用户名: 密码: 验证码:
平板式中温SOFC阳极系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cells, SOFCs)具有全固态、高效率等优点,能量转换效率最高可达80%,是目前世界各个国家的研究热点之一。这种电池阳极与电解质通常共烧结在一起。为了防止高温下氧化气与还原气混合而发生爆炸,需要将还原性气体与氧化性气体用密封材料隔离。
     研究了具有链状结构的淀粉和具有球形结构的聚甲基丙烯酸甲脂(PMMA`)作为阳极支撑层造孔剂,实验结果发现,15mass%淀粉制备的阳极孔隙率为29.8%,电导率为2000.35S·cm~(-1);而15mass%和30mass%PMMA制备的阳极孔隙率分别是36.4%和59.4%,电导率分别是1200.0S·cm~(-1)和1008.45S·cm~(-1)。制备的电池放电测试表明,当孔隙率小于59.4%时,相同H2流速下电池的功率密度随孔隙率的增加而增加;当孔隙率达到59.4%时,H2流速的增加对电池功率密度的提高影响不明显。
     用平均粒径大于1μm的NiO-Ⅰ、NiO-Ⅱ和NiO-Ⅲ用于制备阳极功能层,发现NiO-Ⅰ制备的电池的放电功率密度最高,达到121 mW·cm~(-2),而NiO-Ⅲ制备的电池功率密度仅有81 mW·cm~(-2),SEM分析表明NiO-Ⅰ的颗粒比较细小,平均粒径约2μm,而NiO-Ⅲ达到4.47μm;采用沉淀法制备的纳米NiO-Ⅳ和商品纳米NiO-Ⅴ制备的电池,最大功率密度分别高达205.3 mW·cm~(-2)和308.2 mW·cm~(-2),原因在于纳米颗粒尺寸小,比表面积大,催化性好,与YSZ的附着性佳。700℃煅烧增加了NiO-Ⅴ的活性,电池功率密度增加到369.0 mW·cm~(-2)。对阳极功能层的YSZ在1200℃煅烧后再球磨12h,电池最大功率密度达到了390.5 mW·cm~(-2),原因是锻烧球磨的YSZ呈球形,增加了NiO分散的均匀性。
     对于目前国内普遍作为SOFC电解质使用的JC 8YSZ和TOSOH 8YSZ进行实验比较。实验表明两者都是在1000℃开始发生收缩,JC 8YSZ的最大收缩率为25.2%,而TOSOH 8YSZ的最大收缩率只有19.0%。TOSOH 8YSZ的平均粒径为0.71μm,JC 8YSZ的平均粒径为1.91μm。测试的Nyquist曲线表明在800℃时JC 8YSZ和TOSOH 8YSZ的电导率分别是0.0179S·cm~(-1)和0.0212 S·cm~(-1),计算活化能分别是108.35kJ·mol~(-1)和105.67 kJ·mol~(-1),用这两种8YSZ制备的电池在800℃最大功率密度分别是184.08 mW·cm~(-2)和267.75 mW·cm~(-2)。SEM照片表明两种8YSZ在1500℃烧结时都不致密,但是采用80%JC与20%TOSOH 8YSZ混合则可以得到致密的电解质膜。厚度20μm时,开路电压800℃可达1002mV,放电功率密度447.0 mW·cm~(-2),并且保持稳定,而当厚度降低到7μm时,开路电压800℃只有923mV,放电功率密度253mW·cm~(-2),并且开路电压在20min内降低,原因是还原过程阳极体积的变化导致电解质破裂。
     SLABS3与SOFC组元共烧时粘接性良好。能谱分析表明,向微晶玻璃方向,与NiO/YSZ阳极共烧Zr的扩散深度10μm;与阴极共烧Mn的扩散深度60μm;与连接体共烧,Cr和Fe的扩散深度约20μm,但是微晶玻璃的成分却没有向相邻组元扩散,符合兼容性要求。制备的模拟电池用该密封材料隔离H2和O2,开路电压热循环6次仍保持在1.05V左右,表明SLABS3密封的模拟电池的气密性和稳定性良好。
     由于硬密封导致电池无法拆卸,同时研究了云母和气相SiO2填充的陶瓷纤维作为压实密封材料。结果表明,采用气相SiO2填充的陶瓷纤维的泄漏率随气相SiO2填充量的增加而减小。填充的陶瓷纤维预压后在1MPa压力,10kPa气压差下泄漏率仅为0.04sccm·cm~(-1),密封性能优于云母,该泄漏率值低于文献报道水平,达到国际先进水平,并且热循环20次保持稳定,在800℃下H2还原200h质量损失速率为1.7×10~(-2)g·cm~(-2)·h~(-1),还原后不影响泄漏率。
Solid oxide fuel cell (SOFC) has the advantage of all solid component and high conversion efficiency, which is as high as 80%, so it is one of the focus study in the world. Normally the anode electrode and electrolyte were co-sintered together. To prevent the mixture of oxygen and hydrogen at high temperature, seals, which were pasted on anode electrode, were required.
