用户名: 密码: 验证码:
瓦斯抽采钻孔周边煤岩渗流特性及粉体堵漏机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻孔抽采是煤矿瓦斯灾害防治的主要技术措施,其中钻孔密封是决定瓦斯抽采效果的重要环节。然而瓦斯抽采过程中煤岩裂隙发育导致瓦斯抽采浓度低、衰减快,存在重大安全隐患:抽采系统内低浓度瓦斯易落入爆炸极限范围内,存在爆炸风险;孔外裂隙内高浓度氧气易引起煤体氧化自燃,可诱发瓦斯燃烧(或爆炸)。本文以提高瓦斯抽采浓度为切入点,对钻孔围岩渗流特性和粉体封堵机理进行了研究,为有效封堵孔外漏气裂隙提高瓦斯抽采浓度提供理论依据。主要成果如下:
     采用理论分析、模型试验和现场实测相结合的方法研究了钻孔周边裂隙区分布特性:(1)钻孔开挖形成的裂隙区范围是在巷道开挖形成的围岩裂隙区基础上沿钻孔轴向呈“先增、后减、随后稳定”的形式扩展;(2)钻孔开挖卸荷后,孔上、下方形成垮塌区,左右两侧形成破碎区,最终由圆形变成“类橄榄球”形,且其长轴与最大主应力方向垂直;(3)裂隙区内主要存在宏观和微观的直、弯折和分叉裂隙三种裂隙形态,大部分宏观裂隙的宽度和长度分别小于5mm和50mm。
     采用实验室试验和数值计算的方法研究了巷道及钻孔先后开挖引起的有效应力与渗透性演化特性:(1)巷道开挖使巷道径向方向依次形成完全渗流区(裂隙区)、过渡渗流区、渗流屏蔽区和原岩渗流区。钻孔开挖使“四区”以钻孔为对称轴沿钻孔方向继续扩展;(2)完全渗流区和渗流屏蔽区内煤体渗透率随有效应力增大而呈负指数递减变化,随瓦斯压力增大而降低;完全渗流区和渗流屏蔽区内的渗透率分别较原岩渗流区高2个数量级和低2倍以上;(3)对于低渗透性煤层,瓦斯抽采过程中渗流屏蔽区阻隔了本区及本区以外煤体瓦斯流入孔内,而巷道中空气却易经完全渗流区进入孔内,最终导致钻孔抽采浓度降低。
     应用双流体模型研究了裂隙内的气固两相流运动规律:(1)直裂隙发生堵塞前,底部颗粒沉积层以整体蠕动的方式向前运动,堵塞发生需要的时间尺度很小;(2)各种影响因素的重要程度:加料量>表观气速>弯折角度,弯折裂隙的弯折角度对堵塞过程的影响较小;(3)分叉裂隙的主管段更易堵塞,钝角分叉裂隙比锐角更易于发生堵塞。
     利用自主构建的粉体封堵裂隙实验平台研究了粉体封堵直、弯折和分叉裂隙的堵塞特性:(1)弯折裂隙堵塞的临界粉体质量流量与气速间呈递增的关系。直裂隙发生堵塞的临界粉体质量流量也随气速的增大而增大,依次分为三个典型阶段:中速增长阶段、低速增长阶段和高速增长阶段,比弯折裂隙多了中速增长阶段;(2)随气速增大,弯折裂隙堵塞的临界粉体固气比呈幂指数递减变化,这与已有的研究理论和实验结果相一致。但不同的是,发现存在最小固气比,当气速大于最小固气比对应的气速时,固气比反而随气速的增大呈幂指数递增变化;(3)直、分叉裂隙堵塞的临界气速与固气比间呈“S”型关系,即随气速增大,固气比呈“增、减、增”变化。由于低气速输送粉体易造成管路堵塞,基于此,直、分叉裂隙也存在最小固气比;(4)建立了直、弯折和分叉裂隙堵塞边界的经验公式,其相对误差在合理范围内,可用于工程实践。
     研究成果在平煤股份八矿进行了应用,结果表明:采用本文研究成果后,钻孔瓦斯抽采浓度比原先增幅一倍以上。
Methane extraction from boreholes is the main approach for prevention andcontrol of methane disasters in coal mine, and borehole sealing is an important linkwhich determines methane extraction effect. However, the growth of coal and rockcracks in the process of methane extraction leads to low concentration and fastattenuation, leaving a significant hidden danger: there is risks of explosion that lowconcentration methane in methane extraction system is easy to fall into the explosionlimit range; there is high concentration oxygen in the cracks around borehores that islikely to cause the oxidation and spontaneous combustion of coals, may inducingmethane burning. In order to improve the methane extraction concentration, this paperstudies the seepage characteristics around borehole and blockage mechanism ofpowder, which presents theoretical support for effective plugging the leakage cracksaround boreholes and the improvement of methane extraction concentration. The mainachievements are as follows:
     Using the combination of methods including theoretical analysis, model test andfield test to study the fracture distribution characteristics around boreholes:(1)Fracture zone induced by borehole excavation is based on the formation of thefracture zone induced by roadway excavation along borehoe axial "first increases,then decreases, then stability";(2) After borehole excavation unloading, the zonesabove and below the borehore collapse, on the left and right sides become brokenzones, and the round shape of borehoe finally comes to a "class a football" form, andits long axis and the maximum principal stress are vertical in the direction;(3) Thereare the macroscopic and microscopic straight, bending, and bifurcation slits in fracturezone, most width and length of the macroscopic slits are less than5mm and50mmrespectively.
