用户名: 密码: 验证码:
山梨酸废水处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山梨酸即己二烯酸,属于酸性防腐剂,其生产废水中含有对微生物起抑制作用的山梨酸成分并且还含有其他一些稳定性强的污染物,B/C值较低且酸性较强,难以用常规的物理、化学及生物方法处理。
     本文主要针对废水特点,进行预处理和后续生化处理研究。突出特点是:(1)恰当利用废水强酸性条件,将微电解与Fenton试剂氧化技术有机地结合起来,形成连续的铁炭微电解-Fenton试剂氧化山梨酸废水预处理工艺;(2)首次将白腐菌应用于山梨酸废水预处理,扩展了白腐菌在废水处理方面的应用范围;(3)通过工艺过程的优化组合,首次提出微电解-Fenton试剂氧化、白腐菌预处理+加压氧化联合处理工艺对山梨酸废水进行处理,并应用于废水处理工艺设计实践中。
     最终工艺可使废水效果稳定可达标排放,且费用合理经济可行,使企业易于接受。本方案已应用于吉林某山梨酸厂的废水处理设计,并为企业提供了详实可靠的实验数据,为废水的稳定处理、达标排放奠定了基础。
Sorbic acid is a kind of lowest toxicity antiseptic which is brought about industrialization currently. It participates metabolism process of human body and is oxidized into carbon dioxide and water as well as the other natural unsaturated acid. As a kind of antiseptic, in most cases the sorbic acid is replaced by its potassium salt—sorbic acid potassium because itself is water-soluble worse and both of them have the same antisepsis effect. The sorbic acid and its salts are the good antiseptic of food, medicine and cosmetics and generally accepted internationally as efficient and low poisonous conservancy, which are the best renewal products to substitute the older generation antiseptics, such as sodium nitrite and sodium benzoate. Along with the development of economy and exaltation of the people living level, the request of the additive of food, drugs and cosmetic is strict gradually. The requirement of deluxe antiseptic such as sorbic acid and its salts increases day by day. What's more, some nations have already forbidden using the sodium benzoate. Sodium benzoate has been replaced by sodium sorbic acid in child's food in our country. The sobic acid can be also used for prepare of compound antiseptic, insecticide and synthesizing rubber industry etc. With the antiseptic renewing, the sorbic acid and its salts will be used further and the capacity of its market will also increase day by day.
     The project of "Study on the Technique of Sorbic Acid Wastewater Treatment" is an applied foundation research surpported by science and technology office, Jilin province. The sorbic acid has some characteristics of high COD concentration (higher than 10000 mg/L), low pH and can hardly be bio-degraded. We are trying to treat this kind of wastewater by the methods of three-dimensional-electrode, Micro-Electrolysis and Fenton Reagent, White-rot Fungus, Pressurized Bio-oxidation Process, Hydrolyzation and Acidification and Bio-contact Oxidation. It aims at operating parameters of every pretreating methods and the direct influence factor of increasing B/C value. Therefore the wastewater can be biodegraded easily. A set of design reasonable, viable economic technique will be proposed.
     Aiming at high COD concentration waste water produced in one sorbic acid plant setted up lately in Jilin City, this paper adopt the processing technique of physical chemistry and biochemical to start experiment research. That sorbic acid wastewater has the characteristics of high COD value (higher than 10000 mg/L), low pH value and bio-chemical degraded hardly decides its treatment technique particularity differing from the treatment process of other sewage. If directly getting into original wastewater processing device, it will bring tremendous impact and the effluent can't attain sewage discharge standard. Therefore it is necessary to carry on a deeper research to the treatment processing of the sorbic acid wastewater of high COD value and hard biodegradable. The study includes main factor effecting treatment efficiency and bio-chemical characteristic of exponent biodegraded hardly, put forward in the sorbic acid wastewater treating process adapting the state of our country. At last the wastewater treated can reach the national discharge standard. The main research contents include:
     1. The iron and carbon micro-electrolysis, Fenton reagent oxidation pretreatment experiment
     Aiming at waste water from some sorbic acid factory in Jilin, we adopt the method of iron and carbon micro- electrolysis to treat the wastewater and then make the Fenton reagent by adding hydrogen peroxide to oxidize and decompose the organic matters in the meantime; It emphasizes influence of the treatment efficiency by the facts of F/C value, reaction time, pH condition and dosage of H_2O_2. At the end we treat the wastewater further by pressurized bio-oxidation process reactor to reach the discharge standard.