     Line structure of starch and ball structure of polymethyl methacrylate( PMMA) as pore-formers for SOFC anode supported layer were compared. The results demonstrated that the the porosity was 29.8%, electronic conductivity was 2000.35S·cm~(-1) for 15mass% starch as pore-formers. But the porosity was 36.4% and 59.4%, and conductivity was 1200.0 S·cm~(-1) and 1008.45 S·cm~(-1) respectively for 15mass% and 30mass% PMMA pore-formers.
     Discharging curvess for the cell prepared by different pore-formers and their contents demonstrated that when the porosity is lower than 59.4%, the Discharging property increased with the porosity, but the influence of H2 flow rate on Discharging curve is not obvious when the porosity is 59.4%. Three average particle sizes higher than 1μm of NiO were studied as anode functional layer. The cell performance is the highest for the cell prepared NiO-,with the maxium powder density 121 mW·cm~(-2) ,but only 81 mW·cm~(-2) for NiO-.Scanning electron microscope (SEM) images showed that the particle size of NiO-Ⅰwas about 2μm, but 4.47μm for NiO-Ⅲ.To reduce the NiO particle size, nano NiO-Ⅳproduced by co-precipitation and commercial NiO-Ⅴwere used as SOFC anode functional layer. The maximum power density of the cell was 205.3mW·cm~(-2) and 308.2mW·cm~(-2) respectively, and the cell power density prepared from NiO-Ⅴcalcined at 700℃increased to 369.0mW·cm~(-2) .YSZ coarsened at 1200℃and milled for 12h let the cell power density increase to 390.5mW·cm~(-2).
     Dimension of JC 8YSZ and TOSOH 8YSZ ,which were widely used as SOFC electrolye, were measured. The results showed that they shrinked at 1000℃. The total shrinkage of JC YSZ was 25.2%, but that of TOSOH 8YSZ was 19.0%. Particle analysis showed that the average particle size of TOSOH 8YSZ was 0.71μm, only about 2.5fold of that JC 8YSZ, which was 1.91μm. The electrochemical analynis demonstrated that the electronic donductivity of JC 8YSZ and TOSOH 8YSZ at 800℃were 0.0179S·cm~(-1) and 0.0212 S·cm~(-1) respectively. The calculated activation energies were 108.35kJ·mol~(-1) and 105.67kJ·mol~(-1) respectively. The maximum powder density of the cells made up of these two 8YSZ at 800℃were 184.08 mW·cm~(-2) for JC 8YSZ and 267.75 mW·cm~(-2) for TOSOH 8YSZ. SEM images showed that none of the electrolyte made of this two YSZ was dense, but was denser made of 80%JC YSZ and 20%TOSOH YSZ mixture. When the thickness of the electrolyte was 20μm, the open current voltage of the electrolyte was 1002mV and its power density reached 447mW·cm~(-2) while kept stable. However, when the thickness reduced to 13μm, there was only 253mW·cm~(-2) for the power density, and 923mV for the OCV, and decreased in 20min. The reason was that the voltage change during anode reduction led to YSZ electrolyte crack.
     SLABS3 ceramic glass“glue”SOFC other components well. During co-calcined for 100h, Zr element diffused 10μm to glass, Mn with 60μm , Cr and Fe element about 20μm, but none element of the glass would diffuse to SOFC other components, which meet the requirement of compatibility.The OCV test remained higher than 1.05V,demonstrating that seals meet the requirement in 6 circles.
     However, as the solid seals cause the problem of stack unable replacement, so compressive seals were also studied. Leakage test for alumina silica infiltrated ceramic fiber paper and mica were studied. The results demonstrated that the leakage of the infiltrated ceramic fiber paper was 0.04sccm·cm~(-1), which was lower than that of mica. This value is lower than the leakage reported. The infiltrated ceramic fiber paper were stabe in 20 thermal cycles and the weight loss at 800℃under hydrogen atmosphere was 1.7×10~(-2)g·cm~(-2)·h~(-1) for 200h, which showed no effect on sealing performance.