     The effective stress and permeability redistributions induced by successiveroadway and borehole excavations, are studied through the methods of laboratory testand numerical calculation:(1) After roadway excavation, four zones, including thefull flow zone, the transitive flow zone, the flow shielding zone, and the in situ rockflow zone are consecutively formed along the radial direction of the roadway. Afterborehole excavation, these zones expand along the borehole direction;(2) Theeffective stress-permeability relationship in the full flow zone and the flow shieldingzone is a piecewise exponential function, and the coal permeability reduces with the increase of methane pressure. The permeability of the coal mass in the full flow zoneis two orders of magnitude higher than that of the original coal, and the permeabilityin the flow shielding zone is minimized at a value two times lower than that of theoriginal coal mass;(3) For all coal seams with low permeability when drainingmethane around boreholes, the flow shielding zone may prevent the methane in thiszone and the other zones from flowing into boreholes, whereas air in the roadwaycould easily pass the full flow zone and enter the boreholes, which eventually leads tolow methane concentration obtained from boreholes.
     Application of the two-fluid model to research the movement of gas-solidtwo-fluid flow in slit:(1) Before the blockage of a straight slit, at the bottom of theparticle sedimentary sequences creep travel forward in the form of integral, and theblockage time is very small;(2) The importance of the various factors affectingblockage is as follows: feeding amount> superficial gas velocity> bending angle.The bending angle of bending slit has less effect on the blocking process;(3) Themain pipe section of bifurcation slit is easy to block, and obtuse angle of bifurcationslit is easier than acute angle to block.
     The experiment platform for simulating the blockage of slits using powder wasestablished independently to research the blockage characteristics of straight, bendingand bifurcation slits:(1) For the bending slit, the solid mass flow rate for blockageincreases as the air velocity increases. For the straight slit, the relationship betweenthe solid mass flow rate and air velocity is also like that and it could be divided intothree typical stages in turn: medium growth stage, slow growth stage and rapid growthstage. The straight slit has stage of medium growth which the bending slit isinexistence;(2) The solid loading ratio and air velocity in the bending slit display apower function decreasing relationship. This finding is in agreement with existingtheory and experiment results. What is different, however, is that we found aminimum solid loading ratio exists. When air velocity is greater than the minimumsolid loading ratio’s corresponding velocity, the solid loading ratio and air velocityactually exhibit a power function increasing relationship;(3) The solid loading ratioand air velocity in the straight and bifurcation slits display a "S" shape relationships:with the increasing of air velocity, the solid loading ratio increases at first, thendecreases, and finally increases. Because low speed conveying of powder is easy tocause pipe blockage, straight and bifurcation slits also have the minimum solidloading ratio;(4) The formulas about the blockage condition of straight, bending and bifurcate slits are established, and the relative error of formulas is in the reasonablerange, which can be used in Engineering.
     The results of field experiments in No.8Mine of Pingdingshan Mines showedthat the application of the research results in this paper could increase theconcentration of methane two times as high as the original one of less than30%in theboreholes.
引文
[1]中国煤炭资源[EB/OL].[2013-02-25]. http://www.sxcoal.com/coal/3068819/articlenew.html.
    [2]中国产业经济信总网.煤炭行业“十二五”发展规划[EB/OL].[2012-03-23].http://www.cinic.org.cn/site95l/zcdt/2011-06-22/486183.shtml.
    [3]王显政.中国煤炭工业发展面临的机遇与挑战[J].中国煤炭,2010,36(7):5-7.
    [4]李新娟.中国煤矿安全状况与经济社会发展关系的研究[J].安全与环境学报,2012,12(4):197-203.
    [5]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].安全与环境学报,2009,26(2):127-139.
    [6]王显政.以防治瓦斯灾害为重点开创煤矿安全生产工作新局面[J].煤炭企业管理,2002(9):10-14.
    [7]国务院办公厅.关于加快煤层气(煤矿瓦斯)抽采利用的若干意见[J].节能与环保,2006(6):1-2.
    [8]林柏泉,张建国.矿井瓦斯抽采理论与技术[M].徐州:中国矿业大学出版社,1996:66-123.
    [9]孙小岩.瓦斯抽采孔封孔注浆材料及钻孔稳定性研究[D].河南:河南理工大学能源学院,2007.
    [10]姚宁平.煤矿井下瓦斯抽采钻孔施工技术[J].煤矿安全,2008,10(6):30-33.
    [11]王兆丰,刘军.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,2005,36(3):29-32.
    [12] Wang, L., Cheng, Y.P. Drainage and utilization of Chinese coal mine methane with acoal-methane co-exploitation model: Analysis and projections [J]. Resources Policy,2012,37(3):315-321.
    [13] Su, S., Agnew, J. Catalytic combustion of coal mine ventilation air methane [J], Fuel,2006,85(9):1201-1210.
    [14]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004:308-312.
    [15]师同民,秦海涛.综采面瓦斯抽放与防灭火关系机理研究[J].煤炭科技,2012(3):115-117.
    [16]周洪超.煤层瓦斯抽采封孔段钻孔稳定性研究[D].河南:河南理工大学能源学院,2007.
    [17]徐龙仓.提高煤层气抽采钻孔封孔效果研究与应用[J].中国煤层气,2008,5(1):23-25.
    [18] Noack, K. Control of gas emissions in underground coal mines [J]. International Journal ofCoal Geology,1998,35(1-4):57-82.
    [19]殷文韬,刘明举,温志辉,等.煤层瓦斯抽放封孔工艺研究与应用[J].煤炭工程,2011(2):31-33.
    [20]高振勇,张志刚,尹斌.提高聚氨酯封孔质量的研究[J].矿业安全与环保,2009,36(8):37-41.
    [21]李文树,陈久福,龙建明,等.瓦斯顺层抽采钻孔封孔工艺改进研究[J].煤炭科学技术,2013,41(8):161-165.