     2. The 3D electrode pretreating experiment
     The toxicity of the wastewater to aerobes can be lowered after pretreated by the 3D electrode method and then treated with bio-chemical method at the end. According to the articles, it is stressed to study the wastewater degradation efficiency influence by the electrode material, the polarity style, electrolyzing time, added voltage and pH condition. At the same time the electric current efficiency and energy consumed will be tested to demonstrate whether the 3D electrode method is economic or not.
     3. Pretreating experiment with the white-rot fungus
     Sorbic acid is a kind of food antiseptic, and the wastewater from its producing process can not be biodegraded because the microorganism is restrained by the sorbic acid. In the meantime white-rot fungus has the characteristic of oxidizing pollutant outside the body (influenced lightly by organic matter toxicity). Thus we consider making use of white-rot fungus (cultivated in the laboratory) to pretreat the wastewater in order to lower organic matter toxicity, and then make it easily to be biodegraded with aerobes.
     4. Bio-contact oxidation and pressurized bio-oxidation experiment research
     Making use of an ABR reactor to carry on pretreating wastewater, we can control experiment to keep fore two stages of the three bio-anaerobic reaction stages, and avoid producing methane stage which is difficult to control. Basing on above we investigate the variety of the water COD concentration and the water value of B/C. Assisted with Bio-contact Oxidation, the water being treated may be discharged according to the national standards.
     In this research the sorbic acid wastewater will be treated mainly by pressurized bio-oxidation method comparing with the hydrolyzation and acidification, bio-contact oxidation method. The water pretreating methods mentioned above are all to make convenience of the activated sludge treatment for it is the cheapest relatively. According to the advantage of pressurized method this section mainly explains the gas transferring theories, dynamics parameter and model of the sorbic acid wastewater treatment processing by pressurized bio-oxidation method. With continuous and intermittent experiment, we will obtain various dynamics parameters of the reaction processes, analyze the relation between volume burden Fv, sludge burden Fw and removing percentage of COD. At the end we will make the COD burden impacting experiment and discuss the sludge inflation problem, also give a definite counterplan.
     Combining the pretreatment experiment effect and making use of bio-contact oxidation, pressurized bio-oxidation, we can get a suit of integrated process to treat the sorbic acid wastewater and then make it to touch the discharge standard. At the same time the best processing conditions should be examined, in order to lay technique foundation for carrying out the wastewater treatment processing industrialization.
     5. The mechanism research of experiment reaction
     In each experiment step mentioned above, we will test and analyze the influent and effluent with GC-MS analysis instruments (from environmental protection monitoring station, Jilin City) and then understands degradation mechanism of the pollutants in the wastewater treatment. Therefore we use it to guide and control the experiment conditions and explore the other study method further in the meantime.
     Basing on long time experiment research and considering the all kinds of experiment effect, treatment expenses and production fact, we define a whole set of sorbic acid wastewater treatment united technique which is technique reasonable, economic feasible. This research conquered the sorbic acid characteristics of low pH value and bio-degradation worse. Hydrolyzation and acidification, three-dimensional-electrode, micro-eletrolysis and Fenton reagent oxidation, white-rot fungus were adopted to pretreating the wastewater in order to remove COD, adjust the pH value, enhance the B/C value, lower its bio-toxicity and then make it possible to be bio-degraded. The main research conclusions include a few aspects as follows:
     1. In the process of the micro-electrolysis and Fenton reagent oxidation, a good expectation effect was abtained. First, the micro-electrolysis adapted the low pH value of sorbic acid wastewater and the electrolysis effect came to an extreme limit in this conditions. It mainly saved the fore processing to neutralize the water with alkali applied in the other treatments, saved manpower, material resources and the devotion in time, shortened the treatment processes; Secondly, it was united Fenton reagent oxidation processes after the micro-electrolysis. This is to make use of a great deal of ferrous which were formed in the micro-electrolysis(iron and carbon) and were one component of the Fenton reagent(ferrous were a necessity part of Fenton reagent); The third, flocculation processing can take advantage of the ferric which were made from the oxidation process of the Fenton reagent; At the end, passed by the all processing the COD of the wastewater were removed in a great measure, the value of pH is about close to neutral, and the B/C of waste water gets an obvious exaltation. It lays foundation for the follow-up aerobic bio-chemical processes.
