用户名: 密码: 验证码:
水泥基压电复合材料的模拟与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基压电复合材料是将压电陶瓷(PZT)按照不同的分布形式和陶瓷体积分数分布于水泥石基体中而制备成的新型材料。由于水泥基压电复合材料因压电陶瓷可以被极化而具有压电效应,使得水泥基压电复合材料在既克服传统纯陶瓷材料与混凝土相容性差等缺点的同时,又保持压电材料的优点,从而可以用于混凝土结构的健康监测中。研究水泥基压电复合材料的有效性能,对水泥基压电复合材料基于性能需求的设计、优化,以及水泥基压电传感器在实际工程中的应用具有十分重要的意义。本文重点研究不同类型的水泥基压电复合材料的性能预测理论模型,通过试验验证模型的合理性,并进行模型的数值讨论与分析,最后提出设计优化的建议。主要研究内容如下:
     (1)根据水泥材料作为基体容易出现与PZT夹杂粘结界面不牢固的事实,提出了合理的压电材料的广义弹簧界面模型,推导了广义弹簧模型参数与压电材料界面层(相)的的数学关系。基于夹杂的广义本征应变问题,建立了细观力学中压电材料的修正广义Eshelby张量,定量给出了修正广义Eshelby张量与经典压电材料广义Eshelby张量的关系。提出了两种修正的广义Eshelby张量的具体数值算法,并对影响修正广义Eshelby张量的界面参数进行了讨论。
     (2)基于压电材料的修正的广义Eshelby张量,建立了夹杂与基体为非完美界面时的三维细观力学框架,给出修正的稀疏法、修正的Mori-Tanaka法、修正的微分法以及修正的自洽法模型的统一表达式,提出采用修正的细观力学模型预测PZT与基体为非完美界面时的压电复合材料的有效性能。通过理论预测值与文献中试验值的对比分析,初步界定了经典细观力学方法的适用范围。
     (3)根据以往0-3型水泥基压电复合材料有效性能试验中出现的PZT颗粒粒径效应及PZT夹杂与水泥基体的扫描电镜结果,建立了PZT与水泥基体为非完美界面时,基于PZT颗粒平均半径的0-3型水泥基压电复合材料有效性能理论预测模型;与试验进行比较,验证了模型的可靠性;从原理上阐释了0-3型水泥基压电复合材料的有效性能产生PZT粒径效应的机制,在于水泥基体与PZT颗粒之间存在非完美界面,非完美界面对复合材料有效性能的影响随夹杂颗粒的体表比大小而变化;通过理论与试验的对比分析,提出了0-3型水泥基压电复合材料的优化设计建议。
     (4)基于2-2型水泥基压电复合材料为单方向上的准周期性结构,采用宏细观相结合的多尺度模型,预测压电复合材料有效性能;试验研究了2-2型水泥基压电复合材料的有效性能,并与理论预测结果进行比对,验证了理论模型的可靠性。结果表明,通过调整压电功能相的体积分数可使2-2型水泥基压电复合材料的静水压电应变系数dhEff高于压电功能相的静水压电应变系数dhEff;结合理论与试验提出了2-2型水泥基压电复合材料的优化设计建议。
     (5)依据1-3型水泥基压电复合材料为双方向上的准周期性结构,压电功能增强相的横截面为方形(或矩形)等特点,采用以多尺度模型为基础的“二次均匀法”预测了1-3型压电复合材料的有效性能;试验研究了1-3型水泥基压电复合材料的有效性能,并与理论预测结果进行比对,验证了模型的可靠性。结果表明,当采用合适的压电功能相的体积分数时,可使1-3型水泥基压电复合材料的静水压电应变系数dhEff达到最优;结合理论与试验提出了1-3型水泥基压电复合材料的优化设计建议。
     本研究基于但不局限于水泥基压电智能复合材料,可进一步拓展到更为广义的智能复合材料(如树脂基压电复合材料等),为包括水泥基压电复合材料在内的智能复合材料的设计与工程应用提供理论基础与科学依据。
Cement-based piezoelectric composites fabricated by cement matrix and piezoelectric ceramic phase in different mixing rules and volume fraction are new kinds of materials. Cement-based piezoelectric composites have very sensitive transduction properties as well as good compatibilities with the most popular construction materials (cement and concrete) used in civil engineering. They have received much research attention in the recent decades and have appeared to be a novel kind of electromechanical transducer materials in structural health monitoring (SHM). The studying of overall properties of PZT-cement composites is crucial to the design, optimization and practical engineering application of transducer. In this dissertation, theoretical predicting models of effective properties for PZT-cement composites in different types were focused. Experiments on cement-based composites with different types were carried out to verify theoretical models. After numerical discussions, some considerable suggestions were made on the optimal design of cement-based piezoelectric composites. This dissertation was organized as follows:
     (1) Based on the fact that the bonding between cement and PZT is not always good, a general spring-type interface model was proposed and the relation between spring-type interface parameters and interphase material was obtained. The Eshelby problem was formulated for a piezoelectric ellipsoidal inclusion embedded in an infinite piezoelectric matrix when the interfacial bonding between them is imperfect. The modified piezoelectric Eshelby tensor was derived via the classical piezoelectric Eshelby tensor. The averaged piezoelectric Eshelby tensor was calculated by using two methods. Numerical results were presented and discussed for a simple spring-type interface model.
     (2) By incorporating the spring-type imperfect interface model and using the modified Eshelby tensor for piezoelectricity, this dissertation have successfully further developed and extended four micromechanics models such as modified dilute method, modified Mori-Tanaka method, modified differential scheme and modified self-consistence method to predict the effective properties of piezoelectric composites containing imperfect interfaces. By comparing the calculated results with the published experimental data, application scopes of classical methods were discussed.
     (3) Based on the fact that the effective properties of PZT-cement composites containing particles show size-dependence and the SEM result of cement-based composites, a micromechanics model was adopted to calculate the effective properties of composites. The adopted model can take the imperfect interfaces into account and the theoretically estimated results are in good agreement with the experimental observations. In fact, the results are quite perspicuous on the account of the fact that, there are imperfect interfaces in the composite and its influence on the effective properties increase with the decreasing surface-to-volume ratio of PZT particles. Some suggestions for the design and optimization of0-3type cement-based piezoelectric composites were furthergiven.
     (4) For the unidirectional periodic characteristic of2-2type cement-based piezoelectric composites, asymptotic homogenization method with macro-and micro-scale was formulated to calculate the effective properties of cement-based piezoelectric composite. Some experiments about2-2type cement-based piezoelectric composites were done to verify this model. It is shown that by manipulating the volume fraction of PZT, hydrostatic piezoelectric constant dhEff of composites can be higher, than dhEff of the constituents.
     (5) For the characteristic of1-3type cement-based piezoelectric composites with two periodic directions, double homogenization method was adopted to calculate the effective properties of these kinds of periodic structures. Some properties of1-3type cement-based piezoelectric composite were measured. Comparisons between the experimental data and predicted values indicate the correctness of the model. Moreover, numerical discussions and experiments show that one should choose proper volume fraction of constituents to obtain the best performance of the1-3type cement-based piezoelectric, composites.
     This research focused on the cement-based piezoelectric composites but was not limited to these kinds of composites. Proposed models can be extended to broader range such as polymer based piezoelectric composites, piezomagnetic composites, and so on. This study is useful for the design and engineering application of intelligent composites.
引文
[1]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12.
    [2]陈伟球,严蔚.混凝土结构服役智能化的若干研究进展[J].工程力学,2009,26(2):91-105.
    [3]Farrar C R, Worden K. An introduction to structural health monitoring[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007, 365(1851):303-315.
    [4]杨晓明,李宗津.新型水泥基压电传感器的基本性能研究[J].传感技术学报,2012,25(3):349-354.
    [5]Huston D R, Fuhr P L, Ambrose T P, et al. Intelligent civil structures-activities in vermont[J]. Smart materials and structures,1994,3(2):129-139.
    [6]Banks H T, Smith R C, Wang Y. Smart material structures:Modeling, estimation and control[M]. Wiley New York,1996.
    [7]Ansari F, Maji A, Leung C. Intelligent civil engineering materials and structures,1997[C]. ASCE.
    [8]Aizawa S, Kakizawa T, Higasino M. Case studies of smart materials for civil structures[J]. Smart materials and structures,1998,7(5):617-626.
    [9]Wang M, Heo G, Satpathi D. A health monitoring system for large structural systems[J]. Smart materials and structures,1998,7(5):606-616.
    [10]Brownjohn J. Structural health monitoring of civil infrastructure [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007, 365(1851):589-622.
    [11]李宏男,李东升.土木工程结构安全性评估,健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [12]瞿伟廉,李卓球,姜德生,等.智能材料—结构系统在土木工程中的应用[J].地震工程与工程振动,1999,19(3):87-95.
    [13]欧进萍,关新春.土木工程智能结构体系的研究与发展[J].地震工程与工程振动,1999,19(2):21-28.
    [14]骆英,陶宝祺.土木工程智能结构中传感器原理与应用[J].江苏理工大学学报:自然科学版,2000,21(5):9-13.
    [15]曹照平,王社良.智能材料结构系统在土木工程中的应用[J].重庆建筑大学学报,2001,23(1):108-113.
    [16]周智,欧进萍.土木工程智能健康监测与诊断系统[J].传感器技术,2001,20(11):1-4.
    [17]李庆斌,纠安全,邓宗才,et al智能混凝土结构的控制系统研究与实施[J].水力发电学报,2003,22(3):25-28.
