [118]Sharma,R.L.;Pandey,S.P.Influence of mineral additives on the hydration characteristics of ordinary Portland cement.Cement and Concrete Research.1999,29(9):1525-1529
    [119]Jiang,W.,Silsbee,M.R.;Roy,D.M.Similarities and differences of microstructure and macro properties between Portland and blended cement.Cement and Concrete Research.1997,27(10):1501-1511
    [120]Hodne,H.;Saasen,A.The effect of the cement zeta potential and slurry conductivity on the consistency of oil-well cement slurries.Cement and Concrete Research.2000,30(11):1767-1772
    [121]Aiad,Ismail.Influence of time addition of superplasticizers on the theological properties of fresh cement pastes.Cement and Concrete Research.2003,33(8):1229-1234
    [122]Ye,G.;van Breugel,K.;Fraaij,A.L.A.Experimental study and numerical simulation on the formation of microstructure in cementitious materials at early age.Cement and Concrete Research.2003,33(2):233-239
    [123]管学茂.超细高性能灌浆水泥研究.博士学位论文.武汉理工大学.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700