     The best parameters of threating the sobic acid wastewater with the micro-electrolysis include: HRT is 4 hours, Fe/C value is 3:2 and the influent pH value is 1.5. hi the fenton reagent oxidation process, dosage of H_2O_2 should be controlled to 0.5 Q_(th); reaction time is 2 hours and the pH value is 3. The whole percentage of COD removed can be up to 75% under these conditions.
     2. The three-dimensional electrode was composed of stainless steel anode, activated carbon cathode, with the fillings of the activated carbons and beading. The device obtained certain effect to treat the sorbic acid wastewater and united with bio-degradation method can make the wastewater to reach the discharge standard. According to various economic indexes, although the processing is a very good method which can remove COD efficiently, it consumes more and greatly electricity compared with other treatment. Its application foreground is limited to a certain extent. Therefore we expelled this treatment method in the processing route for the further experiment.
     We decided the best reaction conditions by the single factor. The first, reaction time should be controlled to 20-30 minites;The second, added voltage is 20V; And the third, pH value should be controlled to 4.0±0.2.
     3. We make use of white-rot fungus to pretreat the sorbic acid wastewater. Through experiment proved, when the wastewater pH value approaches 6 or so, the wastewater treated by white-rot fungus are apt to be bio-chemical treated and create a beneficial condition for the following bio-chemical processes, where we can see the main effect of white-rot fungus is to promote BOD/COD value greatly, besides removing COD from the wastewater. It can provide a convenient condition for the following bio-chemical treatment processes, and not degrade the organic matter directly in the wastewater in a short time.
     Treated with white-rot fungus the sorbic acid wastewater's B/C value can reach 0.41 from 0.17 and the B/C value of the sorbic acid wastewater (pretreated by the micro-electrolysis and Fenton reagent oxidation) can be up to 0.65 from 0.39 in 180 minites.
     4. The comparison researches between hydrolysis and acidification, bio-contact oxidation and pressurized bio-oxidation in the bio-degradation processes. With the sorbic acid wastewater after pretreated as the research object, the study analyzed the gas transfer theories, oxygen consuming velocity and oxygen providing ability of the pressurized bio-reactor. It clued on the relationship among the organic matter degradation, sludge growth, oxygen consuming action, designing parameters, running parameter and the surroundings factors inside the system.
     The study results showed that the two kinds of these methods can get a better water treatment effect and the sorbic acid wastewater after treatment can reach the discharge request. But comparing the two methods of treatment processes, hydrolysis and acidification, bio-contact oxidation process is a time consumed process and difficult to control and that the HRT is longer which results in high expense of equipment and construction, and much higher the first investment; On the other hand, the pressurized bio-oxidation processes have the advantages of the small area covered, the bigger sludge burden and volume burden, and the treatment time shortened. At the same time it put forward the practical solution for the sludge inflation question occurred in the treating system. For the sorbic acid wastewater, the pressurized bio-oxidation method as an aerobic treatment processes is put forward as a prior choice.
     5. It can be conclude by analyzing the GC-MS spectrums of the raw wastewater and the all phases effluent that the organic pollutant's species and quantities descend obviously after the pretreatment. The long chain, unsaturated, and lower volatility organic compounds transform to short chain, easy biodegraded, and high volatility organic compounds. This transformation makes the wastewater biodegraded easily.
     Basing on the pretreatment experiment researches, we make sure a best processing route, namely the micro-electrolysis and Fenton reagent oxidation, the white-rot fungus pretreatment united with the pressurized bio- oxidation treatment processes, which can make the waste water effect stable and to reach the discharge standard. At the same time the treating expenses of the set of treatment processes is reasonable and cost-effective which make the business enterprise to accept it easily. This project has already provided a thorough and dependable experiment data for the sorbic acid wastewater treatment processing design of one of the sorbic acid factory in Jilin province. It lays foundation for the stable treating and reaching the discharge standard ofwastewater.
引文
[1]刘志皋,高彦祥等编.食品添加剂基础.北京[M].中国轻工业出版社.1991
    [2]薛苏生.山梨酸的生产应用及发展前景[J].江苏化工.1998,12(4):30-32
    [3]施嵘,沈利英.山梨酸的开发前景和制取[J].山东化工,2001,30:31-33
    [4]张乃强.山梨酸及其盐的应用[J].滨州教育学院学报,2000,6(2):76-77
    [5]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用[J].水处理技术,1999,(4):63-69.