引文
1 A. B. Stambouli, E.Traversa. Fuel Cell, an Alternative to Standard Sources of Energy. Renewable and Sustainable Energy Reviews. 2002(6): 297~306
    2 彭苏萍, 韩敏芳. 固体氧化物燃料电池. 物理学与新能源. 2003, 9: 90~94
    3 衣宝廉. 燃料电池的原理、技术状态与展望. 电池工业. 2003, 8(1): 16~22
    4 C. S. Song. Fuel Processing for Low-Temperature and High-Temperature Fuel Cells: Challenges, and Opportunities for Sustainable Development in the 21st Century. Catalysis Today. 2002, 77: 17~49
    5 S. M. Haile. Fuel Cell Materials and Components. Acta Materialia. 2003, 51: 5981~6000
    6 刘建国, 孙公权. 燃料电池概述. 物理. 2004, 33(2): 79~84
    7 郑重德, 王丰, 胡涛等. 质子交换膜燃料电池研究进展. 电源技术. 1998, 22(3): 133~135
    8 衣宝廉. 燃料电池. 化学工业出版社, 2003: 7~11
    9 沈胜强, 贾俊曦, 郝刚. Ni-YSZ|YSZ|LSM 固体氧化物燃料电池性能测试. 热科学与技术. 2003(2):59~63
    10 Z. G. Lü, R. S. Guo, P. Yao. Preparation and Study of YSZ Electrolyte Doped with Multi Elements by Combustion Synthesis with Glycin. Journal of Rare Earth. 2005, 23: 309~312
    11 V. V. Kharton, F. M. Marques, A. Atkinson. Transport Properties of Solid Oxide Electrolyte Ceramics: a Brief Review. Solid State Ionics. 2004, 174: 135~149
    12 T. T. Esaka, T. Iwahara. Solid Oxide Fuel Cells: a New Hope and Challenge. Journal of Applied Electrochemistry. 1975, 5: 187~193
    13 R. L. Cook, R. C. Macduff. Perovskite Solid Electrolytes for Intermediate Temperature Solid Oxide Fuel Gells. Journal of Electrochemical Society. 1990, 137(10): 3309~3312
    14 T. Ishihara, H. Matsuda, Y.Takita. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. J. Am. Chem. Soc. 1994, 116: 3801~3807
    15 C. Oncel, M. A. Gulgun. Synthesis of LaXMg-Oxide with X=Ga, Fe or Cr. Materials Research Society. 2003, 756: 4121~4126
    16 N. Q. Minh, T. Takahashi. Science and Technology of Fuel Cells. Elsevier Scienve B.V. 1995(11): 75~80
    17 Y. Ji, J. Liu, Z. lv, et al. Study on the Propertities of Al2O3-Doped (ZrO2)0.92(Y2O3)0.08 Electrolyte. Solid State Ionics. 1999, 126: 277~283
    18 H. S. Fujii. Status of National Project for SOFC Development in Japan. H. Yokokawa, S. C. Singhal. Electrochemical Society Proceedings, (SOFC Ⅷ), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003: 16~30
    19 Y. Baba, K. Ogasawara, H. Yakabe, et al. Development of Anode-Supported SOFC with Metallic Interconnect. H. Yokokawa, S. C. Singhal. Electrochemical Society Proceedings (SOFC Ⅷ), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003: 119~126
    20 H. Takeuchi, A. Ueno, M. Kuroishi, et al. Development of Tubular Type SOFC Module. H. Yokokawa, S. C. Singhal. Electrochemical Society Proceedings, (SOFC Ⅷ), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003: 70~77
    21 T. Yamada, N. Chitose, J. Akikusa, et al. Development of Intermediate- -Temperature SOFC Module Using Doped Lanthanum Gallate. H. Yokokawa, S. C. Singhal. Electrochemical Society Proceedings, (SOFC Ⅷ), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003: 113~116
    22 N. V. Skorodumova, S. I. Simar, B. I. Lundqvist, et al. Quantum Origin of the Oxygen Storage Capability of Ceria. Phys. Rev. Lett. 2002, 89: 6601~6605
    23 O. A. Marina, C. Bagger, S. Primdahl, et al. A Solid Oxide Fuel Cell with a Gadolinia-Doped Ceria Anode: Preparation and Performance. Solid State Ionics. 1999, 123: 199~204
    24 G. Pudmich, B. A. Boukamp, M. Gonzalez-Guenca, et al. Chromite/Titanate Based Perovskites for Application as Anodes in Solid Oxide Fuel Cells. Solid State Ionics. 2000, 135: 433~438
    25 O. A. Marina, N. L. Canfield, J. W. Stevenson. Thermal, Electrical and Electrocatalytical Properties of Lanthanumdoped Strontium Titanate. Solid State Ionics. 2002, 149(1-2): 21~27