    [18]张妃二,姚立宁.光纤智能混凝土结构自修复的研究[J].功能材料与器件学报,2003,9(1):91-94.
    [19]欧进萍.结构振动控制:主动,半主动和智能控制[M].科学出版社,2003.
    [20]孙鸿敏,李宏男.土木工程结构健康监测研究进展[J].防灾减灾工程学报,2003,23(3):92-98.
    [21]Ko J, Ni Y. Technology developments in structural health monitoring of large-scale bridges[J]. Engineering structures,2005,27(12):1715-1725.
    [22]缪长青,李爱群,韩晓林,等.润扬大桥结构健康监测策略[J].东南大学学报(自然科学版),2005,35(5):780-785.
    [23]李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展,2008,38(2):151-166.
    [24]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究[J].建筑技术,2002,33(4):270-272.
    [25]欧进萍,崔京浩.重大工程结构的智能监测与健康诊断[J].工程力学,2002,19(z2):44-53.
    [26]Mendez A, Morse T F, Mendez F. Applications of embedded optical fiber sensors in reinforced concrete buildings and structures; proceedings of the OE/FIBERS'89,1990[C]. International Society for Optics and Photonics.
    [27]Fuhr P L, Huston D R, Kajenski P J, et al. Performance and health monitoring of the Stafford medical building using embedded sensors[J]. Smart materials and structures,1992, 1(1):63-68.
    [28]Habel W R, Hofmann D. Determination of structural parameters concerning load capacity based on fibre fabry-perot interferometers; proceedings of the Smart Structures and Materials:Second European Conference,1994[C]. International Society for Optics and Photonics.
    [29]杜彦良.自动探测裂纹和主动控制裂纹扩展的智能材料结构研究[D].北京:北京航空航天大学博士学位论文,1993.
    [30]Ullakko K, Yakovenko P G, Gavriljuk V G. New developments in actuator materials as reflected in magnetically controlled shape memory alloys and high-strength shape memory steels; proceedings of the 1996 Symposium on Smart Structures and Materials,1996[C]. International Society for Optics and Photonics.
    [31]Srinivasan A, Mcfarland D M, Canistraro H A, et al. Multiplexing embedded nitinol actuators to obtain increased bandwidth in structural control [J]. Journal of Intelligent Material Systems and Structures,1997,8(3):202-214.
    [32]吴晓东,王征.用于智能材料与结构的niti丝的电阻特性研究[J].上海交通大学 学报,1998,32(2):80-83.
    [33]Charsley P, Robins B. Electrical resistance changes of cyclically deformed copper—nickel alloys[J]. Materials Science and Engineering,1975,17(1):117-123.
    [34]陶宝祺.智能材料结构[M].国防工业出版社,1997.
    [35]Chen P, Chung D. Carbon fiber reinforced concrete as an electrical contact material for smart structures[J]. Smart materials and structures,1993,2(3):181-188.
    [36]Chung D. Cement reinforced with short carbon fibers:A multifunctional material[J]. Composites Part B:Engineering,2000,31(6):511-526.
    [37]欧进萍,关新春,李惠.应力自感知水泥基复合材料及其传感器的研究进展[J].复合材料学报,2006,23(4):1-8.
    [38]李惠,肖会刚,欧进萍.水泥基纳米复合材料压敏特性研究[J].功能材料,2004,35(z1):2653-2656.
    [39]韩宝国,关新春,欧进萍.碳纤维水泥石压敏传感器电极的实验研究[J].功能材料,2004,35(2):262-264.
    [40]Luck R, Agba E I. On the design of piezoelectric sensors and actuators[J]. ISA transactions,1998,37(1):65-72.
    [41]Wu F, Chang F-K. Built-in active sensing diagnostic system for civil infrastructure systems; proceedings of the SPIE's 8th Annual International Symposium on Smart Structures and Materials,2001 [C]. International Society for Optics and Photonics.
    [42]Knapp J, Altmann E, Niemann J, et al. Measurement of shock events by means of strain gauges and accelerometers[J]. Measurement,1998,24(2):87-96.
    [43]Arshak K, McDonagh D, Durcan M. Development of new capacitive strain sensors based on thick film polymer and cermet technologies[J]. Sensors and Actuators A:Physical, 2000,79(2):102-114.
    [44]赵巍.智能材料及其在混凝土中的应用[J].科技信息,2009,1(25):275-276.
    [45]Curie J, Curie P. Developpement, par pression, de l'electricite polaire dans les cristaux hemiedres a faces inclinees[J]. Comptes Rendus,1880,91(1):294-295.
    [46]Cady W G. Piezoelectricity:An introduction to the theory and applications of electromechanical phenomena in crystals[M]. New York; Dover Publications.1964:333-334.
    [47]Li Z, Zhang D, Wu K. Cement-based 0-3 piezoelectric composites[J]. Journal of the American Ceramic Society,2002,85(2):305-313.
    [48]张东,吴科如,李宗津.水泥基压电机敏复合材料的可行性分析和研究[J].建筑材料学报,2002,5(2):141-146.
    [49]张东,吴科如,李宗津.0-3型水泥基压电机敏复合材料的制备和性能[J].硅酸盐学报,2002,30(2):161-166.
    [50]Newnham R, Skinner D, Cross L. Connectivity and piezoelectric-pyroelectric composites[J]. Materials research bulletin,1978,13(5):525-536.
    [51]Xu D, Cheng X, Huang S, et al. Electromechanical properties of 2-2 cement based piezoelectric composite[J]. Current Applied Physics,2009,9(4):816-819.
    [52]Li Z, Huang S, Qin L, et al. An investigation on 1-3 cement based piezoelectric composites[J]. Smart materials and structures,2007,16(4):999-1005.
    [53]Li Z, Dong B, Zhang D. Influence of polarization on properties of 0-3 cement-based PZT composites[J]. Cement and Concrete Composites,2005,27(1):27-32.
    [54]Dong B, Li Z. Cement-based piezoelectric ceramic smart composites[J]. Composites science and technology,2005,65(9):1363-1371.
    [55]Xing F, Dong B, Li Z. Impedance spectroscopic studies of cement-based piezoelectric ceramic composites[J]. Composites science and technology,2008,68(12):2456-2460.
    [56]Rong H, Zhifei S. Exact analysis of 0-3 cement-based piezoelectric composites[J]. Journal of Intelligent Material Systems and Structures,2011,22(3):221-229.
    [57]Huang S, Chang J, Xu R, et al. Piezoelectric properties of 0-3 PZT/sulfoaluminate cement composites[J]. Smart materials and structures,2004,13(2):270-274.
    [58]Huang S, Chang J, Liu F, et al. Poling process and piezoelectric properties of lead zirconate titanate/sulphoaluminate cement composites[J]. Journal of materials science,2004, 39(23):6975-6979.
    [59]Huang S, Chang J, Lu L, et al. Preparation and polarization of 0-3 cement based piezoelectric composites[J]. Materials research bulletin,2006,41(2):291-297.
    [60]Cheng X, Huang S, Chang J, et al. Dielectric and piezoelectric properties of piezoelectric ceramic-sulphoaluminate cement composites[J]. Smart materials and structures,2005,14(5): N59.
    [61]Cheng X, Huang S, Chang J, et al. Piezoelectric and dielectric properties of piezoelectric ceramic-sulphoaluminate cement composites [J]. Journal of the european ceramic society, 2005,25(13):3223-3228.
    [62]黄世峰,常钧,刘福田,等.压电陶瓷/硫铝酸盐水泥复合材料的压电性及介电性[J].硅酸盐学报,2004,32(9):1082-1087.
    [63]黄世峰,常钧,徐荣华,等.0-3型压电陶瓷-硫铝酸盐水泥复合材料的压电性能[J].复合材料学报,2004,21(3):73-78.
    [64]黄世峰,常钧,徐荣华,等.水泥基压电复合材料的制备及极化工艺研究[J].压电与声光,2004,26(3):203-205.
    [65]黄世峰,常钧,芦令超,等.0-3型压电陶瓷/硫铝酸盐水泥复合材料的介电性及压电性[J].复合材料学报,2005,22(2):87-90.
    [66]程新,黄世峰,常钧,等.0-3型压电陶瓷/硫铝酸盐水泥复合材料的介电性能和压 电性能[J].硅酸盐学报,2005,33(1):47-51.
    [67]Cheng X, Huang S, Chang J, et al. Piezoelectric, dielectric, and ferroelectric properties of 0-3 ceramic/cement composites[J]. Journal of applied physics,2007,101(9): 094110-094110.
    [68]黄世峰,胡雅莉,常钧,等.成型压力对水泥基压电复合材料压电及介电性能的影响[J].硅酸盐学报,2006,34(4):500-503.
    [69]Huang S, Ye Z, Hu Y, et al. Effect of forming pressures on electric properties of piezoelectric ceramic/sulphoaluminate cement composites[J]. Composites science and technology,2007,67(1):135-139.
    [70]Chaipanich A. Dielectric and piezoelectric properties of PZT-cement composites[J]. Current Applied Physics,2007,7(5):537-539.
    [71]Chaipanich A, Jaitanong N, Tunkasiri T. Fabrication and properties of PZT-ordinary Portland cement composites[J]. Materials letters,2007,61(30):5206-5208.
    [72]Jaitanong N, Chaipanich A, Tunkasiri T. Properties 0-3 PZT-portland cement composites [J]. Ceramics International,2008,34(4):793-795.