    [6]胡允良,姜家展,甘毅,山梨酸废水的生化处理[J],工业水处理,2002.22(8):43-45
    [7]邹家庆,田园,张显球等,高浓度山梨酸废水生化处理,南京化工大学学报,2001,23(4):25-27
    [8]陆林华,混凝生化法处理山梨酸废水[J],化工环保,2002,22(4):240-241
    [9]中国化工防治污染技术协会.化工废水处理技术[M].化学工业出版社.2000.
    [10]N.J.Karrer,G Ryhiner,E.Heinzle.Applicability test for combined biological chemical treatment of wastewaters containing biorefractory compounds.WaterRes.1997,31(5),250-254.
    [11]黄维秋,吕爱华,钟憬.活性炭吸附回收高含量油气的研究[J]环境工程学报 2007.1(2):74-77.
    [12]RuhIM.J Recover VOCs via adsorption on activated Carhon Chemical Ennineerinn Pronress 1993(7):37-41.
    [13]修艳华,李贞玉,李长海.络合萃取技术处理CLT酸废水[J],长春工业大学学报(自然科学版),2005.26(2):96-99.
    [14]方建章,张再利,雷恒毅.电生成强氧化剂处理染料废水试验研究[J],水处理技术,2004,30(3):173-176.
    [15]夏俊方,曹海云.膜分离技术处理电镀废水的实验研究[J],上海环境科学,2006,25(2):68-73.
    [16]汪大翠,雷乐成.水处理新技术及工程设计[M],化学工业出版社,2001
    [17]Zimmermann F.,Nev.waste disposal Progress[J].Chem.Eng.,1958 65(8):117-121.
    [18]齐军.水中难降解有机物氧化处理技术的研究现状和发展趋势[J],环境保护,2003,(3):17-19.
    [19]张洪林,难降解有机物的处理技术进展.[J].水处理技术,1998,24(5):259-263
    [20]张仲燕等,去除难降解有机废水COD用高效多相催化剂的研究[J].上海大学学报,2000,6(1):87-90.
    [21]唐受印,高浓度酚水的湿式氧化研究[J].环境科学研究,1995,8(6):37-40.
    [22]Potela Miguelez,J.R.,et al.,Kinetics of Wet Air Oxidation of Phenol [J],Chemical Engineering,Journal,1997,67:157-161.
    [23]杨新萍,王世合.Fenton氧化与混凝祸合法处理有机氯农药废水的研究[J].工业水处理,2006 26(4):62-65.
    [24]#12
    [25]#12
    [26]冯孝善,方士.厌氧消化技术[M].浙江:浙江科学技术出版社,1989.
    [27]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    [28]王凯军,秦人伟.发酵工业废水处理[M].北京:化学工业出版社.2000
    [29]Riazema A.etal Bactericidal effecf of long chain fatty acids in anaerobic digestion[J]Water Environ.Res.1994,(1):40-49.
    [30]Kuhn E.P.,Microbial transformation of substituted benzenes during infiltration of water to ground water[J].Environ.Sci.Techno 1.1985,(6):961-968.
    [31]王凯军.低浓度污水厌氧化(水解)处理[M].北京:中国环境科学出版社,1991,91-92
    [32]冼育剑,彭平.水解酸化-生物接触氧化法处理含油废水的研究[J],安全与环境,2006,8(1):6-8. 康杂志2005第22卷第3期:209-210.
    [34]陈新宇,陈翼孙.水解酸化-生物接触氧化处理难降解丁苯橡胶废水的研究[J].给水排水,1997,23(2):32-35.
    [35]陶有胜.水解酸化-生物接触氧化土艺处理啤酒废水工程实例[J].环境工程,1998.16(4):20-22.
    [36]相会强,张杰,于尔捷,等.水解酸化-生物接触氧化工艺处理制药废水[J],给水排水,2002:;28(1),54-56.
    [37]郑元景等,生物膜法处理污水[M],中国建筑工业出版社,1986:300-310.
    [38]上海市环境保护局,废水生化处理[M],同济大学出版社,1999年:75-77.
    [39]国家环保局.生物接触氧化处理废水[M].北京:环境科学出版社,1990年.252-297
    [40]F.Fdzl'olanco,E.Mendez,M.A.Uruena,S.Villaverde and PA.Garci a.S patial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification.Water Research.-2000.34(16):4081-4089.
    [41]S.Gonzblez-Marti nez,E.Lippert-Heredia,M.Hernrndez-Esparza,C.Doria-Serrano Reactor kinetics for submerged aerobic biofilms.Bioprocess Engineering.-2000.23(1):57-61.