    [22]翟成,向贤伟,余旭,等.瓦斯抽采钻孔柔性膏体封孔材料封孔性能研究[J].中国矿业大学学报,2013,42(6):982-988.
    [23]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1997:128-129.
    [24]周福宝,李金海,昃玺,等.煤层瓦斯抽放钻孔的二次封孔方法研究[J].中国矿业大学学报,2013,38(6):764-768.
    [25]昃玺.煤层钻孔瓦斯抽放的二次封孔技术[D].徐州:中国矿业大学,2008.
    [26]胡东亮.二次封孔技术在松软煤层的应用研究[D].徐州:中国矿业大学,2010.
    [27]李义敬.穿层钻孔二次封孔新技术研究与工程应用[D].徐州:中国矿业大学,2013.
    [28]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):381-385.
    [29]孟召平,王保玉,徐良伟,等.煤炭开采对煤层底板变形破坏及渗透性的影响[J].煤田地质与勘探,2012,40(2):39-43.
    [30]朱珍德,刘立民.脆性岩石动态渗流特性试验研究[J].煤炭学报,2003,28(6):588-592.
    [31]朱珍德,张爱军,徐卫亚.脆性岩石全应力-应变过程渗流特性试验研究[J].岩土力学,2002,23(5):555-563.
    [32]赵连涛,于旭磊,刘启蒙,等.煤层底板岩石全应力-应变渗透性试验[J].煤田地质与勘探,2006,34(6):37-39.
    [33]李玉寿,马占国,贺耀龙,等.煤系地层岩石渗透特性试验研究[J].实验力学,2006,21(2):129-134.
    [34] Heiland, J., Raab,S. Experimental investigation of the influence of differential stress onpermeability of a lower permian (rotliegend) sandstone deformed in the brittle deformationfield[J]. Physics and Chemistry of the Earth (A),2001,26(1-2):33-38.
    [35] Ngwenya, B.T., Kwon, O., Elphick, S.C., et al. Permeability evolution during progressivedevelopment of deformation bands in porous sandstones [J]. Journal of GeophysicalResearch: Solid Earth (1978-2012),2003,108(B7):2343-2356.
    [36] Tang, C.A., Tham, L.G., Lee, P.K.K., et al. Coupled analysis of flow, stress and damage (FSD)in rock failure [J]. International Journal of Rock Mechanics&Mining Sciences,2002,39(4):477-489.
    [37]王小江,荣冠,周创兵.粗砂岩变形破坏过程中渗透性试验研究[J].岩石力学与工程学报,2012,31(5):2940-2947.
    [38] Wang, J.-A., Park, H.D. Fluid permeability of sedimentary rocks in a complete stress–strainprocess [J]. Engineering Geology,2002,63(3-4):291-300.
    [39] Duan, H.F., Jiang, Z.Q., Zhu, S.Y., et al. A expansive limits anti-permeability strengthmethodology of the coal mine floor water inrush evaluating [J]. Procedia EnvironmentalSciences,2012(12):372-378.
    [40]王金安,彭苏萍,孟召平.岩石三轴全应力应变过程中的渗透规律[J].北京科技大学学报,2001,23(6):489-491.
    [41]杨天鸿,徐涛,冯启言,等.脆性岩石破裂过程渗透性演化试验[J].东北大学学报(自然科学版),2003,24(10):974-977.
    [42]姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.
    [43]俞缙,李宏,陈旭,等.渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J].岩石力学与工程学报,2013,32(6):1203-1213.
    [44]张宏敏.砂岩全应力-应变过程气体渗透特性实验[J].煤炭学报,2009,34(8):1063-1066.
    [45]李晓泉,尹光志.含瓦斯煤的有效体积应力与渗透率关系[J].重庆大学学报,2011,34(8):103-108.
    [46]许江,彭守建,尹光志,等.含瓦斯煤热流固耦合三轴伺服渗流装置的研制及应用[J].岩石力学与工程学报,2010,29(5):907-914.
    [47]王登科,魏建平,尹光志.复杂应力路径下含瓦斯煤渗透性变化规律研究[J].岩石力学与工程学报,2012,31(2):303-310.
    [48]朱卓慧,冯涛,谢东海,等.不同应力路径下含瓦斯煤渗透特性的实验研究[J].采矿与安全工程学报,2012,29(4):570-574.
    [49]刘见中,张东明,袁地镜.含瓦斯煤在不同围压下的渗流特性试验[J].煤炭科学技术,2009,37(7):70-73.
    [50]蒋长宝,尹光志,李晓泉,等.突出煤型煤全应力-应变全程瓦斯渗流试验研究[J].岩石力学与工程学报,2010,29(2):3482-3487.
    [51]尹光志,蒋长宝,许江,等.含瓦斯煤热流固耦合渗流实验研究[J].煤炭学报,2011,36(9):1495-1500.
    [52] Meng, L., Jiang, Y.D., Zhu, J., et al. Experimental Study of Different Gases on Permeabilityof Tectonic Coal [J]. Procedia Engineering,2011(26):1176-1183.
    [53]陶云奇,许江,程明俊,等.含瓦斯煤渗透率理论分析与试验研究[J].岩石力学与工程学报,2009,28(2):3363-3370.
    [54] Li, X.C., Nie, B.S., Liu, F.B., et al. The relation of gas seepage and coal body damage underthe true three dimension stress [J]. Procedia Engineering,2011(26):1462-1466.
    [55]魏建平,位乐,王登科.吸附气体对受载含瓦斯煤渗流特性影响的试验研究[J].河南理工大学学报(自然科学版),2013,32(6):653-657.