    26 S. Hui, A. Pertic. Preparation of CoNi Alloy Fine Fibers by the OrganicGel-polymer Derived Process. Journal of European Ceramic Society. 2002, 22: 1673~1678
    27 H. Yokokawa, N. Sakai, T. Kawada, et al. Thermodynamic Stabilities of Perovskite Oxides for Electrodes and Other Electrochemical Materials. Solid State Ionics. 1992, 52: 43~47
    28 S. Tanasescu, D. Berger, D. Neiner, et al. Thermodynamic Characterization of Some Doped Lanthanum Chromites Used as Interconnects in SOFC. Solid State Ionics. 2003, 157: 365~370
    29 H. Itoh, Y. Hiei, T. Yamamoto, et al. Optimized Mixture Ration in YSZ-Supported Ni-YSZ Anode Material for SOFC. H. Yokokawa, S. C. Singhal. Electrochemica Society Proceedings, London, 2001. Pennington, NJ, the Electrochemical Society, Inc, 2001: 16: 751~757
    30 A. Tsoga, A. Naomidis, P. Nikolopoulos. Wettability and Interfacial Reactions in the Systems NiO/YSZ and Ni/Ti-TiO2/YSZ. Acta Materials. 1996, 44: 3679~3692
    31 王风华, 郭瑞松, 魏楸桐. SOFC 用燃料电池 NiO-YSZ 粉末的制备技术. 硅酸盐通报. 2004, 3: 81~84
    32 S. K. Pratihar, A. D. Sharma, H. S. Maiti. Electrical Behavior of Nickel Coated YSZ Cermet Prepared by Electroless Coating Technique. Materials Chemistry and Physics. 2006, 96: 388~395
    33 S. K. Pratiharl, A. D. Sharma. Preparation of Nickel Coated YSZ Powder for Application as an Anode for Solid Oxide Fuel Cells. Journal of Power Sources. 2004, 129: 138~142
    34 M. Cassidy, G. Lindsay, K. Kendall. Ceria and Their Roles in SOFC Electrode Reactions from Thermodynamic and SIMS Analysespp. H. Yokokawa, S. C. Singhal. Proceeding 1st Eur. SOFC Forum, Luzern, 1994. Pennington, NJ, the Electrochemical Society, Inc, 1994: 205~221
    35 A. C. Muller, D. Herbstritt, E. Ivers-Tiffee. Development of a Multilayer Anode for Solid Oxide Fuel Cells. Solid State Ionics. 2002, 152-153: 537~542
    36 J. C. Ruiz-Morales, J. Canales-Vazquez, J. Pena-Martinez, et al. Microstructural Optimisation of Materials for SOFC Applications Using PMMA Mictrospheres. Journal of Materials Chemistry. 2006, 16: 540~542
    37 M. Boaro, J. M. Vohs, R. J. Gorte. Synthesis of Highly Porous Yttria-Stabilized Zirconia by Tape-Casting Methods. J. Am. Ceram. Soc. 2003: 395~400
    38 P. Holtappel, C. Sorof, M. C. Verbraeken. Preparation of Porosity-Graded SOFC Anodes Substrates. Fuel Cells. 2006(2): 113~116
    39 W. Zhou, W. B. Hu, D. Zhang. Combustion Synthesis of Highly Porous Ceramics: The TiC-Al203 System. Journal of Material Science. 1999, 34: 4469~4473
    40 Y. Liu, M. L. Liu. Porous SOFC Anodes Prepared by Sublimation of an Immiscible Metal Oxide during Sintering. Journal of Electrochemical Society. 2006, 9(5): B25~B27
    41 S. P. Jiang, S. H. Chan. Development of Ni/Y2O3-ZrO2 Cermet Anodes for Solid Oxide Fuel Cells. Materials Science and Technology. 2004, 20(9): 1109~1118
    42 F. Tietz, F. J. Dias, D. Simwonis et al. Evaluation of Commercial Nickel Oxide Powder of Components in Solid Oxide Fuel Cells. Journal of the European Ceramic Society. 2000, 20(8): 1023~1034
    43 S. P. Jiang. Comparative Study of Fabrication and Performance of Ni/3 mol% Y2O3-ZrO2 and Ni/8 mol% Y2O3-ZrO2 Cermet Electrodes. Journal of Electrochemical Society. 2003, 150E: 548~559
    44 K. S. Lee, S. Lee, J. H. Yu, et al. Improvement of the Stability of NiO-YSZ Anode Material for Solid Oxide Fuel Cell. J. Solid State Electrchem., 2007, 11: 1295~1301
    45 T. Kawashima, Y. Matsuzaki. Effect of Particle-Diameter Ratio of YSZ to Ni on Polarization of NiO/YSZ Cermet Anode. Journal of the Ceramic Society of Japan. 1996, 104(4): 317~321