    [73]Jaitanong N, Yimnirun R, Chaipanich A. Effect of uniaxial stress on dielectric properties of 0-3 PZT-portland cement composite[J]. Ferroelectrics,2009,384(1):174-181.
    [74]Chaipanich A, Jaitanong N, Yimnirun R. Effect of compressive stress on the ferroelectric hysteresis behavior in 0-3 PZT-cement composites[J]. Materials letters,2010,64(5):562-564.
    [75]Jaitanong N, Yimnirun R, Chaipanich A. Effect of compressive stress on the ferroelectric hysteresis behavior in 0-3 pmn-pt/cement composites [J]. Ferroelectrics Letters,2011,38(1-3): 11-17.
    [76]Potong R, Rianyoi R, Chaipanich A. Dielectric properties of lead-free composites from 0-3 barium zirconate titanate-portland cement composites[J]. Ferroelectrics Letters,2011, 38(1):18-23.
    [77]Rianyoi R, Potong R, Jaitanong N, et al. Influence of curing age on microstructure in barium titanate-portland cement composites[J]. Key Engineering Materials,2011,484(1): 222-225.
    [78]Rianyoi R, Potong R, Jaitanong N, et al. Dielectric, ferroelectric and piezoelectric properties of 0-3 barium titanate-portland cement composites[J]. Applied Physics A,2011, 104(2):661-666.
    [79]Potong R, Rianyoi R, Ngamjarurojana A, et al. Ferroelectric hysteresis properties of 0-3 lead-free barium zirconate titanate-portland cement composites[J]. Ferroelectrics Letters Section,2012,39(1-3):15-19.
    [80]Rianyoi R, Potong R, Ngamjarurojana A, et al. Influence of barium titanate content and particle size on electromechanical coupling coefficient of lead-free piezoelectric ceramic-portland cement composites[J]. Ceramics International,2013,39(1):47-51.
    [81]李贵佳,全静,龚红宇,等.水泥基压电复合材料的研究进展[J].材料导报,2009,23(12):52-55.
    [82]Wang F, Wang H, Song Y, et al. High piezoelectricity 0-3 cement-based piezoelectric composites[J]. Materials letters,2012,76(1):208-210.
    [83]Chaipanich A. Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites[J]. Current Applied Physics,2007,7(5):574-577.
    [84]Chaipanich A. Dielectric and piezoelectric properties of PZT-silica fume cement composites[J]. Current Applied Physics,2007,7(5):532-536.
    [85]Chaipanich A, Jaitanong N. Effect of poling time on piezoelectric properties of 0-3 PZT/portland cement composites[J]. Ferroelectric Letters,2008,35(3-4):73-78.
    [86]Chaipanich A, Jaitanong N. Effect of polarization on the microstructure and piezoelectric properties of PZT-cement composites[J]. Advanced Materials Research,2008,55(1): 381-384.
    [87]Jaitanong N, Chaipanich A. Effect of poling temperature on piezoelectric properties of 0-3 PZT-portland cement composites [J]. Ferroelectric Letters,2008,35(1-2):17-23.
    [88]Jaitanong N, Wongjinda K, Tammakun P, et al. Effect of carbon addition on dielectric properties of 0-3 PZT-portland cement composite[J]. Advanced Materials Research,2008, 55(1):377-380.
    [89]Chaipanich A, Jaitanong N. Effect of PZT particle size on the electromechanical coupling coefficient of 0-3 PZT-cement composites[J]. Ferroelectric Letters,2009,36(1-2): 37-44.
    [90]Chaipanich A, Jaitanong N, Yimnirun R. Ferroelectric hysteresis behavior in 0-3 PZT-cement composites:Effects of frequency and electric field[J]. Ferroelectric Letters,2009, 36(3-4):59-66.
    [91]Chaipanich A, Rujijanagul G, Tunkasiri T. Properties of sr-and sb-doped PZT-portland cement compositesfJ]. Applied Physics A,2009,94(2):329-337.
    [92]Jaitanong N, Rianyoi R, Potong R, et al. Effects of PZT content and particle size on ferroelectric hysteresis behavior of 0-3 lead zirconate titanate-portland cement composites[J]. Integrated Ferroelectrics,2009,107(1):43-52.
    [93]Chaipanich A, Rianyoi R, Potong R, et al. Effect of temperature on the dielectric properties of 0-3 PZT-cement composites [J]. Ferroelectrics Letters,2010,37(4):76-81.
    [94]Jaitanong N, Chaipanich A. Fabrication and properties of PZT-cement-encapsulated carbon composites[J]. Key Engineering Materials,2010,421(1):428-431.
    [95]Jaitanong N, Zeng H, Li G, et al. Interfacial morphology and domain configurations in 0-3 PZT-portland cement composites[J]. Applied Surface Science,2010,256(10):3245-3248.
    [96]Rianyoi R, Potong R, Jaitanong N, et al. Fabrication and electrical properties of lead zirconate titanate-cement-epoxy composites[J]. Ferroelectrics,2010,405(1):154-160.
    [97]Chaipanich A, Jaitanong N, Yimnirun R. Effect of carbon addition on the ferroelectric hysteresis properties of lead zirconate-titanate ceramic-cement composites[J]. Ceramics International,2011,37(4):1181-1184.
    [98]Li Z, Gong H. Cement-based nanopiezo 0-3 composites[M]. Measuring, monitoring and modeling concrete properties:An international symposium dedicated to professor surendra pshah, northwestern university, USA. Springer.2006:379-384.
    [99]Dong B, Xing F, Li Z. The study of poling behavior and modeling of cement-based piezoelectric ceramic composites[J]. Materials Science and Engineering:A,2007,456(1): 317-322.
    [100]Gong H, Li Z, Zhang Y, et al. Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black[J]. Journal of the european ceramic society,2009, 29(10):2013-2019.
    [101]Li Z, Gong H, Zhang Y. Fabrication and piezoelectricity of 0-3 cement based composite with nano-PZT powder[J]. Current Applied Physics,2009,9(3):588-591.
    [102]Gong H, Zhang Y, Che S. Influence of carbon black on properties of PZT-cement piezoelectric composites[J]. Journal of composite materials,2010,44(23):2747-2757.
    [103]龚红宇,全静,张玉军,等Cnts/纳微米PZT/水泥压电复合材料的研究[J].人工晶体学报,2010,39(3):660-664.
    [104]龚红宇,全静,张玉军,等.纳微米PZT/水泥基压电复合材料的研究[J].人工晶体学报,2010,39(3):687-690.
    [105]Gong H, Zhang Y, Quan J, et al. Preparation and properties of cement based piezoelectric composites modified by CNTs[J]. Current Applied Physics,2011,11(3): 653-656.
    [106]龚红宇,张玉军,车松蔚,等.粒度对水泥基压电复合材料的压电性能和力学性能的影响[J].人工晶体学报,2011,40(1):213-217.
    [107]Chaipanich A, Tunkasiri T. Microstructure and properties of pb(mgi/3nb2/3)o3-portland cement composites[J]. Current Applied Physics,2007,7(3):285-288.
    [108]Jaitanong N, Chaipanich A. Dielectric properties of 0-3 lead magnesium niobate titanate (pmnt)-ordinary portland cement (pc) composites[J]. Key Engineering Materials, 2010,421(1):407-410.
    [109]Jaitanong N, Vittayakorn W, Yimnirun R, et al. Ferroelectric hysteresis behavior of 0-3 pmnt-cement composites[J]. Ferroelectrics,2010,405(1):105-110.
    [110]Potong R, Rianyoi R, Jarupoom P, et al. Effect of particle size on the dielectric properties of sodium potassium niobate-portland cement composites[J]. Ferroelectric Letters, 2009,36(3-4):76-81.
    [111]Potong R, Rianyoi R, Jareansuk L, et al. Effect of particle size on dielectric and ferroelectric properties of 0-3 lead magnesium niobate titanate-portland cement composites[J]. Ferroelectrics,2010,405(1):98-104.
    [112]李雪,黄世峰,刘福田,等.碳黑改性0-3型水泥基压电复合材料的性能[J].建筑材料学报,2008,11(3):271-275.
    [113]李雪,黄世峰,刘福田,等.掺杂对0-3型水泥基压电复合材料性能的影响[J].济南大学学报:自然科学版,2008,22(1):4-7.
    [114]Huang S, Li X, Liu F, et al. Effect of carbon black on properties of 0-3 piezoelectric ceramic/cement composites[J]. Current Applied Physics,2009,9(6):1191-1194.
    [115]Huang S F, Li M M, Xu D Y. Effect of poling temperature on the barium ferrite modified 0-3 cement-based piezoelectric composites[J]. Applied Mechanics and Materials, 2012,174(1):1394-1397.
    [116]Huang S F, Sun M, Li M M, et al. Effects of polarization on the strontium ferrite modified 0-3 cement-based piezoelectric composite[J]. Advanced Materials Research,2012, 487(1):553-557.
    [117]Li M M, Huang S F, Xie S H, et al. A study on polarization properties of the carbon black modified 0-3 cement-based piezoelectric composites[J]. Applied Mechanics and Materials,2012,174(1):791-794.
    [118]Huang S, Lu L, Chang J, et al. Influence of ceramic particle size on piezoelectric properties of cement-based piezoelectric composites[J]. Ferroelectrics,2006,332(1): 187-194.
    [119]黄世峰,叶正茂,常钧,等.0-3型压电陶瓷/硫铝酸盐水泥复合材料的介电频率特性和铁电特性[J].复合材料学报,2006,23(3):91-95.