    [56]王臣,鲜学福,周军平,等.含不同气体煤岩全应力-应变渗透特性试验研究[J].地下空间与工程学报,2013,9(3):492-496.
    [57]曹树刚,李勇,郭平,等.型煤与原煤全应力–应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [58]魏建平,王登科,位乐.两种典型受载含瓦斯煤样渗透特性的对比[J].煤炭学报,2013,38(1):93-99.
    [59]高魁,刘泽功,刘健.两种含瓦斯煤样的渗透性对比试验研究[J].煤炭科学技术,2011,39(8):57-59.
    [60] Gao, S.G., Guo, P., Zhang, Z.G., et al. Seepage laws of two kinds of disastrous gas incomplete stress-strain process of coal [J]. Mining Science and Technology (China),2011,21(6):851-856.
    [61] Liu, Y.B. An Experimental study on permeability properties of outburst coal under thecoupling effect of multiple factors [J]. Procedia Engineering,2011(24):431-435.
    [62]林柏泉.含瓦斯煤体渗透率的探讨[J].煤矿安全,1998(12):15-20.
    [63]高魁,刘泽功,刘健.含瓦斯原煤样的渗透性试验研究[J].煤炭工程,2012(3):99-101.
    [64] Harpalani, S. Impact of CO2injection on flow behavior of coalbed methane reservoirs [J].Transport in porous media,2010,82(1):141-156.
    [65] Robertson, E.P. Measurement and modeling of sorption-induced strain and permeabilitychanges in coal [M]. United States: Department of Energy,2005.
    [66] Singh, K. Establishing Permeability Trends for Illinois Coals [D]. America:Southern IllinoisUniversity, Carbondale,2008.
    [67] Pan, Z.J., Connell, L.D., Camilleri, M. Laboratory characterisation of coal reservoirpermeability for primary and enhanced coalbed methane recovery [J]. International Journalof Coal Geology,2010(82):252–261.
    [68] Li, M., Mao, X.B., Yu, Y.L., Li, K., et al. Stress and deformation analysis on deepsurrounding rock at different time stages and its application[J]. International Journal ofMining Science and Technology,2012(22):301-306.
    [69]尹光志,李广治,赵洪宝,等.煤岩全应力-应变过程中瓦斯流动特性试验研究[J].2010,29(1):170-175.
    [70] Lu, A.Z., Xu, G.S., Sun, F., et al. Elasto-plastic analysis of a circular tunnel including theeffect of the axial in situ stress [J]. International Journal of Rock Mechanics and MiningSciences,2010,47(1):50-59.
    [71] Zhang, C.G., Zhao, J.H., Zhang, Q.H., et al. A new closed-form solution for circular openingsmodeled by the Unified Strength Theory and radius-dependent Young’s modulus [J].Computers and Geotechnics,2012(42):118-128.
    [72] Gaede O, Karpfinger F, Jocker J, et al. Comparison between analytical and3D finite elementsolutions for borehole stresses in anisotropic elastic rock[J]. International Journal of RockMechanics and Mining Sciences,2012(51):53-63.
    [73] Islam, M.R., Shinjo, R. Numerical simulation of stress distributions and displacementsaround an entry roadway with igneous intrusion and potential sources of seam gas emissionof the Barapukuria coal mine, NW Bangladesh [J]. International Journal of Coal Geology,2009,78(4):249-262.
    [74] Park, K.H., Kim, Y.J. Analytical solution for a circular opening in an elastic-brittle-plasticRock [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(4):616-622.
    [75] Sharan, S.K. Analytical solutions for stresses and displacements around a circular opening ina generalized Hoek-Brown rock [J]. International Journal of Rock Mechanics and MiningSciences,2008,40(1):78-85.
    [76] Brown, E.T., Bray, J.W., Ladanyi, B, et al. Ground response curves for rock tunnels [J].Journal of Geotechnical Engineering,1983,109(1):15-39.
    [77] Lee, Y.K., Pietruszczak, S. A new numerical procedure for elastoplastic analysis of a circularopening excavated in a strain-softening rock mass [J]. Tunnelling and Underground SpaceTechnology,2008,23(5):588-599.
    [78]张强,王水林,葛修润.圆形巷道围岩应变软化弹塑性分析[J].岩石力学与工程学报,2010,29(5):1031-1035.
    [79]曾开华,鞠海燕,盛国君,等.巷道围岩弹塑性解析解及工程应用[J].煤炭学报,2011,36(5):752-755.
    [80] Jayanthu, S., Singh, T.N., Singh, D.P. Stress Distribution During Extraction of Pillars in aThick Coal Seam [J]. Rock Mechanics and Rock Engineering,2004,37(3):171-192.
    [81] Jiang, Y., H. Yoneda, Tanabashi, Y. Theoretical estimation of loosening pressure on tunnels insoft rocks [J]. Tunnelling and Underground Space Technology,2001,16(2):99-105.
    [82] Hao, Y.H., Azzam, R. The plastic zones and displacements around underground openings inrock masses containing a fault [J]. Tunnelling and Underground Space Technology,2005,20(1):49-61.
    [83] Gao, G.Y., Chen, Q.S., Zhang, Q.S., et al. Analytical elasto-plastic solution for stress andplastic zone of surrounding rock in cold region tunnels [J]. Cold Regions Science andTechnology,2012(72):50-57.
    [84]范文,俞茂宏,陈立伟,等.考虑剪胀及软化的洞室围岩弹塑性分析的统一解[J].岩石力学与工程学报,2004,23(19):3213-3220.
    [85]张小波,赵光明,孟祥瑞.基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析[J].煤炭学报,2013,38(1):30-37.