    [42]Villaverde S,Garcia-Encina P.A.,Fdz-Polanco F.Influence of pH over nitrifying biofilm activity in submerged biofilters Water Research.1997.31(5)1180-1186.
    [43]S.Villaverde,F.FdzPolanco and PA.Garcia Nitrifying biofilm acclimation to free ammonia in submerged biofilters.Start-up influence.Water Research.-2000.34(2).-602-610.
    [44]Charmot-Charbonnel,Marie-Louise,Herment,Sandrine;Roche,Nicolas,Prost.Christian Nitrification of high strength ammonium wastewater in an aerated submerged fixed bed Environmental Progress.1999.18(2):123-129.
    [45]Goncalves,Ricardo Francis de Araujo,Vera Lucia;Chernicharo,Carlos Augusto L.Association of a UASB reactor and a submerged aerated biofilter for domestic sewage treatment Wat.Sci.Tech.1998.38(8-9):189-195.
    [46]R.F.Gon aloes and F.Rogalla Optimising the A/O cycle for phosphorus removal in a submerged biofilter under continuous feed.Wat.Sci.Tech.2000.41(4-5):503-508.
    [47]P.A.Castillo,S.Gonzblez-Martinez.Observations during start-up of biological phosphorus removal in biofilm reactors Water Science and Technology.-2000.41(4-5):425-432.
    [48]Wang Baozhen,Li Jun,el at.Mechanism of phosphorus removal by SBR submerged biofilm system.Water Research 1998,9:2633-2638
    [49]Yun Yeoung-Sang,Lee Min Woo,Park Jong Moon,Lee Choog-Il,Huh Jae-Sun,Chun Hee-Doog.Reclamation of wastewater from a steelmaking plant using an airlift submerged biofilm reactor Journal of Chemical Technology and Biotechnology.1998.73(2):162-168.
    [50]古杏红 厌氧水解—生物接触氧化法处理苯胺类化工废水[J].中国给水排水,2002.8(21):4-7.
    [51]陈洪斌,庞小东,李建忠.悬浮填料生物接触氧化法处理炼油废水[J],中国给水排水,2002 18(9):42-44.
    [52]李正凯.高负荷生物接触氧化法处理污水的特性.水处理技术,1994 20(1):45-50
    [53]杜茂安等.生物接触氧化过滤处理生活污水的试验研究[J].哈尔滨建筑大学学报,2001,34(4):34-36.
    [54]吴慧英黄晨等.加压生物接触氧化法处理生活污水的试验研究[J].给水排水,2003 29(6):36-39
    [55]高春娣,王淑莹,彭永臻.DO对有机物降解速率及污泥沉降性能的影响[J].中国给水排水,2001,17(5):12-15.
    [56]Imre Takacs,Emo Fleit.Modelling of the Micromorphology of the Activated Sludge Floc:Low DO,Low F/IV Buking[J].Wat Sci Tech,1995,31:235-243.
    [57]李志娟,徐向红.活性污泥法处理城市污水中鼓风和纯氧两种曝气方法的比较,新疆大学学报(自然科学版),2003,20(1):103-108.
    [58]连立国,王国栋.纯氧曝气系统污泥膨胀原因及控制[J].中国给水排水,20(10):95-96.
    [59]杨传芳,安奎进.纯氧曝气活性污泥上浮的原因及控制分析[J].齐鲁石油化工,1998,26(2):126-128.
    [60]朱谋溪.自吸式射流曝气器在中小型氧化沟中的应用[J].给水排水,1999,25(8):13-17.
    [61]许保玖,龙腾锐.当代给水与废水处理原理[M]第二版.北京:高等教育出版社,2000.
    [62]王化伟,王欣,张桂梅.加压曝气的工艺研究[J].环境保护科学,1994,20(1):34-36.
    [63]明欲晓,曹敬华.压力生物氧化法处理印染废水试验研究[J]中国给水排水,1996,12(4):6-9.
    [64]杨秀强,刘新亭加压生物接触氧化法处理增塑剂生产废水试验研究[J].环境污染与防治,1996,18(2):21-23.
    [65]吴慧英,黄最,施周,等.加压生物接触氧化法处理生活污水的试验研究[J].给水排水,2003,29(6):36-38.
    [66]曹敬华,明欲晓.压力对加压生物反应器氧转移的影响[J].中国给水排水,2002,18(9):34-36.
    [67]陈润良,陈平,于容朴等.加压纯氧曝气生化法处理亚钱法木浆中段水的研究.河北化工,2002,(3):40-41.