    [120]Xing F, Dong B, Li Z. Dielectric, piezoelectric, and elastic properties of cement-based piezoelectric ceramic composites[J]. Journal of the American Ceramic Society,2008,91(9): 2886-2891.
    [121]Xing F, Dong B, Li Z. The study of pore structure and its influence on material properties of cement-based piezoelectric ceramic composites[J]. Construction and Building Materials,2009,23(3):1374-1377.
    [122]Li Z, Zhang D, Wu K. Cement matrix 2-2 piezoelectric composite-part 1. Sensory effect[J]. Materials and Structures,2001,34(8):506-512.
    [123]张东,吴科如,李宗津.2-2型水泥基压电机敏复合材料的研制[J].压电与声光,2002,24(3):217-231.
    [124]张东,李宗津.水泥基压电机敏复合材料的逆压电效应[J].同济大学学报:自然科学版,2002,30(3):312-317.
    [125]Zhang D, Li Z, Wu K-R.2-2 piezoelectric cement matrix composite:Part ii. Actuator effect[J]. Cement and concrete research,2002,32(5):825-830.
    [126]Huang S, Xu D, Chang J, et al. Influence of water-cement ratio on the properties of 2-2 cement based piezoelectric composite[J]. Materials letters,2007,61(30):5217-5219.
    [127]Huang S, Xu D, Cheng X, et al. Dielectric and piezoelectric properties of 2-2 cement based piezoelectric composite[J]. Journal of composite materials,2008,42(23):2437-2443.
    [128]Cheng X, Xu D Y, Guo L L, et al. Influence of thickness parameters on 2-2 cement based piezoelectric composite[J]. Advanced Materials Research,2009,79(1):31-34.
    [129]Xu D, Cheng X, Huang S, et al. Effect of cement matrix and composite thickness on properties of 2-2 type cement-based piezoelectric composites[J]. Journal of composite materials,2011,45(20):2083-2089.
    [130]Han R, Shi Z, Mo Y. Static analysis of 2-2 cement-based piezoelectric composites[J]. Archive of Applied Mechanics,2011,81(7):839-851.
    [131]Zhang T, Shi Z. Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer[J]. Smart materials and structures,2011,20(8):085017-085017.
    [132]Shi Z, Wang J. Dynamic analysis of 2-2 cement-based piezoelectric transducers [J]. Journal of Intelligent Material Systems and Structures,2013,24(1):99-107.
    [133]Chaipanich A, Rianyoi R, Potong R, et al. Dielectric properties of 2-2 pmn-pt/cement composites[J]. Ferroelectrics Letters Section,2012,39(4-6):76-80.
    [134]Lam K, Chan H. Piezoelectric cement-based 1-3 composites[J]. Applied Physics A, 2005,81(7):1451-1454.
    [135]Chan H L, Unsworth J, Bui T. Mode coupling in modified lead titanate/polymer 1-3 composites [J]. Journal of applied physics,1989,65(4):1754-1758.
    [136]Chan H L W, Unsworth J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1989,36(4):434-441.
    [137]Smith W A, Auld B A. Modeling 1-3 composite piezoelectrics:Thickness-mode oscillations[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1991,38(1):40-47.
    [138]胡雅莉,黄世峰,徐东宇,等.陶瓷体积分数对水泥基压电复合材料性能的影响[J].济南大学学报:自然科学版,2006,20(2):105-105.
    [139]程新,黄世峰,胡雅莉,等.环境湿度对1-3型水泥基压电复合材料性能的影响[J].硅酸盐学报,2006,34(5):626-635
    [140]黄世峰,叶正茂,王守德,等.1-3型水泥基压电复合材料的制备及性能[J].复合材料学报,2007,24(1):122-126.
    [141]黄世峰,常钧,秦磊,等.1-3型水泥基压电复合材料传感器的性能[J].复合材料学报,2008,25(1):112-118.
    [142]黄世峰,郭丽丽,刘亚妹,等.1-3型聚合物改性水泥基压电复合材料的制备及其性能[J].复合材料学报,2009,26(6):133-137.
    [143]Cheng X, Xu D, Lu L, et al. Performance investigation of 1-3 piezoelectric ceramic-cement composite[J]. Materials Chemistry and Physics,2010,121(1):63-69.
    [144]Rianyoi R, Potong R, Jaitanong N, et al. Dielectric and ferroelectric properties of 1-3 barium titanate-portland cement composites[J]. Current Applied Physics,2011,11(3): S48-S51.
    [145]关新春,刘彦昌,李惠,等.1-3型水泥基压电复合材料的制备与性能研究[J].防灾减灾工程学报,2010,1(345-347.
    [146]Chaipanich A, Potong R, Rianyoi R, et al. Dielectric and ferroelectric hysteresis properties of 1-3 lead magnesium niobate-lead titanate ceramic/portland cement composites[J]. Ceramics International,2012,38(1):255-258.
    [147]Potong R, Rianyoi R, Jaitanong N, et al. Ferroelectric hysteresis behavior and dielectric properties of 1-3 lead zirconate titanate-cement composites[J]. Ceramics International,2012, 38(1-3):267-270.
    [148]Potong R, Rianyoi R, Ngamjarurojana A, et al. Dielectric and piezoelectric properties of 1-3 non-lead barium zirconate titanate-portland cement composites[J]. Ceramics International,2013,39(1):53-57.
    [149]Sun M, Huang S F, Li M M, et al. Study on acoustic emission of 1-3 orthotropic cement based piezoelectric sensors[J]. Advanced Materials Research,2012,487(1):471-475.
    [1]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science,1957,241(1226):376-396.
    [2]Mura T. Some new problems in the micromechanics[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2000,285(1-2): 224-228.
    [3]Liu L P. Solutions to the periodic eshelby inclusion problem in two dimensions [J]. Mathematics and Mechanics of Solids,2010,15(5):557-590.
    [4]Zou W N, He Q C, Huang M J, et al. Eshelby's problem of non-elliptical inclusions[J]. Journal of the Mechanics and Physics of Solids,2010,58(3):346-372.
    [5]Ovid'ko I A, Sheinerman A G. Elastic fields of inclusions in nanocomposite solids[J]. Reviews on Advanced Materials Science,2005,9(1):17-33.
    [6]Jin X Q, Keer L M, Wang Q. New green's function for stress field and a note of its application in quantum-wire structures [J]. International journal of solids and structures,2009, 46(21):3788-3798.
    [7]Dunn M L, Taya M. An analysis of piezoelectric composite-materials containing ellipsoidal inhomogeneities[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1993,443(1918):265-287.
    [8]Jiang X, Pan E. Exact solution for 2d polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes[J]. International journal of solids and structures,2004,41(16-17):4361-4382.
    [9]Ru C Q. Eshelby's problem for two-dimensional piezoelectric inclusions of arbitrary shape [J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2000,456(1997):1051-1068.
    [10]Suo Z, Kuo C M, Barnett D M, et al. Fracture-mechanics for piezoelectric ceramics[J]. Journal of the Mechanics and Physics of Solids,1992,40(4):739-765.
    [11]Zou W N, He Q C, Zheng Q S. General solution for eshelby's problem of 2d arbitrarily shaped piezoelectric inclusions[J]. International journal of solids and structures,2011,48(19): 2681-2694.
    [12]Needleman A. An analysis of decohesion along an imperfect interface[J]. International Journal of Fracture,1990,42(1):21-40.
    [13]Fan H, Sze K Y. A micro-mechanics model for imperfect interface in dielectric materials[J]. Mechanics of materials,2001,33(6):363-370.
    [14]Benveniste Y. A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[J]. Journal of the Mechanics and Physics of Solids, 2006,54(4):708-734.
    [15]Benveniste Y. An interface model for a three-dimensional curved thin piezoelectric interphase between two piezoelectric media[J]. Mathematics and Mechanics of Solids,2009, 14(1-2):102-122.
    [16]Benveniste Y, Baum G. An interface model of a graded three-dimensional anisotropic curved interphase[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2007,463(2078):419-434.
    [17]Benveniste Y, Miloh T. Imperfect soft and stiff interfaces in two-dimensional elasticity [J]. Mechanics of materials,2001,33(6):309-323.
    [18]Bertoldi K, Bigoni D, Drugan W J. Structural interfaces in linear elasticity. Part i: Nonlocality and gradient approximations[J]. Journal of the Mechanics and Physics of Solids, 2007,55(1):1-34.
    [19]Bertoldi K, Bigoni D, Drugan W J. Structural interfaces in linear elasticity. Part ii: Effective properties and neutrality [J]. Journal of the Mechanics and Physics of Solids,2007, 55(1):35-63.
    [20]Qu J. Eshelby tensor for an elastic inclusion with slightly weakened interface[J]. Journal of Applied Mechanics,1993,60(4):1048-1050.
    [21]Gao Z. A circular inclusion with imperfect interface:Eshelby's tensor and related problems[J]. Journal of Applied Mechanics,1995,62(4):860-866.
    [22]Zhai J, Luo H A. The validity of the modified mori-tanaka method for composites with slightly weakened interface[J]. Acta mechanica solida sinica,1997,10(2):108-117.
    [23]Duan H, Wang J, Huang Z, et al. Eshelby formalism for nano-inhomogeneities[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science,2005, 461(2062):3335-3353.
    [24]Duan H, Wang J, Huang Z, et al. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. Journal of the Mechanics and Physics of Solids,2005,53(7):1574-1596.