    [86]胡小荣,俞茂宏.三剪强度准则及其在巷道围岩弹塑性分析中的应用[J].煤炭学报,2003,28(4):389-393.
    [87] Kwon, S., Lee, C.S., Cho, S.J., et al. An investigation of the excavation damaged zone at theKAERI underground research tunnel [J]. Tunnelling and Underground Space Technology,2009,24(1):1-13.
    [88] Zhu, W.S., Li, S.C., Li, S.C., et al. Systematic numerical simulation of rock tunnel stabilityconsidering different rock conditions and construction effects[J]. Tunnelling andUnderground Space Technology,2003,18(5):531-536.
    [89] Chu, B.L., Hsu, S.C., Chang, Y.H., et al. Mechanical behavior of a twin-tunnel inmulti-layered formations [J]. Tunnelling and Underground Space Technology,2007,22(3):351-362.
    [90]蒋斌松,张强,贺永年,等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26(5):982-986.
    [91]张俊文,刘志军.基于三剪能量理论的巷道围岩弹塑性分析[J].煤炭学报,2013,38(1):38-42.
    [92] Wang, X., Sterling, R.L. Stability analysis of a borehole wall during horizontal directionaldrilling [J]. Tunnelling and Underground Space Technology,2007,22(5-6):620-632.
    [93]黄磊,卢义玉,夏彬伟,等.深埋软弱岩层钻孔围岩应变软化弹塑性分析[J].岩土力学,2013,34(8):179-186.
    [94]姚向荣,程功林,石必明.深部围岩遇弱结构瓦斯抽采钻孔失稳分析与成孔方法[J].煤炭学报,2011,35(12):2074-2081.
    [95]王振,梁运培,金洪伟.防突钻孔失稳的力学条件分析[J].采矿与安全工程学报,2008,25(4):445-448.
    [96]周晓军,马心校.煤体钻孔周围应力应变分布规律的试验研究[J].煤炭工程师,1995,(2):16-20.
    [97]董方庭,宋宏伟,郭志宏.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [98]陈炳瑞,冯夏庭,肖亚勋,等.深埋隧洞TBM施工过程围岩损伤演化声发射试验[J].岩石力学与工程学报,2010,29(8):1562-1569.
    [99]李邵军,冯夏庭,张春生,等.深埋隧洞TBM开挖损伤区形成与演化过程的数字钻孔摄像观测与分析[J].岩石力学与工程学报,2010,29(6):1106-1112.
    [100]张文举,卢文波,杨建华,等.深埋隧洞开挖卸荷引起的围岩开裂特征及影响因素[J].岩土力学,2013,34(9):2690-2698.
    [101]牛双建,靖洪文,杨大方.深井巷道围岩主应力差演化规律物理模拟研究[J].岩石力学与工程学报,2012,31(2):3811-3820.
    [102]岳中文,杨仁树,孙中辉,等.富水厚砾石层斜井围岩破坏机理试验研究(Ⅱ)[J].煤炭学报,2010,35(8):1273-1278.
    [103]朱合华,黄锋,徐前卫.变埋深下软弱破碎隧道围岩渐进性破坏试验与数值模拟[J].岩石力学与工程学报,2010,29(6):1113-1122.
    [104]房倩,张顶立,王毅远,等.圆形洞室围岩破坏模式模型试验研究[J].岩石力学与工程学报,2011,30(3):564-571.
    [105]勾攀峰,张振普,韦四江.不同水平应力作用下巷道围岩破坏特征的物理模拟试验[J].煤炭学报,2009,34(10):1328-1332.
    [106]刘刚,赵坚,宋宏伟,等.断续节理岩体中围岩破裂区的试验研究[J].中国矿业大学学报,2008,37(1):62-66.
    [107]姜伟,白婧.巷道围岩卸荷破坏裂隙发展模型试验研究[J].湖南科技大学学报(自然科学版),2012,27(1):68-72.
    [108] Sheer,T.J. Pneumatic conveying of ice particles through mine-shaft pipelines [J].PowderTechnology,1995,85(3):203-219.
    [109] Woodhead, S. The sensing of unbalanced pulverized fuel feed rates at the exit of riffle boxesin coal fired power station fuel distribution systems [J].Fuel and Energy Abstracts,1997,38(5):360-361.
    [110] Guo,X.L., Dai, Z.H., Gong, X. The sensing of unbalanced pulverized fuel feed rates at theexit of riffle boxes in coal fired power station fuel distribution systems,2007,88(5):451-459.
    [111] Güner, M. Pneumatic conveying characteristics of some agricultural seeds [J].Journal ofFood Engineering,2007,80(3):904-913.
    [112] Cangialosi, F., Notarnicola, M., Libertia, L., et al.The effects of particle concentration andcharge exchange on fly ash beneficiation with pneumatic triboelectrostatic separation[J].Separation and Purification Technology,2008,62(1):240-248.
    [113] Cenna, A.A., Williams, K.C., Jones, M.G. Generation of transfer film and its effects on wearmechanisms in alumina conveying pipeline of mild steel [J].Wear,2009,267(1):362-367.
    [114] He, C.H., Chen, X.M., Wang, J.H., et al. Conveying characteristics and resistancecharacteristics in dense phase pneumatic conveying of rice husk and blendings of rice huskand coal at high pressure[J].Powder Technology,2012,227:51-60.
    [115]黄标.气力输送[M].上海:上海科学技术出版社,1984.
    [116] Stratton, R.E., Wensrich, C.M. Horizontal slug flow pneumatic conveying: Numericalsimulation and analysis of a thin slice approximation [J].Powder Technology,2011214(3):477-490.