    [68]陈立波,郭景海,隋新等.加压曝气生物反应器及其工艺设计[J],环境工程,2002,20(3):25-27.
    [69]S.B.Pointing.Biotechnol Feasibility of bioremediation by white-rot fungi Appl Microbiol 2001,57:20-33.
    [70]J.A.Bumpus,S.D.Aust.Biodegradation of environmental pollutants by the white rot fungus phanerochaete chrysosporium:involvement of the lignin degrading system[J].BioEssays,1987,6:166-170.
    [71]J.ABOOE,fit.Tien,D.Wright,et al.Oxidation of persistent environ -mental pollutants try a white rot fungus[J].Science,1885,228:1434-1436
    [72]D.P.Barr,S.D.Aust.Mechanisms white rot fungi used to degrade pollutants.Environ.Sci.Technol.1994,28(2):78A-87A
    [73]李慧蓉.白腐真菌研究近展[J].环境科学进展,1996 4(6):69-76
    [74]Gianfreda.L.,Xu.F Bollag J.-M.Laccases:a useful group of oxido reductive enzymes.Bioremediation,.1999,3:1-25.
    [75]S.V.Shlev,E.A.Zaitseva,E.S.Gorshina.Spectral and electro- chemical study of laccases from basidiomycetes.Moscow University Chem.Bull.,2003.44:35-39.
    [76]Michael.G,GoId.MH.Molecular biology of the Lignin-degrading basidiomycete phanerochaete chrysosporium.Microbiological Reviews,1993,57(3):605 -622.
    [77]黄俊,周中范.白腐真菌生化降解TNT装药废水的研究[J].环境科学与技术,1999.(3):17-19.
    [78]黄伟,韩林鹿,何北海等.白腐菌生物反应器处理脱墨废水.中国造纸学报.2005.36:25-28.
    [79]Joyce T W,et al.Continous biological process to decolorized bleach plant effluents[J].Biotechnology Advances,1984,2(2):301-308.
    [80]Bosco F,et al.Performances of atrickle-bed reactor(TBR)for exoenzyme production by phanerchaete chrysosporium:influence of superficial liquid velocity[J].chemical engineering Science Proceedings of the 1998 15th International Symposium on Chemical Reaction engineering,1999,54(1):13-16.
    [81]O.Genc,Y.Yalc-mkaya.E.Buyu ktunce.A.Denizli,.M.Y.Anca S.Bektaslnt.Uranium recovery by immobilized and dried powdered biomass:characterization and comparison.Miner.Process.2003,68:93-107.
    [83].Graciela M.L.Ruiz-Aguilar,Jose M.Fernandez-Sanchez,Refugio Rodnguez-Vazquez,Hector Poggi-Varaldo.Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil.Advances in Environmental Research.2002,6:559-568.
    [82]B.E.Andersson a T.Henrysson.Accumulation and degradation of deadend metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi.Appl Microbiol Biotechnol.1996,46:647-652.
    [83]Sammaiah Pallerla,Robert P.Chambers.Reactor development for biodegradation of pentachlorophenol.Catalysis Today.1998.40:103-111.
    [84]Alessandro D'Annibale,Silvia Rita Stazi,Vittorio Vinciguerra,Elena Di Mattia,Giovanni Giovannozzi Sermanni.Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment.Process Biochemistry.1999,34:697-706.
    [85]黄俊等.白腐真菌生物降解TNT炸药废水的研究[J].环境科学与技术,1999(3):17-19.
    [86]Janshekar H.,Fiechter A.Cultivation of lignin peroxidase in submerged stirred tank reactors.Journal of Biotechnology.1988,8(2):97-12.
    [87]黄民生等.白腐真菌对活性染料废水脱色实验研究[J].华东师范大学学报(自然科学版).2005,(1),139-143.
    [88]何德文,陆雍森.白腐真菌生化降解酸性染料废水的效果研究[J].1998,11(4):197-198.
    [89]赵春芳等.白腐真菌降解偶氮金属络和染料的研究.华中科技大学学报.2001,29(8):108-110.
    [90]熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J],工业水处理,1998,18(1):5-8.
    [91]董献堆,陈平安,陆君涛等,电解用三维电极体系的研究与发展[J],化学通报,1997,(5):12-19.
    [92]Leroux F,Coeuret F,Flow-by electrodes of ordered sheets of expand metal,Electrochimica Acta,上980,30(2):167-172.