    46 S.-D. Kim, H. Moon, S.-H. Hyun, et al. Performance and Durability of Ni-coated YSZ Anodes for Intermediate Temperature Solid Oxide Fuel Cells. Solid State Ionics. 2006, 177: 931~938
    47 S. P. Badwal, M. J. Bannister, R. H. Hannink. Science and Technology of Zirconia. V. Technomic Publishing Co. Lancaster, PA, 1993: 674~677
    48 S. Murakami, Y. Akiyama, N. Ishida, et al. SOFC, Mechanical and Electrical Properties of Sc2O3-Doped Zirconia Ceramics Improved byPostsintering with HIP. Solid State Ionics. 2000, 133: 1~9
    49 L. Jia, Z. Lu, J. P Miao, et al. Effect of Pre-Calcined YSZ Powders at Different Temperatures on Ni-YSZ Anodes for SOFC. Journal of Alloys and Compounds. 2006, 414: 152~157
    50 S. P. Peng, M. F. Han. Solid Oxide Fuel Cells. Physics. 2004, 9: 90~94
    51 W. Z. Zhu, S. C. Deevi. A Revier on the Status of Anode Materials for Solid Oxide Fuel Cells. Materirial Science and Engineering. 2003, A362: 228~239
    52 S. P. Jiang, S. H. Chan. A Review of Anode Materials for Solid Oxide Fuel Cells. Journal of Material Science. 2004, 39: 4405~4439
    53 F. Z. Mohamedi, B. Guindet. Influence of Water Vapour on Electrochemical Oxidation of Hydrogen at the Ni Zirconia Interface. H. Yokokawa, S. C. Singhal. Electrochemical Proceedings (SOFC V), Germany, 1997. Pennington, NJ, the Electrochemical Society, Inc, 1997, 18: 441~448
    54 P. Holtappels, I. C. Viake, L. G. de Haart. Reaction of Hydrogen/Water Mixtures on Nickel-Zirconir Cermet Electrodes- Ⅱ AC Polarization Characteristics. J. Electrochem. Soc. 1999, 146(8): 2976~2981
    55 T. Kawada, N. Sakai, H. Suzuki. Characteristics of Slurry-Coated Nickel Zirconia Cermet Anode for Solid Oxide Fuel Cells. J. Electrochem. Soc. 1990, 137: 3042~3047
    56 N. Sakai, K. Yamaji, T. Horita, et al. Effect of Water on Oxygen Transport Properties on Electrolyte Surface in SOFCs, I. Surface Reaction Mechanism of Oxygen Isotope Exchange on Solid Oxide Electrolytes. J. Electrochem. Soc. 2003, 150(6): A689~A694
    57 B. deboer. Anodes for Solid Oxide Fuel Cells. University of Twente. Ph. D Thesis. 1998: 59~81
    58 P. P. Holtappels, L. G. de Haart, U. Stimming. Reaction of Hydrogen/Water Mixtureson Nickel-Zirconia Cermet Electrodes Ⅰ DC Polarization Characteristics. J. Electrochem. Soc. 1999, 146: 1620~1625
    59 S. P. Jiang, S. P. Badwal. An Electrode Kinetics Study of H2 Oxidation on Ni/Y2O3-ZrO2 Cermet Electrode of the Solid Oxide Fuel Cell. Solid State Ionics. 1999, 123: 209~224
    60 S. P. Jiang, Y. Rampraksah. H2 Oxidation on Ni/Y-TZP Cermet Electrodes-Polarisation Behaviour. Solid State Ionics. 1999, 116: 145~156
    61 S. Prihahl, M. Megensen. Oxidation of Hydrogen on Ni/Yttria-Stabilized Zirconia Cermet Anodes. J. Electrochem. Soc. 1997, 144: 3409~3419
    62 A. Bierberle, L. P. Meier, L. Gauckler. The Electrochemistry of Ni Pattern Anode Used as Solid Oxide Fuel Cell Model. J. Electrochem. Soc. 2001, 148: A646~A656
    63 A. Bierberle, L. G. Gauckler. State-Space Modeling of the Anodic SOFC System Ni-H2-H2O Vertical bar YSZ. Solid State Ionics. 2002, 146: 23~16
    64 S. P. Jiang. Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttia-Tetragonal Zirconia Electrdlyte. J. Electrochem. Soc. 1997, 144: 3777~3784
    65 S. P. Jiang, Y. Ramprakash. H2 Oxidation on Ni/Y-TZP Cermet Electrodes Comparison of Electrode Behaviour by GCI and EIS Techniques. Solid State Ionics. 1999, 122: 211~222
    66 J. R. Kong, K. N. Sun, D. R. Zhou, et al. Ni–YSZ Gradient Anodes for Anode-Supported SOFCs. Journal of Power Sources. 2007, 166(2): 337~342
    67 谢志鹏, 苗赫翟. 精密陶瓷部件净成型技术发展. 真空电子技术. 2002(3): 10~15