    [117] Rajan, K.S., Pitchumani, B., Srivastava, S.N., et al. Two-dimensional simulation of gas-solidheat transfer in pneumatic conveying [J].International Journal of Heat and Mass Transfer,2007,50(5-6):967-976.
    [118] Miyazaki, K., Chen, G., Yamamoto, Fujio., et al. PIV measurement of particle motion inspiral gas solid two-phase flow [J].Experimental Thermal and Fluid Science,199919(4):194-203.
    [119] Yan,F., Rinoshika, A. Application of high-speed PIV and image processing to measuringparticle velocity and concentration in a horizontal pneumatic conveying with dune model[J].Powder Technology,2011,208(1):158-165.
    [120] Hu, H.L., Dong, J., Zhang, J., et al. Identification of gas/solid two-phase flow regimes usingelectrostatic sensors and neural-network techniques[J].Flow Measurement andInstrumentation,2011,22(5):482-487.
    [121] Zenz, F.A, Othmer, D.F. Fluidization and fluid-Particle systems [M].NewYork: Reinhold,1960.
    [122]丁伟,李铭,王文博,等.烟丝在水平管气力输送过程中系统压降的研究[J].湖南文理学院学报:自然科学版,2012,24(4):80-85.
    [123] Mi, B., Wypych, P.W. Pressure drop prediction in low-velocity pneumatic conveying [J].Powder Technology,1994,81(2):125-137.
    [124]刘彬,贺春辉,颜金培,等.CO2作输送介质的煤粉高压密相输送实验研究[J].中国电机工程学报,2010,30(11):21-30.
    [125] Saccani, C. Solid speed and pressure loss in pneumatic conveying plants: simulation andexperimental measurements [J].Bulk Solids Handling,1996,16(3):383-390.
    [126] Cong, X.L., Guo, X.L., Gong, X., et al. Experimental research of flow patterns and pressuresignals in horizontal dense phase pneumatic conveying of pulverized coal[J].PowderTechnology,2011,208(3):600-609.
    [127]刘宗明,赵军,岳云龙,等.浓相气力输送粉煤灰的实验研究[J].济南大学学报:自然科学版,2002,16(1):53-55.
    [128] Taylor, T. Specific energy consumption and particle attrition in pneumatic conveying [J].Powder Technology,1998,95(1):1-6.
    [129]熊源泉,赵兵,沈湘林.高压煤粉密相气力输送垂直管阻力特性研究[J].中国电机工程学报,2004,24(9):248-251.
    [130] Ding, Y.L., Wang, Z.L., Ghadiri, Mojtaba., et al. Vertical upward flow of gas-solidtwo-phase mixtures through monolith channels[J].Powder Technology,2005,153(1):51-58.
    [131] Tamara, A.J., Yap, C., Mannan, M.A. Gravity pipe flow of polymeric bulk solids inpneumatic conveying system[J].Chemical Engineering Science,2006,61(24):7836-7849.
    [132] Grbav i,.B., Gari-Grulovi, R.V., Arsenijevi, Z.L. Prediction of the choking velocityand voidage in vertical pneumatic conveying of coarse particles[J].Powder Technology,2006,161(1):1-9.
    [133] Gupta, S.K., Agrawal, V.K., Singh, S.N., et al. An experimental investigation on a fluidizedmotion conveying system [J].Powder Technology,2006,167(2):72-84.
    [134] Albion, K., Briens, L., Briens, C., et al. Flow regime determination in upward inclinedpneumatic transport of particulates using non-intrusive acoustic probes [J]. ChemicalEngineering and Processing,2007,46(6):520-531.
    [135]周云,陈晓平,梁财,等.高压密相气力输送垂直弯管阻力特性[J].化工学报,2009,60(3):580-584.
    [136] Yilmaz, A., Levy, E.K. Formation and dispersion of ropes in pneumatic conveying [J].Powder Technology,2001,114(1-3):168-185.
    [137] Akilli, Huseyin., Lwvy, E.K., Sahin, B. Investigation of gas-solid flow structure after a90°vertical-to-horizontal elbow for low conveying gas velocities [J].Advanced PowderTechnol,2005,16(3):261-274.
    [138] Bilirgen, H., Levy. E.K. Mixing and dispersion of particle ropes in lean phase pneumaticconveying [J].Powder Technology,2001,119(2-3):134-152.
    [139] Sancheza, L., Vasqueza, N.A., Klinzinga, G.E., et al. Evaluation of models and correlationsfor pressure drop estimation in dense phase pneumatic conveying and an experimentalanalysis[J].Power Technology,2010,153(3):142-147.
    [140] Rajan, K.S., Pitchumani, B., Srivastava, S.N., et al. Two-dimensional simulation of gas-solidheat transfer in pneumatic conveying[J].International Journal of Heat and Mass Transfer,2007,50(5-6):967-976.
    [141] Gundogdu, M.Y., Kutlar, A.I., Duz, H. Analytical prediction of pressure loss through asudden-expansion in two-phase pneumatic conveying lines[J].Advanced PowderTechnology,2009,20(1):48-54.
    [142] Kuan, B., Yang, W., Schwarz, M.P. Dilute gas–solid two-phase flows in a curved90°ductbend: CFD simulation with experimental validation[J].Chemical Engineering Science,2007,62(7):2068-2088.
    [143] Duan, G.B., Liu, Z.M., Chen, G.L., et al. Experimental investigation of gas-solid two-phaseflow in Y-shaped pipeline[J].Advanced Powder Technology,2010,21(4):468-476.
    [144] Tsuji, Y., Morikawa, Y., Tanaka, T. Numerical Simulation of Gas-Solid Two Phase Flow in aTwo-Dimensional Horizontal Channel [J].International journal of multiphase flow,1987,13(5):671-702.