    [25]Le Quang H, He Q C, Bonnet G. Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with kapitza's interface thermal resistance [J]. Philosophical Magazine,2011,91(25):3358-3392.
    [26]Qu J. The effect of slightly weakened interfaces on the overall elastic properties of composite materials[J]. Mechanics of materials,1993,14(4):269-281.
    [27]Wu Y, Ling Z, Dong Z. Stress-strain fields and the effectiveness shear properties for three-phase composites with imperfect interface [J]. International journal of solids and structures,2000,37(9):1275-1292.
    [28]Schj(?)dt-Thomsen J, Pyrz R. Overall creep modelling of short fibre reinforced composites with weakened interfaces and complex fibre orientation distributions[J]. Mechanics of materials,2000,32(6):349-359.
    [29]Lee H, Pyo S. Micromechanics-based elastic damage modeling of particulate composites with weakened interfaces[J]. International journal of solids and structures,2007,44(25-26): 8390-8406.
    [30]Lee H, Pyo S. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites[J]. Composites science and technology,2008, 68(2):387-397.
    [31]Lee H, Pyo S. An elastoplastic multi-level damage model for ductile matrix composites considering evolutionary weakened interface[J]. International journal of solids and structures, 2008,45(6):1614-1631.
    [32]Ju J, Yanase K. Elastoplastic damage micromechanics for elliptical fiber composites with progressive partial fiber debonding and thermal residual stresses[J]. Theoretical and Applied Mechanics,2008,35(1-3):137-170.
    [33]Yanase K, Ju J W. Effective elastic moduli of spherical particle reinforced composites containing imperfect interfaces[J]. International Journal of Damage Mechanics,2012,21(1): 97-127.
    [34]Jasiuk I, Chen J, Thorpe M. Elastic moduli of composites with rigid sliding inclusions[J]. Journal of the Mechanics and Physics of Solids,1992,40(2):373-391.
    [35]Chen T. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[J]. Acta Mechanica,2008,196(3): 205-217.
    [36]Rodriguez-Ramos R, Guinovart-Diaz R, Lopez-Realpozo J C, et al. Influence of imperfect elastic contact condition on the antiplane effective properties of piezoelectric fibrous composites[J]. Archive of Applied Mechanics,2010,80(4):377-388.
    [37]Xiao J, Xu Y, Zhang F. Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect[J]. Acta Mechanica,2011,222(1):59-67.
    [38]Mura T, Furuhashi R. The elastic inclusion with a sliding interface[J]. Journal of Applied Mechanics,1984,51(2):308-310.
    [39]Mura T. Micromechanics of defects in solids[M]//NIJHOFF M. Dordrecht, The Netherlands.1987.
    [40]Janas V F, Safari A. Overview of fine-scale piezoelectric ceramic/polymer composite processing[J]. Journal of the American Ceramic Society,2005,78(11):2945-2955.
    [41]Dong B, Li Z. Cement-based piezoelectric ceramic smart composites[J]. Composites science and technology,2005,65(9):1363-1371.
    [42]Ding H J, Chen W Q. Three dimensional problems of piezoelasticity[M]. New York: Nova Science Publishers,2001.
    [43]Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators [J]. Physica Status Solidi B-Basic Research,1975,67(1):105-111.
    [44]Lene F, Leguillon D. Homogenized constitutive law for a partially cohesive composite material[J]. International journal of solids and structures,1982,18(5):443-458.
    [45]Aboudi J. Damage in composites-modeling of imperfect bonding[J]. Composites science and technology,1987,28(2):103-128.
    [46]Achenbach J, Zhu H. Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids,1989,37(3): 381-393.
    [47]Achenbach J, Zhu H. Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites [J]. Journal of Applied Mechanics,1990,57(4):956-963.
    [48]Hashin Z. The spherical inclusion with imperfect interface[J]. Journal of Applied Mechanics-Transactions of the Asme,1991,58(2):444-449.
    [49]Hashin Z. Thermoelastic properties of particulate composites with imperfect interface[J]. Journal of the Mechanics and Physics of Solids,1991,39(6):745-762.
    [50]Zhong Z, Meguid S. On the eigenstrain problem of a spherical inclusion with an imperfectly bonded interface[J]. Journal of Applied Mechanics,1996,63(4):877-883.
    [51]Zhong Z, Meguid S. On the elastic field of a shpherical inhomogeneity with an imperfectly bonded interface [J]. Journal of Elasticity,1997,46(2):91-113.
    [52]Zhong Z, Meguid S. On the imperfectly bonded spherical inclusion problem[J]. Journal of Applied Mechanics,1999,66(4):839-846.
    [53]Ru C Q. A two-dimensional eshelby problem for two bonded piezoelectric half-planes[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2001,457(2008):865-883.
    [54]Crouch S, Mogilevskaya S. Loosening of elastic inclusions[J]. International journal of solids and structures,2006,43(6):1638-1668.
    [55]Wang X, Pan E. Two-dimensional eshelby's problem for two imperfectly bonded piezoelectric half-planes [J]. International journal of solids and structures,2010,47(1): 148-160.
    [56]Deeg F W. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [D],1980.
    [57]Asaro R J. Somigliana dislocations and internal stresses; with application to second phase hardening[J]. International Journal of Engineering Science,1975,13(3):271-286.
    [I]Voigt W. Ueber die beziehung zwischen den beiden elasticitatskonstanten isotroper korper[J]. Annalen der Physik,1889,274(12):573-587.
    [2]Reuss A. Berechnung der flieBgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik,1929,9(1):49-58.
    [3]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics and Physics of Solids,1962,10(4):343-352.
    [4]Hashin Z, Shtrikman S. On some variational principles in anisotropic and nonhomogeneous elasticity [J]. Journal of the Mechanics and Physics of Solids,1962,10(4): 335-342.
    [5]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids,1963,11(2): 127-140.
    [6]Beran M, Molyneux J. Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1966,24(2):107-118.
    [7]Walpole L. On bounds for the overall elastic moduli of inhomogeneous systems-i[J]. Journal of the Mechanics and Physics of Solids,1966,14(3):151-162.
    [8]Walpole L. On bounds for the overall elastic moduli of inhomogeneous systems-ii[J]. Journal of the Mechanics and Physics of Solids,1966,14(5):289-301.
    [9]Walpole L. On the overall elastic moduli of composite materials[J]. Journal of the Mechanics and Physics of Solids,1969,17(4):235-251.
    [10]Walpole L. The elastic behaviour of a suspension of spherical particles[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1972,25(2):153-160.
    [11]Willis J. Bounds and self-consistent estimates for the overall properties of anisotropic composites[J]. Journal of the Mechanics and Physics of Solids,1977,25(3):185-202.
    [1-2]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science,1957,241(1226):376-396.
    [13]Dunn M L, Taya M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites[J]. International journal of solids and structures,1993,30(2): 161-175.
    [14]Benveniste Y. A new approach to the application of mori-tanaka's theory in composite materials[J]. Mechanics of materials,1987,6(2):147-157.
    [15]Chen T, Dvorak G J, Benveniste Y. Mori-tanaka estimates of the overall elastic moduli of certain composite materials[J]. ASME Transactions Series E Journal of Applied Mechanics, 1992,59(3):539-546.
    [16]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica,1973,21(5):571-574.
    [17]Taya M, Mura T. On stiffness and strength of an aligned short-fiber reinforced composite containing fiber-end cracks under uniaxial applied stress[J]. ASME, Transactions, Journal of Applied Mechanics,1981,48(2):361-367.
    [18]Hashin Z. The differential scheme and its application to cracked materials[J]. Journal of the Mechanics and Physics of Solids,1988,36(6):719-734.
    [19]McLaughlin R. A study of the differential scheme for composite materials [J]. International Journal of Engineering Science,1977,15(4):237-244.
    [20]Budiansky B. On the elastic moduli of some heterogeneous materials[J]. Journal of the Mechanics and Physics of Solids,1965,13(4):223-227.
    [21]Budiansky B, O'connell R J. Elastic moduli of a cracked solid[J]. International journal of solids and structures,1976,12(2):81-97.
    [22]Hill R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids,1965,13(4):213-222.
    [23]Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids,1979,27(4): 315-330.
    [24]Achenbach J, Zhu H. Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids,1989,37(3): 381-393.
    [25]Gao Z. A circular inclusion with imperfect interface:Eshelby's tensor and related problems[J]. Journal of Applied Mechanics,1995,62(4):860-866.
    [26]Hashin Z. Thermoelastic properties of fiber composites with imperfect interface[J]. Mechanics of materials,1990,8(4):333-348.
    [27]Hashin Z. The spherical inclusion with imperfect interface[J]. Journal of Applied Mechanics-Transactions of the Asme,1991,58(2):444-449.
    [28]Hashin Z. Thermoelastic properties of particulate composites with imperfect interface[J]. Journal of the Mechanics and Physics of Solids,1991,39(6):745-762.
    [29]Duan H, Karihaloo B. Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions[J]. Physical Review B,2007,75(6): 064206-064206.
    [30]Yanase K, Ju J W. Effective elastic moduli of spherical particle reinforced composites containing imperfect interfaces[J]. International Journal of Damage Mechanics,2012,21(1): 97-127.
    [31]Duan H, Karihaloo B, Wang J, et al. Strain distributions in nano-onions with uniform and non-uniform compositions[J]. Nanotechnology,2006,17(14):3380-3380.