    68 李宇春, 田忠良, 李志友. 粉浆浇注法制备较大尺寸金属陶瓷材料的研究. 粉末冶金材料科学与工程. 2003, 3: 75~79
    69 Y. L. Chen, Z. P. Xie, J. L. Yang, et al. Alumina Casting Based on Gelation of Gelatine. Journal of the European Ceramic Society. 1999, 19: 271~275
    70 谢志鹏, 扬金龙, 陈亚丽. 琼脂糖凝胶大分子在陶瓷原位凝固成型中的应用. 硅酸盐学报. 1999, 27(1): 16~21
    71 L. J. Zhou, Y. Huang and Z. P. Xie. Gelcasting of Concentrated, Aqueous Silicon Carbide Suspension. J. Europ. Ceram. Soc. 2000, 20: 85~90
    72 O. O. Omatete, M. A. Janney, R. A. Strehlow. Gelcasting-A New Ceramic Forming Process. Ceram Bull. 1991, 70: 1641~1649
    73 谢志鹏, 黄勇, 程一兵. 陶瓷部件的无氧阻聚凝胶注模成型方法. 中国发明专利. 2000, 7
    74 马景陶, 谢志鹏, 苗赫濯等. 水溶性高分子PVP对陶瓷凝胶注模成型坯体表面起皮的抑制作用与机理. 无机材料学报. 2002, 3: 480~487
    75 Z. P. Xie, Y. B. Cheng, Y. Huang. Formation of Silicon Nitride Bonded Silicon Carbide by Aqueous Gelcasting. Materials Science and Engineering A. 2003, 349(1): 20~28
    76 Z. Z. Yi, Z. P. Xie, Y. Huang, et al. Study on Gelcasting and Property of Recrystallized Sillicon Carbide. Ceramic International. 2002, 28: 369~376
    77 J. H. Xiang, Z. P. Xie, Y. Huang. Study of Gel-Tape-Casting Process of Ceramic Materials. Ceramics Internatioal. 2000, 26: 67~71
    78 J. H. Xiang, Y. Huang, Z. P. Xie. Study of Gel-Tape-Casting Process of Ceramic Materials. Materials Science and Engineering. 2002, 323: 336~341
    79 J. Geyer, H. Kohlmuller, H. Lande. Performance of Anode Supported Cells with Ni-ScSZ Anode for Low S/C Methane and Ethane Fuels. Electrochemical Proceedings. 1997, 7: 585~594
    80 M. Ihara, T. Kawai, C. Yokoyama. Investigation of Reaction Mechanism on NiO/YSZ Anode and Pt/YSZ Anodes in Solid Oxide Fuel Cells with H2 and Dry CH4. Electrochemical Proceedings Ionics. 2002, 146: 23~27
    81 S. Sarat, N. Sammes, A. Sirnova. Bismuth Oxide Doped Scandia-Stabilizied Zirconia Electrolyte for the Intermediate Temperature Solid Oxide Fuel Cells. Journal of Power Sources. 2006, 160(2): 892~896
    82 J. W. Yan, H. Matsumoto, M. Enoki, et al. High-Power La0.9Sr0.1Ga0.8Mg0.2/Ce0.8Sm0.2O2-δ Composite Film. Electrochemical and Solid State Letters. 2005, 8(8): A389~A391
    83 J. W. Yuan, Z. G. Lu, Y. Jiang, et al. Fabrication and Testing of a Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cells. Journal of the Electrochemical Society. 2002, 149(9): A1132~A1135
    84 M. F. Han, X. L. Tang, H. Y. Yin, et al. Fabrication, Microstructure and Properties of a YSZ Electrolyte for SOFCs. Journal of Power Sources. 2007, 165(3): 757~763
    85 K. Brinkiene, R. Kezelis. Effect of Alumina Addition on the Microstructure of Plasma Sprayed YSZ. Journal of the European Ceramic Society. 2005, 25: 2181~2184
    86 A. A. Hassan, N. H. Menzler, G. Blass, et al. Influence of Alumina Dopant on the Properties of Yttria-Stabilized Zirconia for SOFC Applications. Journal of Materials Science. 2002, 37: 3467~3476
    87 X. Guo, C.-Q. Tang, R.-Z. Yuan. Grain Boundary Ionics Conduction in Zirconia-Based Solid Electrolyte with Alumina Addition. Journal of the European Ceramic Society. 1995, 15: 25~32
    88 N. Q. Minh. Solid Oxide Fuel Cell Technology-Features and Applications. Solid State Ionics. 2004, 174: 271~277
    89 S. C. Singhal. Solid Oxide Fuel Cells for Stationary, Mobile and Military Applications. Solid State Ionics. 2003, 152-153: 405~417
    90 S. Mukerjee, S. Shaffer, J. Zizelman. Structure and Conductivity of Thermally Grown Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnect Applications. H. Yokokawa, S. C. Singhal. Procding of Electrochemical Society. SOFC(Ⅷ), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003: 88~97