    [145] Lun, C.K.K, Liu, H.S. Numericai simulation of dilute turbulent gas-solid flows in horizontalChannels[J].International journal of multiphase flow,1997,23(3):575-605.
    [146] Tusji, Y. Multi-Scale Modeling of Dense Phase Gas-Particle Flow [J].Chemical EngineeringScience,2007,62(13):3410-3418.
    [147]于勇,蔡飞鹏,周力行,等.考虑颗粒间碰撞的稠密气/固流动二阶矩两相湍流模型[J].化工学报.2005,56(4):620-626.
    [148] Fraige, F.Y., Langston, P.A. Horizontal pneumatic conveying: a3d distinct element model[J].Granular Matter,2006,8(2):67-80.
    [149] Huber, N., Sommerfeld, M. Modelling and numerical calculation of dilute-phase pneumaticconveying in pipe systems [J]. Powder technology,1998,99(1):90-101.
    [150] Tsuji, Y., Morikawa,Y., Shiomi, H. LDV measurements of an air-solid two-phase flow in avertical pipe[J].Journal of fluid mechanics,1984,139:417-434.
    [151]谢灼利,张政.气力输送的数值模拟研究[J].北京化工大学学报,2001,28(1):22-27.
    [152] Tanaka, T., Tsuji, Y. Numerical Simulation of Gas-Solid Two Phase Flow in a Vertical Pipe:On the effect of inter-particle collision [J].The American society of mechanical engineers,1991,121:123-128.
    [153] Sinclair, J.L., Jackson, R. Gas-Particle Flow in a Vertical Pipe with Particle-ParticleInteraction[J].AIChE Journal,1989,35(9):1473-1486.
    [154]Yonemura, S., Tanaka, T., Tsuji, Y. Cluster Formation in Gas-Solid Flow Predicted by theDSMC Method [J].The American society of mechanical engineers,1993,166:303-309.
    [155] G mez, L.C., Milioli, F.E. Numerical Study on the Influence of Various Physical Parametersover the Gas-Solid Two-Phase Flow in the2D Riser of a Circulating Fluidized Bed[J].Powder Technology,2003,132(2-3):216-225.
    [156] Almuttahar, A., Taghipour, F. Computational Fluid Dynamics of High Density CirculatingFluidized Bed Riser: Study of Modeling Parameters [J].Powder Technology,2008,185(1):11-23.
    [157] Sehmel, G.A. Particle eddy diffusivities and deposition velocities for isothermal flow andsmooth surfaces [J]. Journal of Aerosol Science,1973,4(2):125-138.
    [158] Liu, B.Y.H, Agarwal, J.K. Experimental observation of aerosol deposition in turbulentflow[J].Journal of Aerosol Science,1974,5(2):145-155.
    [159] Fan, F.G., Ahmadi, G. A sublayer model for turbulent deposition of particles in vertical ductswith smooth and rough surfaces [J]. Journal of Aerosol Science,1993,24(1):45-64.
    [160] El-Shobokshy, M.S. Experimental measurements of aerosol deposition to smooth and roughsurfaces [J]. Atmospheric Environment,1983,17(3):639-644.
    [161] Li, A., Ahmadi, G. Computer simulation of deposition of aerosols in a turbulent channelflow with rough walls[J].Aerosol Science and Technology,1993,18(1):11-24.
    [162] Muyshondt, A., Anand, N.K., McFarland, A.R. Turbulent deposition of aerosol particles inlarge transport tubes[J].Aerosol Science and Technology,1996,24(2):107-116.
    [163] Adam,N., Everitt, P., Riffat,S.B. Aerosol deposition in ventilation ducts[J].InternationalJournal of Energy Research,1996,20(12):1095-1101.
    [164] Cheong, K W. Deposition of aerosol particles in ductwork [J].Applied Energy,1997,57(4):253-261.
    [165] Sippola, R.M. Particle deposition in ventilation ducts [D]. California: Civil andEnvironmental Engineering in the Graduate Division of the University of California,2002.
    [166] Sarimeseli, A. Sedimentation of solid particles in turbulent flow in horizontal channels[J].Powder Technology,2004,140(1-2):79-85.
    [167] Shirdel, M., Paes, D., Ribeiro, P., et al. Evaluation and comparison of different models forasphaltene particle deposition in flow streams[J].Journal of Petroleum Science andEngineering,2012,84-85:57-71.
    [168] Pui, D.Y.H, Romay-Novas, F, Liu, B.Y.H. Experimental study of particle deposition in bendsof circular cross section[J].Aerosol Science and Technology,1987,7(3):301-315.
    [169] McFarland, A.R., Gong, H., Muyshondt, A, et al. Aerosol deposition in bends with turbulentflow[J].Environmental Science and Technology,1997,31(12):3371-3377.
    [170] Peters, T.M., Leith, D. Measurement of particle deposition in industrial ducts [J].Journal ofAerosol Science,2004,35(4):529-540.
    [171] Li, A., Ahmadi, G. Deposition of aerosols on surfaces in a turbulent channel flow [J].International Journal of Engineering Science,1993,31(3):435-451.
    [172] Li, A., Ahmadi, G. Computer simulation of deposition of aerosols in a turbulent channelflow with rough walls[J].Aerosol Science and Technology,1993,18(1):11-24.
    [173] Chen, Q., Ahmadi, G. Deposition of particles in a turbulent pipe flow[J].Journal of AerosolScience,1997,28(5):789-796.
    [174] Zhang, H., Ahmadi, G. Aerosol particle transport and deposition in vertical and horizontalturbulent duct[J].Journal of Fluid Mechanics,2000,406:55-80.