    [32]Duan H, Wang J, Huang Z, et al. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. Journal of the Mechanics and Physics of Solids,2005,53(7):1574-1596.
    [33]Duan H, Wang J, Huang Z, et al. Eshelby formalism for nano-inhomogeneities[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science,2005, 461(2062):3335-3353.
    [34]Duan H, Karihaloo B. Thermo-elastic properties of heterogeneous materials with imperfect interfaces:Generalized levin's formula and hill's connections [J]. Journal of the Mechanics and Physics of Solids,2007,55(5):1036-1052.
    [35]Duan H, Wang J, Karihaloo B. Theory of elasticity at the nanoscale[J]. Advances in Applied Mechanics,2009,42(1):1-68.
    [36]Newnham R, Skinner D, Cross L. Connectivity and piezoelectric-pyroelectric composites[J]. Materials research bulletin,1978,13(5):525-536.
    [37]Deeg F W. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [D],1980.
    [38]Jiang X, Pan E. Exact solution for 2d polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes[J]. International journal of solids and structures,2004,41(16-17):4361-4382.
    [39]Dunn M L, Taya M. An analysis of piezoelectric composite-materials containing ellipsoidal inhomogeneities[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1993,443(1918):265-287.
    [40]Benveniste Y. A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[J]. Journal of the Mechanics and Physics of Solids, 2006,54(4):708-734.
    [41]Benveniste Y, Miloh-T. Imperfect soft and stiff interfaces in two-dimensional elasticity [J]. Mechanics of materials,2001,33(6):309-323.
    [42]Wang J, Duan H, Zhang Z, et al. An anti-interpenetration model and connections between interphase and interface models in particle-reinforced composites[J]. International journal of mechanical sciences,2005,47(4):701-718.
    [43]Qu J. The effect of slightly weakened interfaces on the overall elastic properties of composite materials[J]. Mechanics of materials,1993,14(4):269-281.
    [44]Qu J. Eshelby tensor for an elastic inclusion with slightly weakened interface[J]. Journal of Applied Mechanics,1993,60(4):1048-1050.
    [45]Qu J, Cherkaoui M. Fundamentals of micromechanics of solids[M]. New Jersey:John Wiley&Sons, Inc,2006.
    [46]Taya M, Arsenault R J. Metal matrix composites:Thermomechanical behavior[M]. Pergamon press,1989.
    [47]Benveniste Y, Dvorak G, Chen T. On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media[J]. Journal of the Mechanics and Physics of Solids,1991,39(7):927-946.
    [48]Ferrari M. Asymmetry and the high concentration limit of the mori-tanaka effective medium theory[J]. Mechanics of materials,1991,11(3):251-256.
    [49]Weng G. The theoretical connection between mori-tanaka's theory and the hashin-shtrikman-walpole bounds[J]. International Journal of Engineering Science,1990, 28(11):1111-1120.
    [50]Weng G. Explicit evaluation of willis'bounds with ellipsoidal inclusions[J]. International Journal of Engineering Science,1992,30(1):83-92.
    [51]Bruggeman D. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances[J]. Ann Phys,1935,24(132):636-679.
    [52]Norris A. A differential scheme for the effective moduli of composites[J]. Mechanics of materials,1985,4(1):1-16.
    [53]Christensen R M. A critical evaluation for a class of micro-mechanics models[J]. Journal of the Mechanics and Physics of Solids,1990,38(3):379-404. [54] Ding H J, Chen W Q. Three dimensional problems of piezoelasticity[M]. New York: Nova Science Publishers,2001.
    [55]Jiang B, Fang D, Hwang K. A unified model for piezocomposites with non-piezoelectric matrix and piezoelectric ellipsoidal inclusions [J]. International journal of solids and structures,1999,36(18):2707-2733.
    [56]Furukawa T, Fujino J, Fukada E. Electromechanical properties in the composites of epoxy resin and PZT ceramics[J]. Japanese Journal of Applied Physics,1976,15(11): 2119-2129.
    [57]Furukawa T. Piezoelectricity and pyroelectricity in polymers[J]. Electrical Insulation, IEEE Transactions on,1989,24(3):375-394.
    [58]Kar-Gupta R, Venkatesh T. Electromechanical response of piezoelectric composites: Effects of geometric connectivity and grain size[J]. Acta materialia,2008,56(15):3810-3823.
    [59]Venkatragavaraj E, Satish B, Vinod P, et al. Piezoelectric properties of ferroelectric PZT-polymer composites[J]. Journal of Physics D:Applied Physics,2001,34(4):487-487.
    [60]Satish B, Sridevi K, Vijaya M. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique[J]. Journal of Physics D:Applied Physics,2002,35(16):2048-2048.
    [61]Poon Y M, Ho C H, Wong Y W, et al. Theoretical predictions on the effective piezoelectric coefficients of 0-3 PZT/polymer composites[J]. Journal of materials science, 2007,42(15):6011-6017.
    [1]Li Z, Zhang D, Wu K. Cement matrix 2-2 piezoelectric composite-part 1. Sensory effect[J]. Materials and Structures,2001,34(8):506-512.
    [2]Li Z, Zhang D, Wu K. Cement-based 0-3 piezoelectric composites[J]. Journal of the American Ceramic Society,2002,85(2):305-313.
    [3]Huang S, Chang J, Xu R, et al. Piezoelectric properties of 0-3 PZT/sulfoaluminate cement composites[J]. Smart materials and structures,2004,13(2):270-274.
    [4]Li Z, Dong B, Zhang D. Influence of polarization on properties of 0-3 cement-based PZT composites[J]. Cement and Concrete Composites,2005,27(1):27-32.
    [5]Chaipanich A. Dielectric and piezoelectric properties of PZT-cement composites[J]. Current Applied Physics,2007,7(5):537-539.
    [6]Chaipanich A, Jaitanong N, Tunkasiri T. Fabrication and properties of PZT-ordinary Portland cement composites[J]. Materials letters,2007,61(30):5206-5208.
    [7]Huang S, Ye Z, Hu Y, et al. Effect of forming pressures on electric properties of piezoelectric ceramic/sulphoaluminate cement composites [J]. Composites science and technology,2007,67(1):135-139.
    [8]Cheng X, Huang S, Chang J, et al. Piezoelectric, dielectric, and ferroelectric properties of 0-3 ceramic/cement composites [J]. Journal of applied physics,2007,101(9):094110-094110.
    [9]Jaitanong N, Chaipanich A, Tunkasiri T. Properties 0-3 PZT-portland cement composites [J]. Ceramics International,2008,34(4):793-795.
    [10]Jaitanong N, Wongjinda K, Tammakun P, et al. Effect of carbon addition on dielectric properties of 0-3 PZT-portland cement composite[J]. Advanced Materials Research,2008, 55(377-380.
    [11]Xing F, Dong B, Li Z. Dielectric, piezoelectric, and elastic properties of cement-based piezoelectric ceramic composites[J]. Journal of the American Ceramic Society,2008,91(9): 2886-2891.
    [12]Xing F, Dong B, Li Z. Impedance spectroscopic studies of cement-based piezoelectric ceramic composites[J]. Composites science and technology,2008,68(12):2456-2460.
    [13]Gong H, Li Z, Zhang Y, et al. Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black [J]. Journal of the european ceramic society,2009, 29(10):2013-2019.
    [14]Rianyoi R, Potong R, Jaitanong N, et al. Fabrication and electrical properties of lead zirconate titanate-cement-epoxy composites[J]. Ferroelectrics,2010,405(1):154-160.
    [15]Han R, Shi Z, Mo Y. Static analysis of 2-2 cement-based piezoelectric composites [J]. Archive of Applied Mechanics,2011,81(7):839-851.
    [16]Sun M, Huang S F, Li M M, et al. Study on acoustic emission of 1-3 orthotropic cement based piezoelectric sensors[J]. Advanced Materials Research,2012,487(1):471-475.
    [17]Wang F, Wang H, Song Y, et al. High piezoelectricity 0-3 cement-based piezoelectric composites[J]. Materials letters,2012,76(1):208-210.
    [18]Chaipanich A. Dielectric and piezoelectric properties of PZT-cement composites[J]. Current Applied Physics,2007,7(5):537-539.
    [19]Gong H, Zhang Y, Che S, et al. Influence of particle size on the piezoelectric and mechnical properties of cement based piezo-composites [J]. Journal of Synthetic Crystals, 2011,40(1):213-217 (in Chinese).
    [20]Huang S, Lu L, Chang J, et al. Influence of ceramic particle size on piezoelectric properties of cement-based piezoelectric compo sites [J]. Ferroelectrics,2006,332(1): 187-194.
    [21]Chaipanich A. Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites[J]. Current Applied Physics,2007,7(5):574-577.
    [22]Chaipanich A, Jaitanong N. Effect of PZT particle size on the electromechanical coupling coefficient of 0-3 PZT-cement composites[J]. Ferroelectric Letters,2009,36(1-2): 37-44.
    [23]Potong R, Rianyoi R, Jarupoom P, et al. Effect of particle size on the dielectric properties of sodium potassium niobate-portland cement composites [J]. Ferroelectric Letters,2009, 36(3-4):76-81.
    [24]Potong R, Rianyoi R, Jareansuk L, et al. Effect of particle size on dielectric and ferroelectric properties of 0-3 lead magnesium niobate titanate-portland cement composites[J]. Ferroelectrics,2010,405(1):98-104.