    91 N. Lahl, D. Bahadur, K. Singh, et al. Chemical Interactions between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells. Journal of Electrochemistry Society. 2002, 149(5): 607~614
    92 J. Malzbender, R. W. Steinbrech, L. Singheiser. Determination of the Interfacial Fracture Energies of Cathodes and Glass/Ceramic Sealants in a Planar Solid Oxide Fuel Cell Design. J. Mater. Res. 2003, 18(4): 929~934
    93 R. Barfod, S. Koch, Y.-L. Liu, et al. Long-Team Test of DK-SOFC Cells. H. Yokokawa, S. C. Singhal. Proceeding of Electrochem.Soc., SOFC(Ⅷ), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003: 1158~1166
    94 I. W. Donald. Preparation, Properties and Chemistry of Glass and Glass- -Ceramics-to-Metal Seals and Coatings. Journal of Material Science. 1993, 28(11): 2841~2886
    95 K. A. Nielsen, M. Solvang, F. W. Poulsen, et al. Evaluation of Sodium Aluminosilicate Glass Composite Seal with Magnesia Filler Ceramic Engineering. Science Proceedings. 2004, 25(3): 309~314
    96 K. L. Ley, M. Krumpelt, R. Kumar, et al. The Present Invention is a Glass-Ceramic Material and Method of Making Useful for Joining at Least Two Solid Ceramic. Journal of Materials Research. 1996, 11(6): 1489~1493
    97 S. P. Jiang, L. Christiansen, B. Hughan, et al. Effect of Glass SealantMaterials on Microstructure and Performance of Sr-Doped LaMnO3 Cathodes. Journal of Material Science. Letters. 2001, 20(8): 695~697
    98 R. N. Sing. High Temperature Seals for Solid Oxide Fuel Cells (SOFC). Ceramic Engineering Science Proceeding. 2004, 25(3): 299~307
    99 N. Lahl, L. Singheiser, K. Hilpert, et al. Alumino-Silicate Glass Ceramics as Sealant in SOFC Stacks. H. Yokokawa, S. C. Singhal. Electrochemical Society (SOFC VI), Danmark, 1999. Pennington, NJ, the Electrochemical Society, Inc, 1999: 1057~1066
    100 S.-B. Sohn, S.-Y. Choi, G.-H. Kim, et al. Stable Sealing Glass for Planar Solid Oxide Fuel Cells. Journal of Non-Crystalline Solids. 2002, 297(2–3): 103~112
    101 N. Lahl, K. Singh, L. Singheiser, et al. Crystallisation Kinetics in AO-Al2O3-SiO2-B2O3 Glasses (A = Ba, Ca, Mg). Journal of Material. Science. 2000, 35(12): 3089~3096
    102 S. B. Sohn, S. Y. Choi, G.-H. Kim, et al. Suitable Glass–Ceramic Sealant for Planar Solid-Oxide Fuel Cells. Journal of Amemiran Ceramic Society. 2004, 87(2): 254~260
    103 P. Geasee, T. Schwickert, U. Diekmann, et al. Ceramic Materials and Components for Engines. Wiley-VCH Verlag GmbH, Weinheim, Germany, 2001, 57~62
    104 C. Lara, M. J. Pascual, A. Dur′an. Electrical Behaviour of Glass–Ceramics in the Systems RO-BaO-SiO2 (R=Mg, Zn) for Sealing SOFCs. Journal of Non-Crystalline Solids. 2004, 348: 149~155
    105 T. Yamamoto, H. Itoh, M. Mori, et al. Compatibility of Mica Glass-Ceramics as Gas-Sealing Materials for SOFC. Denki Kagaku Oyobi Kogyo Butsuri Kagaku. 1996, 64(6): 575~581
    106 C. Lara, M. J. Pascual, M. O. Prado, et al. Sintering of Glasses in the System RO-Al2O3-BaO-SiO2 (R=Ca, Mg, Zn) Studied by Hot-Stage Microscopy. Solid State Ionics. 2004, 170 (3–4): 201~208
    107 T. Yamamoto, H. Itoh, M. Mori, et al. Influence of Glass Chemical Composition, Molecular Dynamics Investigations of Silver Diffusion in Glass. H. Yokokawa, S. C. Singhal. Electrochemical Society (SOFC IV), Switzerland, 1995. Pennington, NJ, the Electrochemical Society, Inc, 1995,1: 245~254
    108 S. P. Simner, J. W. Steven. Compressive Mica Seals for SOFC Application. Journal of Power Source. 2001, 102: 310~316
    109 Y. S. Chou, J. W. Stevenson, L. A. Chick. Novel Compressive Mica Seals with Metallic Interlayers for Solid Oxide Fuel Cell Applications. J. Am. Ceram. Soc. 2003, 8(6): 1003~1007.