    [175] Uijttewaal, W.S.J, Oliemans, R.V.A. Particle dispersion and deposition in direct numericaland large eddy simulations of vertical pipe flows[J].Physics of Fluids,1996,8(10):2590-2604.
    [176] Brooke, J.W, Kontomaris, K., Hanratty, T.J., et al. Turbulent deposition and trapping ofaerosols at a wall[J].Physics of Fluids,1992,4(4):825-834.
    [177] Chen, M., McLaughlin, J.B. A new correlation for the aerosol deposition rate in verticalducts [J].Journal of Colloid and Interface Science,1995,169(2):437-455.
    [178] He, H., Ahmadi, G. Particle deposition in a nearly developed turbulent duct flow withelectrophoresis[J].Journal of Aerosol Science,1999,30(6):739-758.
    [179]王兵,张会强,王希麟.颗粒趋壁沉积的直接数值模拟[J].工程热物理学报,2009,30(1):90-92.
    [180]刘洪涛,张力.微细颗粒壁面沉积的数值研究[J].工程热物理学报,2010,31(3):431-434.
    [181] Berrouk, A.S., Laurence, D. Stochastic modelling of aerosol deposition for LES of90°bendturbulent flow[J].International Journal of Heat and Fluid Flow,2008,29:1010-1028.
    [182]陈光,王伟,杨佳.90°方形通风弯头内颗粒物沉积的模拟研究[J].广州大学学报:自然科学版,2010,9(6):4-8.
    [183] Weber, M. Principles of hydraulic and pneumatic conveying in pipes [J].Bulk SolidsHandling,1981,1(1):57-63.
    [184] Hilgraf, P. Minimum conveying gas velocities in the pneumatic transport of solids, ZKG(Zement-Kalk-Gips) International,1987,40(12):610-616.
    [185] Ratnayake, C. A comprehensive scaling up technique for pneumatic transport systems [D].Porsgrunn Norway: Norwegian University of Science and Technology (NTNU)(Doctoraldissertation),2005.
    [186] Wypych, P.W., Reed, A.R. The advantages of stepping pipelines for the pneumatic transportof bulk solids [J].Powder Handling&Processing,1990,2(3):217-221.
    [187] Geldart, D., Ling, S.J. Saltation velocities in high pressure conveying of fine coal[J].PowderTechnology,1992,69(2):157-162.
    [188] Wypych, P.W., Yi, J.L. Minimum transport boundary for horizontal dense-phase pneumaticconveying of granular materials [J]. Powder Technology,2003,129(1-3):111-121.
    [189] Mallick, S.S., Wypych, P.W. Minimum transport boundaries for pneumatic conveying ofpowders [J].Powder Technology,2009,194(3):181-186.
    [190]熊焱军,郭晓镭,龚欣,等.水平管煤粉密相气力输送堵塞临界状态[J].化工学报,2009,60(6):1421-1426.
    [191] Setia, G., Mallick, S.S., Wypych, P.W., et al, Validated scale-up procedure to predictblockage condition for fluidized dense-phase pneumatic conveying systems[J]. Particuology2013,11(6):647-656.
    [192]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986,11(3):77-86.
    [193]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988,94-95.
    [194] Yasitli, N.E., Unver, B.3D numerical modeling of longwall mining with top-coal caving [J].International Journal of Rock Mechanics&Mining Sciences2005,42(2):219-235.
    [195] Cheng, Y.M., Wang, J.A., Xie, G.X., Wei, W.B. Three-dimensional analysis of coal barrierpillars in tailgate area adjacent to the fully mechanized top caving mining face[J].International Journal of Rock Mechanics&Mining Sciences,2010,47(8):1372-1383.
    [196] Singh, A.K., Singh, R., Maiti, J., et al Assessment of mining induced stress developmentover coal pillars during depillaring[J].International Journal of Rock Mechanics&MiningSciences,2011,48(5):805-818.
    [197] Jiang, Y.D., Wang, H.W., Xue, S., et al. Assessment and mitigation of coal bump risk duringextraction of an island longwall panel[J].International Journal of Coal Geology,2012,95(1)20-33.
    [198] Steve Zoua, D.H, Yu, C.X, Xian, X.F. Dynamic nature of coal permeability ahead of alongwall face[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(5):693-699.
    [199] Borisenko, A.A. Effect of gas pressure on stresses in coal strata [J]. Journal of MiningScience,1985,21(1):88-92.
    [200] Zhang, R.L., Wang, Z.J., Chen, J.W. Experimental research on the variational characteristicsof vertical stress of soft coal seam in front of mining face[J].Safety Science,2012,50(4):723-727.
    [201] Hao, Z.Y., Lin, B.Q., Gao, Y.B., Cheng, Y. Y. Establishment and application of drillingsealing model in the spherical grouting mode based on the loosing-circletheory[J].International Journal of Mining Science and Technology,2012,22(06):895-898.
    [202] Fourar, M., Bories, S. Experimental study of air-water two-phase flow through a fracture(narrow channel)[J].Journal of Multiphase Flow,1995,21(4):621-637.
    [203] Davies, C.E., Desai M. Blockage in vertical slots: Experimental measurement of minimumslot width for a variety of granular materials [J]. Powder Technology2008,183(3):436-440.
    [204] Bauget, F., Fourar, M. Non-Fickian dispersion in a single fracture[J].Journal of ContaminantHydrology,2008,100(3-4):137-148.
    [205] Qian, J.Z., Chen, Z., Zhan, H.B., Luo, S.H. Solute transport in a filled single fracture undernon-Darcian flow[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(1):132-140.
    [206] Mills, D. Pneumatic Conveying Design Guide [M].United Kingdom: Elsevier
    Butterworth-Heinemann,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700