    [25]Rianyoi R, Potong R, Ngamjarurojana A, et al. Influence of barium titanate content and particle size on electromechanical coupling coefficient of lead-free piezoelectric ceramic-portland cement composites[J]. Ceramics International,2013,39(1):47-51.
    [26]Jaitanong N, Rianyoi R, Potong R, et al. Effects of PZT content and particle size on ferroelectric hysteresis behavior of 0-3 lead zirconate titanate-portland cement composites[J]. Integrated Ferroelectrics,2009,107(1):43-52.
    [27]Sharma P, Ganti S, Bhate N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities[J]. Applied Physics Letters,2003,82(4):535-537.
    [28]Wang Q, Wang C M. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes[J]. Nanotechnology,2007,18(7): 075702-075702.
    [29]Sun L, Han R P S, Wang J, et al. Modeling the size-dependent elastic properties of polymeric nanofibers[J]. Nanotechnology,2008,19(45):455706-455706.
    [30]Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators[J]. Physica Status Solidi B-Basic Research,1975,67(1):105-111.
    [31]Deeg F W. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [D],1980.
    [32]Dunn M L, Taya M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites[J]. International journal of solids and structures,1993,30(2): 161-175.
    [33]Jiang B, Fang D, Hwang K. A unified model for piezocomposites with non-piezoelectric matrix and piezoelectric ellipsoidal inclusions[J]. International journal of solids and structures,1999,36(18):2707-2733.
    [34]Achenbach J, Zhu H. Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids,1989,37(3): 381-393.
    [35]Hashin Z. The spherical inclusion with imperfect interface[J]. Journal of Applied Mechanics-Transactions of the Asme,1991,58(2):444-449.
    [36]Qu J. The effect of slightly weakened interfaces on the overall elastic properties of composite materials[J]. Mechanics of materials,1993,14(4):269-281.
    [37]Le Quang H, He Q C, Bonnet G. Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with kapitza's interface thermal resistance [J]. Philosophical Magazine,2011,91(25):3358-3392.
    [38]Yanase K, Ju J W. Effective elastic moduli of spherical particle reinforced composites containing imperfect interfaces[J]. International Journal of Damage Mechanics,2012,21(1): 97-127.
    [39]Wang Z, Zhu J, Chen W Q, et al. Modified eshelby tensor for an ellipsoidal inclusion imperfectly embedded in an infinite piezoelectric medium[J]. Mechanics of Materials,2014, 74(7):56-66.
    [40]Wang Z, Zhu J, Jin X Y, et al. Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces [J]. Journal of the Mechanics and Physics of Solids,2013,65(4):138-156.
    [41]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science,1957,241(1226):376-396.
    [42]Ding H J, Chen W Q. Three dimensional problems of piezoelasticity[M]. New York: Nova Science Publishers,2001.
    [1]Aizawa S, Kakizawa T, Higasino M. Case studies of smart materials for civil structures[J]. Smart materials and structures,1998,7(5):617-626.
    [2]Bhalla S, Soh C K. Structural health monitoring by piezo-impedance transducers. I: Modeling[J]. Journal of Aerospace Engineering,2004,17(4):154-165.
    [3]Bhalla S, Soh C K. Structural health monitoring by piezo-impedance transducers. Ii: Applications[J]. Journal of Aerospace Engineering,2004,17(4):166-175.
    [4]Bhalla S, Soh C K. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages[J]. Ndt & E International,2004,37(1):23-33.
    [5]Bhalla S K, Moharana S. Modelling of piezo-bond structure system for structural health monitoring using emi technique[J]. Key Engineering Materials,2013,569(1):1234-1240.
    [6]Dong B, Li Z. Cement-based piezoelectric ceramic smart composites[J]. Composites science and technology,2005,65(9):1363-1371.
    [7]Li Z, Zhang D, Wu K. Cement-based 0-3 piezoelectric composites[J]. Journal of the American Ceramic Society,2002,85(2):305-313.
    [8]Huang S, Ye Z, Hu Y, et al. Effect of forming pressures on electric properties of piezoelectric ceramic/sulphoaluminate cement composites[J]. Composites science and technology,2007,67(1):135-139.
    [9]Li Z, Dong B, Zhang D. Influence of polarization on properties of 0-3 cement-based PZT composites[J]. Cement and Concrete Composites,2005,27(1):27-32.
    [10]Li Z, Huang S, Qin L, et al. An investigation on 1-3 cement based piezoelectric composites[J]. Smart materials and structures,2007,16(4):999-1005.
    [11]Li Z, Zhang D, Wu K. Cement matrix 2-2 piezoelectric composite-part 1. Sensory effect[J]. Materials and Structures,2001,34(8):506-512.
    [12]张东,李宗津.水泥基压电机敏复合材料的逆压电效应[J].同济大学学报:自然科学版,2002,30(3):312-317.
    [13]Zhang D, Li Z, Wu K-R.2-2 piezoelectric cement matrix composite:Part ii. Actuator effect[J]. Cement and concrete research,2002,32(5):825-830.
    [14]Han R, Shi Z, Mo Y. Static analysis of 2-2 cement-based piezoelectric composites[J]. Archive of Applied Mechanics,2011,81 (7):839-851.
    [15]Zhang T, Shi Z. Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer[J]. Smart materials and structures,2011,20(8):085017-085017.
    [16]Shi Z, Wang J. Dynamic analysis of 2-2 cement-based piezoelectric transducers [J]. Journal of Intelligent Material Systems and Structures,2013,24(1):99-107.
    [17]Craciun F, Sorba L, Molinari E, et al. A coupled-mode theory for periodic piezoelectric composites[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1989,36(1):50-56.
    [18]Grekov A, Kramarov S, Kuprienko A. Anomalous behavior of the two-phase lamellar piezoelectric texture[J]. Ferroelectrics,1987,76(1):43-48.
    [19]Benveniste Y, Dvorak G. Uniform fields and universal relations in piezoelectric composites[J]. Journal of the Mechanics and Physics of Solids,1992,40(6):1295-1312.
    [20]Castillero J, Otero J, Ramos R, et al. Asymptotic homogenization of laminated piezocomposite materials[J]. International journal of solids and structures,1998,35(5): 527-541.
    [21]Galka A, Telega J, Wojnar R. Some computational aspects of homogenization of thermopiezoelectric composites [J]. Comput Assist Mech Eng Sci,1996,3(2):133-154.
    [22]Ding H J, Chen W Q. Three dimensional problems of piezoelasticity[M]. New York: Nova Science Publishers,2001.
    [23]Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators[J]. Physica Status Solidi B-Basic Research,1975,67(1):105-111.
    [24]Babuska I. Solution of interface problems by homogenization. I[J]. SIAM Journal on Mathematical Analysis,1976,7(5):603-634.
    [25]Babuska I. Solution of interface problems by homogenization. Ii[J]. SIAM Journal on Mathematical Analysis,1976,7(5):635-645.
    [26]Bensoussan A, Lions J L, Papanicolaou G. Asymptotic analysis for periodic structures[M]. American Mathematical Soc.,2011.
    [27]Sanchez-Palencia E. Non-homogeneous media and vibration theory; proceedings of the Non-homogeneous media and vibration theory,1980[C].
    [28]Qin Q, Yang Q. Macro-micro theory on multifield coupling behavior of heterogeneous materials[M]. Springer Berlin,2008.
    [29]He W-m, Chen W-q, Qiao H. Two-scale analytical solutions of multilayered composite rectangular plates with in-plane small periodic structure [J]. European Journal of Mechanics-A/Solids,2013,40(7):123-130.
    [30]He W-m, Qiao H, Chen W-q. Analytical solutions of heterogeneous rectangular plates with transverse small periodicity [J]. Composites Part B:Engineering,2012,43(3): 1056-1062.
    [31]Galka A, Telega J, Wojnar R. Homogenization and thermopiezoelectricity[J]. Mechanics research communications,1992,19(4):315-324.
    [32]Telega J. Piezoelectricity and homogenization. Application to biomechanics[J]. Continuum models and discrete systems,1991,2(1):220-229.
    [33]Galka A, Wojnar R. Layered piezoelectric composites:Macroscopic behaviour[M]. Smart structures. Springer.1999:79-88.
    [34]Otero J, Bravo-Castillero J, Guinovart-Diaz R, et al. Analytical expressions of effective constants for a piezoelectric composite reinforced with square cross-section fibres[J]. Archives of Mechanics,2003,55(4):357-371.
    [1]Aizawa S, Kakizawa T, Higasino M. Case studies of smart materials for civil structuresfJ]. Smart materials and structures,1998,7(5):617-626.
    [2]Bhalla S, Soh C K. Structural health monitoring by piezo-impedance transducers. I: Modeling[J]. Journal of Aerospace Engineering,2004,17(4):154-165.
    [3]Bhalla S, Soh C K. Structural health monitoring by piezo-impedance transducers. Ii: Applications[J]. Journal of Aerospace Engineering,2004,17(4):166-175.
    [4]Bhalla S, Soh C K. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages[J]. Ndt & E International,2004,37(1):23-33.
    [5]Bhalla S K, Moharana S. Modelling of piezo-bond structure system for structural health monitoring using emi technique[J]. Key Engineering Materials,2013,569(1):1234-1240.
    [6]Giurgiutiu V, Zagrai A, Bao J. Embedded active sensors for in-situ structural health monitoring of thin-wall structures[J]. Journal of Pressure Vessel Technology,2002,124(3): 293-302.