    110 Y.-S. Chou, J. W. Stevenson. Novel Infiltrated Phlogopite Mica Compressive Seals for Solid Oxide Fuel Cells. Journal of Power Source. 2004, 135: 72~78
    111 Y.-S Chou, J. W. Stevenson, L. A. Chick. Ultra-Low Leak Rate of Hybrid Compressive Mica Seals for Solid Oxide Fuel Cells. Journal of Power Sources. 2002, 112: 130~136
    112 Y.-S. Chou, J. W. Stevenson. Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells: Effect of Mica Thickness. Journal of Power Sources. 2003, 124: 473~478
    113 Y.-S. Chou, J. W. Stevenson. Thermal Cycling and Degradation Mechanisms for Compressive Mica-Based Solid Oxide Fuel Cells. Journal of Power Sources. 2002, 112: 130~136
    114 Y.-S. Chou, J. W. Stevenson. Mid-Term Stability of Novel Mica-Based Compressive Seals for Solid Oxide Fuel Cells. Journal of Power Sources. 2003, 115: 274~278
    115 Y.-S. Chou, J. W. Stevenson, L. A. Chick. Novel Silver/Mica Multilayer Compressive Seals for Solid Oxide Fuel Cells: the Effect of Thermal Cycling and Material Degradation on Leak Behavior. Journal of Material Research. 2003, 18: 2243~2250
    116 K. S. Weil, J. S. Hardy, J. Y. Kim. Joining of Advanced and Specialty Materials. H. Yokokawa, S. C. Singhal. Proceedings of Material Solutions (V), ASM International, Materials Park, OH, 2002. Pennington, NJ, the Electrochemical Society, Inc, 2003: 47~55
    117 J. S. Hardy, J. Y. Kim, K. S. Weil. New Sealing Concept for Planar Solid Oxide Fuel Cells. Journal of Electrochemical Society. 2004, 151(8): J43~J49
    118 K. S. Weil, D. M. Paxton. Brazing as a Means of Sealing Ceramic Membrances for Use in Advanced Coal Gasification Process. Fuel Cells.2001, 85: 156~162
    119 K. S. Weil, C. A. Coyle, J. T. Darsell, et al. Effects of Thermal Cycling and Thermal Aging on the Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals. Journal of Power Sources. 2005, 97: 97~104
    120 M. Bram, S. Reckers, P. Drinovac, et al. Deformation Behavior and Leakage Tests of Alternate Sealing Materials for SOFC Stacks. Journal of Power Sources. 2004, 138: 111~119
    121 M. Bram, S. Reckers, P. Drinovac, et al. Basic Investigations on Metallic and Composite Gaskets for an Application in SOFC Stacks. H. Yokokawa, S. C. Singhal. The 5th European SOFC forum, Lucerne, 2002. Pennington, NJ, the Electrochemical Society, Inc, 2002: 847~854
    122 A. Weber, A. Mueller, D. Herbstritt, et al. Characterization of SOFC Single Cells. H. Yokokawa, S. C. Singhal. Proceeding of Electrochemical Society (SOFC VII), London, 2001. Pennington, NJ, the Electrochemical Society, Inc, 2001, 7: 952~962
    123 M. Bram, S. Reckers, P. Drinovac, et al. Characterization and Evaluation of Compression Loaded Sealing Concepts for SOFC Stacks. H. Yokokawa, S. C. Singhal. Proceeding of Electrochemical Society (SOFC VIII), Japan, 2003. Pennington, NJ, the Electrochemical Society, Inc, 2003, 07: 888~897
    124 M. Bram, S. E. Bruenings, F. Meschke, et al. Application of Metallic Gaskets in SOFC-Stacks. H. Yokokawa, S. C. Singhal. Proceeding of Electrochemical Society (SOFC VII), London, 2001. Pennington, NJ, the Electrochemical Society, Inc, 2001, 16: 875~884
    125 J. Duquette, A. Petric. Silver Wire Seal Design for Planar Solid Oxide Fuel Cell Stack. Journal of Power Sources. 2004, 137(1): 71~75
    126 P. Singh, Z. Yang, V. Viswanathan, et al. Observations on the Structural Degradation of Silver During Simultaneous Exposure to Oxidizing and Reducing Environments. Journal of Material Engineering Performance. 2003, 13(3): 287~294
    127 K. S. Weil, J. S. Hardy. Development of a Compliant Seal for Use in Planar Solid Oxide Fuel Cells. Ceramic Engineering Science Proceeding. 2004, 25(3): 321~326
    128 综研化学.http://www.soken-sz.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700