    [93]Stock A,Enriqucz-Granados M A,Rogcr M,ct al,Bchaviour of porous electrodes in a flow-by regime-l.theoretical study,Electrochimica Acta,1982,27(2):293-301.
    [94]朱宏丽,王书惠,三元电极电解在水处理中的应用[J],环境科学,1985,6(6):36-40.
    [95]吴辉煌,水中有机污染物电化学清除的研究进展[J],环境污染与防治,2000,22(4):39-42.
    [96]Wang.J,Angnes L,Tobias H,et al,Carbon Aerogel Composite Electrodes,Anal Chem,1993,65(17):2300-2303.
    [97]Kohler D,Zabasajja J,Krishnagopalan,et al,A Metal-carbon composite materials from fiber precursors.Preparation of stainless steel-carbon composite electrodes,J Electrochem Soc,1990,137:136-141.
    [98]Wang J,Angnes L,et al,Composite electrodes based on carbonized poly(acrylonitrile)foams,Anal Chem,1990,62(10):1102-1104.
    [99]Sleszynski N,Osteryoung J,Carter M,Arrays of very small vol Lamme Lric electrodes based on reticulated vitreous carbon,Anal Chem,1984,56(2):130-135.
    [100]Zhou Ding,Cai Wcimin,Wang Qunhui,A study on the use of bipolar -panicles-electrodes in decolorization of dyeing effluents and its principle,Water Sci Tech,1986,19(3-4):391-400.
    [101]周定,汪群慧,复极性电极中填充材料选择的研究,哈尔滨工业大学学报,1984(增刊):1-4.
    [102]李保山,牛玉舒,翟玉春等,发泡金属电极的宏观反应速率及电势分布,化工学报,2001,52(7):593-600.
    [103]Fleischmann M,Oldfield J W,Tennakoon C L K,Electrochemical bipolar particulate cell,hast of Chem End,1973,(37):53-69.
    [104]Tomat R,Rigo A,Elcctrochcmical oxidation of tolucnc promotcd by OH radicals,J Appl Electrochem,1984,14(1):1-8.
    [105]陈武,杨昌柱,梅平.三维电极电化学方法处理印染废水实验研究[J],工业水处理 2004,24(8)43-45.
    [106]乔启成,王立章,邓霞.三维电极法处理垃圾渗滤液的实验研究[J],苏州科技学院学报(工程技术版),2007,20(1):39-42.
    [107]Ogutveren U B,Uonen n,Koparal S,removal of chromium from aqueous solutions and plating bath rinse by an electrochemical method.Int,Rnviron Stud Sect A,1994,40(2):81-87.
    [108]陈武,杨昌柱,梅平.二维电极方法处理L-亮氨酸废水的研究[J].水处理技术,2007,33(5):28-32.
    [109]黄宇,孙宝盛,石玲等.三维电极反应器处理染料废水效果分析[J],工业用水与废水,2007,38(2):27-29.
    [110]詹艳,熊忠.铁炭内电解法对兰麻废水的预处理研究[J].工业水处理.2003 23(1):28-31.
    [111]孟刚,郑培根.铁炭微电解-亚铁还原氧化法处理花箐废水的研究[J]. 感光科学与化学.2002,20(4):303-312.
    [112]张亚静.铁碳微电解法处理印染废水[J].环境污染与防治,2000,22(5):33-36.
    [113]T.H.Kim,C.H.Park.Comparison of Disperse and Reactive Dye Removals by Chemical Cogulation and Fenton Oxidation.Hazardous Materials.2004,1 12:95-103.
    [114]Shibaeva,L.V.,et al.Oxidation of Phenol with Molecular Oxygen in Aqueous Solutions[J].Kinetics and Catalysis,1969,10(5):401-407.
    [115]付时雨,余惠生.贝壳状革耳菌在固体和液体培养过程漆酶同功酶的产生研究[J].纤维素科学与技术,1998,6(3):32-37.
    [116]许海娟,梁文芷.白腐菌降解木素酶系及其作用机理.环境污染治理技术与设备,2000,1(3):51-54.
    [117]JandaV.,VasekP.,BizovaJ.,etal.Kinetic models for volatile chlorinated hydrocarbons removal byz ero-valenti-ron.Chemosphere,2004,54:917-925.
    [118]FeitzA.J.JooS.H.,GuanJ.,etal.Oxidative trans-forlnation of contaminants using colloidal zero-valentiron Colloids and Surfaces A:Physicochem.Eng.Aspects,2005,265:88-94.