    [7]Park S, Yun C, Roh Y, et al. Health monitoring of steel structures using impedance of thickness modes at PZT patches[J]. Smart Structures and Systems,2005,1(4):339-353.
    [8]Park S H, Ahmad S, Yun C B, et al. Experimental and analytical studies for impedance-based smart health monitoring of concrete structures [J]. Key Engineering Materials,2006,321(1):170-173.
    [9]Xu J, Yang Y, Soh C K. Electromechanical impedance-based structural health monitoring with evolutionary programming [J]. Journal of Aerospace Engineering,2004,17(4):182-193.
    [10]Yang Y, Xu J, Soh C K. Generic impedance-based model for structure-piezoceramic interacting system[J]. Journal of Aerospace Engineering,2005,18(2):93-101.
    [II]Zhu X, Hao H, Fan K. Detection of delamination between steel bars and concrete using embedded piezoelectric actuators/sensors[J]. Journal of Civil Structural Health Monitoring, 2013,3(2):105-115.
    [12]Skinner D, Newnham R, Cross L. Flexible composite transducers[J]. Materials research bulletin,1978,13(6):599-607.
    [13]Li Z, Huang S, Qin L, et al. An investigation on 1-3 cement based piezoelectric composites[J]. Smart materials and structures,2007,16(4):999-1005.
    [14]黄世峰,常钧,秦磊,等.1-3型水泥基压电复合材料传感器的性能[J].复合材料学报,2008,25(1):112-118.
    [15]Craciun F, Sorba L, Molinari E, et al. A coupled-mode theory for periodic piezoelectric composites[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1989,36(1):50-56.
    [16]Klicker K, Biggers J, Newnham R. Composites of PZT and epoxy for hydrostatic transducer applications[J]. Journal of the American Ceramic Society,1981,64(1):5-9.
    [17]Smith W A. Modeling 1-3 composite piezoelectrics:Hydrostatic response[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1993,40(1):41-49.
    [18]Smith W A, Auld B A. Modeling 1-3 composite piezoelectrics:Thickness-mode oscillations[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1991,38(1):40-47.
    [19]Chan H L, Unsworth J, Bui T. Mode coupling in modified lead titanate/polymer 1-3 composites[J]. Journal of applied physics,1989,65(4):1754-1758.
    [20]Chan H L W, Unsworth J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1989,36(4):434-441.
    [21]Taunaumang H, Guy I, Chan H L. Electromechanical properties of 1-3 piezoelectric ceramic/piezoelectric polymer composites[J]. Journal of applied physics,1994,76(1): 484-489.
    [22]Grekov A, Kramarov S, Kuprienko A. Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions [J]. Mechanics of Composite Materials, 1989,-25(1):54-61.
    [23]Dunn M L, Taya M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites [J]. International journal of solids and structures,1993,30(2): 161-175.
    [24]Schulgasser K. Relationships between the effective properties of transversely isotropic piezoelectric composites[J]. Journal of the Mechanics and Physics of Solids,1992,40(2): 473-479.
    [25]Hill R. Theory of mechanical properties of fibre-strengthened materials:I. Elastic behaviour[J]. Journal of the Mechanics and Physics of Solids,1964,12(4):199-212.
    [26]Mendelson K S. Effective conductivity of two-phase material with cylindrical phase boundaries [J]. Journal of applied physics,1975,46(2):917-918.
    [27]Chen T. Piezoelectric properties of multiphase fibrous composites:Some theoretical results[J]. Journal of the Mechanics and Physics of Solids,1993,41(11):1781-1794.
    [28]Chen T. Micromechanical estimates of the overall thermoelectroelastic moduli of multiphase fibrous composites[J]. International journal of solids and structures,1994,31(22): 3099-3111.
    [29]Benveniste Y. On the micromechanics of fibrous piezoelectric composites [J]. Mechanics of materials,1994,18(3):183-193.
    [30]Benveniste Y. Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases[J]. Physical Review B,1995,51(22):16424-16424.
    [31]Jiang C, Cheung Y. An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites[J]. International journal of solids and structures,2001,38(28):4777-4796.
    [32]Jiang C, Tong Z, Cheung Y. A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear[J]. Mechanics of materials,2001,33(5): 295-308.
    [33]Kar-Gupta R, Venkatesh T. Electromechanical response of 1-3 piezoelectric composites: An analytical model[J]. Acta materialia,2007,55(3):1093-1108.
    [34]Agbossou A, Viet H N, Pastor J. Homogenization techniques and application to piezoelectric composite materials[J]. International Journal of Applied Electromagnetics and Mechanics,1999,10(5):391-403.
    [35]Pastor J. Homogenization of linear piezoelectric media[J]. Mechanics research communications,1997,24(2):145-150.
    [36]Pettermann H E, Suresh S. A comprehensive unit cell model:A study of coupled effects in piezoelectric 1-3 composites[J]. International journal of solids and structures,2000,37(39): 5447.5464.
    [37]Sun C, Vaidya R. Prediction of composite properties from a representative volume element[J]. Composites science and technology,1996,56(2):171-179.
    [38]Xia Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International journal of solids and structures,2003,40(8):1907-1921.
    [39]Kar-Gupta R, Marcheselli C, Venkatesh T. Electromechanical response of 1-3 piezoelectric composites:Effect of fiber shape[J]. Journal of applied physics,2008,104(2): 024105-024105.
    [40]Kar-Gupta R, Venkatesh T. Electromechanical response of 1-3 piezoelectric composites: Effect of poling characteristics[J]. Journal of applied physics,2005,98(5):054102-054102.
    [41]Kar-Gupta R, Venkatesh T. Electromechanical response of 1-3 piezoelectric composites: A numerical model to assess the effects of fiber distribution[J]. Acta materialia,2007,55(4): 1275-1292.
    [42]Kar-Gupta R, Venkatesh T. Electromechanical response of piezoelectric composites: Effects of geometric connectivity and grain size[J]. Acta materialia,2008,56(15):3810-3823.
    [43]Moreno M E, Tita V, Marques F D. Finite element analysis applied to evaluation of effective material coefficients for piezoelectric fiber composites; proceedings of the 2009 Brazilian Symposium on Aerospace Eng & Applications,2009[C].
    [44]Trindade M A, Benjeddou A. Effective electromechanical coupling coefficients of piezoelectric adaptive structures:Critical evaluation and optimization[J]. Mechanics of Advanced Materials and Structures,2009,16(3):210-223.
    [45]de Medeiros R, Rodriguez-Ramos R, Guinovart-Diaz R, et al. Numerical and analytical analyses for active fiber composite piezoelectric composite materials[J]. Journal of Intelligent Material Systems and Structures,2014, (Online).
    [46]Berger H, Gabbert U, Koppe H, et al. Finite element and asymptotic homogenization methods applied to smart composite materials[J]. Computational mechanics,2003,33(1): 61-67.
    [47]Berger H, Kari S, Gabbert U, et al. A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites[J]. Materials Science and Engineering:A,2005,412(1):53-60.
    [48]Bensoussan A, Lions J L, Papanicolaou G. Asymptotic analysis for periodic structures[M]. American Mathematical Soc.,2011.
    [49]Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media; proceedings of the Homogenization Techniques for Composite Media,1987[C].
    [50]Bravo-Castillero J, Guinovart-Diaz R, Sabina F J, et al. Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-ii. Piezoelectric and square symmetry[J]. Mechanics of materials,2001,33(4): 237-248.
    [51]Sabina F J, Rodriguez-Ramos R, Bravo-Castillero J, et al. Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. Ii:Piezoelectric and hexagonal symmetry [J]. Journal of the Mechanics and Physics of Solids,2001,49(7):1463-1479.
    [52]Otero J, Bravo-Castillero J, Guinovart-Diaz R, et al. Analytical expressions of effective constants for a piezoelectric composite reinforced with square cross-section fibres[J]. Archives of Mechanics,2003,55(4):357-371.
    [53]Andrianov I V, Danishevs1 kyy V V, Weichert D. Asymptotic determination of effective elastic properties of composite materials with fibrous square-shaped inclusions[J]. European Journal of Mechanics-A/Solids,2002,21(6):1019-1036.
    [54]Guinovart-Diaz R, Bravo-Castillero J, Rodriguez-Ramos R, et al. Overall properties of piezocomposite materials 1-3[J]. Materials letters,2001,48(2):93-98.
    [55]Guinovart-Diaz R, Bravo-Castillero J, Rodriguez-Ramos R, et al. Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. I:Elastic and hexagonal symmetryf[J]. Journal of the Mechanics and Physics of Solids,2001,49(7):1445-1462.
    [56]Rodriguez-Ramos R, Sabina F J, Guinovart-Diaz R, et al. Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents-i. Elastic and square symmetry[J]. Mechanics of materials,2001,33(4): 223-235.
    [57]Kar-Gupta R, Venkatesh T. Electromechanical response of porous piezoelectric materials[J]. Acta materialia,2006,54(15):4063-4078.
    [1]Benveniste Y. A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[J]. Journal of the Mechanics and Physics of Solids, 2006,54(4):708-734.
    [2]Duan H, Karihaloo B. Thermo-elastic properties of heterogeneous materials with imperfect interfaces:Generalized levin's formula and hill's connections[J]. Journal of the Mechanics and Physics of Solids,2007,55(5):1036-1052.
    [3]Deeg F W. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. [D],1980.
    [4]Dunn M L, Taya M. An analysis of piezoelectric composite-materials containing ellipsoidal inhomogeneities[J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1993,443(1918):265-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700