    [119]汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水治理中的应用[J].工业水处理,1998,18(6):4-7.
    [120]李德生,王宝山.曝气铁炭微电解工艺预处理高浓有机化工废水[J].中国给水排水,2003,19(10):58-60.
    [121]陆斌,韦鹤平.内电解强化处理腈纶废水的试验研究.同济大学学报,2001,29(11):1294-1298.
    [122]张子间.微电解-生物法处理含铬电镀废水的研究[J].环境污染治理技术与设备,2004,5(12):79-81.
    [123]侯爱东,王月娟,张群峰.微电解-UBF-CASS工艺处理制药废水[J].江苏环境科技,2005,18(4):16-18.
    [124]程沧沧,胡德文,周菊香.微电解-光催化氧化法处理印染废水[J].水处理技术,2005,31(7):46-47.
    [125]张文艺.微电解-混凝-SBR法处理焦化废水[J].中国给水排水,2003, 19(7):58-59.
    [126]Ghauch A.Degradation of benomyl picloram and dicamba in a conical apparatus by zero-valentiron powder.Chemosphere,2001,43:1109-1117.
    [127]NamS.,TramyekP.G.Reduction of azo dyes with zero-valentiron.Wate rResearch,2000,34(6):1837-1845.
    [128]Keum Y.S.,LiQ.X.Reduction of nitroarom atic pesti-cides with zero -valentiron.Chemosphere,2004,54:255-263.
    [129]hS.Y.,ChiuP.C.,KimB.J.,etal.Zero-valenti-ron pretreatment for enhanceing the biodegradability of RDX.Chemosphere,2005,39:5027-5032.
    [130]韩洪军.铁屑炭粒法处理纺织印染废水[J].工业水处理,1997,17(6:15-17.
    [131]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):69-72.
    [132]张伟.废铁屑-H_2O_2法处理炼油厂含酚废水[J].化工环保,1997,17(6):342-345.
    [133]Emanual,N.M,et al.Oxidation of Organic Compounds,Pergamon Press,New York,NY,1984.
    [134]朱宏丽,王书惠.三维电极在水处理中的应用[J].环境科学,1985,6(6).35-38
    [135]程爱华,张治宏.活性炭填充电极电解法处理含酚废水的试验研究[J].西安科技学院学报,2002,22(4):426-428.
    [136]熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工大学学报(白然科学版),2002,29(5):34-37.
    [137]Barr D.P.,Aust S.D..Mechanisms white rot fungi used to degrade pollutants.Environ.Sci.Technol..1994,28(2):78-87.
    [138]李慧蓉.白腐真菌研究近展.环境科学进展.1996,4(6):69-76.
    [139]Dongmei Li,Heather L.Yonngs,Michael H.Gold.Heterologous Expression of a T'hermostable Manganese Peroxidase from Dichomitus squalens in the nerochaete chry osporium.Archives of Biochemistry and Biophysics.2001,385(2):348-356.
    [140]林鹿,王双飞,陈嘉翔.白腐菌对蔗糖CEH漂白废水的脱色.工业水处 理.1996,16(3):25-27.
    [141]沈德中.污染环境的生物修复.北京:化学工业出版社,2002.
    [142]S.M.斯特罗纳,拉始 J.N.莱斯持.工业废水处理的厌氧消化过程,1989:45-103.
    [143]张希街.废水厌氧生物处理工程.中国环境科学出版社,1996:423-458.
    [144]Jerry C.M,Philip A.M,Jefferson W.T.Acetic Acid Oxidation and Hydrolysis in Supercritical Water[J].AICHE,1995,41(9):2108-2121
    [145]Lee.D.S.Heterogeneous Oxidation Kinetics of Acetic Acid in Supercritical Water[J].Environ Sci Technol.1996,30(12):3478-3492.
    [146]KH.Kruth,K.F.Staab.Pressurized Bioreactor with membrane filtration for wastewater trentment[J].Water Res,1993,27(3):405-411.
    [147]Li L.Generalized Kinetic Model for Wet Oxidation of Organic Compounds[J].AICHE,1991,37(11):1687-1697.
    [148]乌锡康.有机化工废水治理技术.化学工业出版社,1997:135-234.
    [149]来关根.废水处理过程及设备.浙江科学技术出版社,1986:273-324.
    [150]Barnes D,Gomonszy M.C.Continuous Intermittent wastewater systems for municipal and Industrial Effluents.Public Health Engineer,1980,20:8-12.
    [151]#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700