用户名: 密码: 验证码:
新型电化学传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器是分析化学领域的一个研究热点,本论文基于电沉积到DNA网络膜上的银纳米颗粒、电沉积到Ⅰ型胶原蛋白质网络膜上的银纳米颗粒和聚二茂铁硅烷/DNA网络膜修饰电极开展了相关的电化学传感器研究工作。具体工作分为以下三个方面:
     1.第一部分利用DNA形成的网路结构控制电沉积银纳米粒子制备新型过氧化氢(H2O2)传感器。首先,将DNA直接滴到空白玻碳电极上形成DNA网络膜;然后,在DNA网络修饰的玻碳电极上电沉积制备银纳米粒子形成H2O2传感器。此方法制备的传感器对H2O2有很好的催化行为,其归结于DNA形成的网络结构控制了银纳米粒子的生长从而得到了大小和分布均一的银纳米粒子。
     2.第二部分考察了在Ⅰ-型胶原蛋白质修饰的玻碳电极上电沉积制备银纳米粒子及其作为H2O2传感器。原子力显微镜实验结果发现,构筑在Ⅰ-型胶原蛋白质修饰的玻碳电极上的银纳米粒子小且分布均一。Ⅰ-型胶原蛋白网络膜可以控制Ag纳米粒子的生长,并使Ag纳米粒子分布均匀。电化学实验证明,制备的银纳米粒子对H2O2有很好的催化还原能力,可以作为一个很好的H2O2传感器。此催化活性归因于Ⅰ-型胶原蛋白质控制生成了大小和分布均一的银纳米粒子,因此相应的催化活性与Ⅰ-型胶原蛋白质的浓度和沉积时间有关。
     3.第三部分研究了包埋在DNA膜中的聚二茂铁甲硅烷(PFS)修饰电极的电化学行为及对抗坏血酸(AA)的电催化。实验发现对AA起催化氧化作用的为PFS的电活性中心(二茂铁单元)。同时研究了FPS/DNA/GCE电化学行为,实验发现PFS/DNA/GCE存在两个可逆的峰,说明了电活性单元分步进行氧化,其与PFS/GCE相比,ΔEp值更小,ip值更大。PFS/DNA/GCE的电化学行为受很多因素影响,如DNA、PFS和PBS的浓度,以及温度等。其中DNA起到了吸附固定PFS和促进电子传输的作用。
Electrochemical sensors are active and promising in the analytical chemistry fields. In the theses, we focused our studies on silver nanoparticles (Ag NPs) electrodeposited on type-Ⅰcollagen-modified electrode, Ag NPs electrodeposited on DNA modified electrode and PFS/DNA-modified electrode and developed the corresponding electrochemical sensors. This work mainly covered the following areas.
     1. The first part was about a novel hydrogen peroxide (H2O2) sensor based on Ag NPs electrodeposited on DNA-networks modified glassy carbon electrode (GCE). In this part, we have exploited Ag NPs electrodeposited on three-dimensional DNA networks that were directly dropped on the surface of glassy carbon electrode as an electrocatalyst to fabricate a H2O2 sensor. The Ag NPs electrodeposited on three-dimensional DNA networks showed very good catalytic ability for the reduction of H2O2. The well catalytic activity of the electrode was ascribed to the DNA networks that caused the formation of small Ag NPs and the homogenous distribution of Ag NPs.
     2. The second part was concentrated on electrodeposition of Ag NPs on type ? collagen modified GCE and their applications as a H2O2 sensor. Atomic force microscopy (AFM) images showed that many small Ag NPs formed and uniformly distributed on type ? collagen/GCE. We found that the type ? collagen network film could control the growth of Ag NPs and the Ag NPs were well-distributed. Meanwhile, the electrochemical experiments proved that the Ag NPs had an excellent catalytic ability to reduction of H2O2, suggesting that they could be used as a sensor to determinate H2O2. The catalytic activity of Ag NPs was ascribed to type ? collagen that resulted in the homogenous distribution of many small Ag NPs and accordingly depended on the type ? collagen concentration and electrodeposition time.
     3. The third part focused on studying electrochemical behaviors of poly (ferrocenylsilane)/DNA (PFS/DNA) modified GCE and as an ascorbic acid (AA) sensor. The embedded PFS in DNA film had a good electrocatalytic activity for AA. This behavior suggested that the electro-oxidation of AA could be catalyzed by FC/FC+ couple of PFS as a mediator. The PFS/DNA/GCE showed two reversible waves, which had a lower oxidation potential, smallerΔEp value, and larger ip values as compared with PFS/GCE. The concentration of DNA, PFS and PBS, and temperature influenced the electrochemical behaviors of PFS/DNA/GCE. DNA played an important role as an intermediate for the absorption of PFS and electron transfer.
引文
[1]唐敏,黄刚.传感器技术的现状与未来.世界产品与技术,1997,7 (2): 3-4
    [2]赵长文.电化学传感器及其临床应用的进展.国外医学:药学分册,1993,20 (1): 11-15
    [3]易惠中.离子传感器用敏感材料.仪表材料,1990,21(2): 111-117
    [4]王化正.电化学传感器.计测技术,1990,2 (2): 26-29
    [5] Riegel J, Neumann H, Wiedenmann H M. Exhaust gas sensors for automotive emission control. Solid State Ionics, 2002, 9 (152-153): 783-800
    [6]杨邦朝,张益康.气体传感器研究动向.传感器世界,1997,3(9): 1-8
    [7] http://www.elsevier.com/wps/product/cws_home/405913
    [8]何星月,刘之景,生物传感器的研究现状及应用,传感器世界,2002, 8(10): 1-6
    [9] Weetall H H. Biosensor Technology What? Where? When? and Why? Biosensors and Bioelectronics, 1996, 11(1-2): 1-5
    [10]何星月,刘之景,生物传感器的应用,物理,2003,32(4): 249-252
    [11] Harwood G. W. J, Pouton C. W. Amperometric enzyme biosensors for the analysis of drugs and metabolites. Advanced Drug Delivery Reviews, 1996, 18(2):163-191
    [12] Murphy L. Biosensors and bioelectrochemistry. Curr. Opin. Chem. Biol, 2006, 10: 177-184
    [13] Wang J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis, 2001, 13 (12): 983-988
    [14] Killard A. J, Smyth M. R. Separation-free electrochemical immunosensor strategies. Analytical letters, 2000, 33 (8): 1451-1465
    [15] Seiichi S. Review of the recent immunosensor technology papers of joint technical meeting on medical and biological engineering. IEE Japan, 2001: 29-32
    [16] Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environmental Science and Technology, 2005, 39 (22): 8853-8857
    [17] Rotariu L, Bala C, Magearu V. New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Analytica Chimica Acta, 2004, 513 (1): 119-123
    [18] Timur S, Anik U, Odaci D, Gorton L, Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochemistry Communications, 2007, 9 (7): 1810-1815
    [19] Capitano A. T, Roberts J. L, Griffith L. G. Design of a liver tissue biosensor. Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002, 2
    [20] Zhu L, Li Y, Zhu G., A novel renewable plant tissue-based electrochemiluminescent biosensor for glycolic acid. Sensors and Actuators B: Chemical, 2004, 98 (2-3): 115-121
    [21] Burmlle M, Hansen L H, Strensen S J. Use of a whole-cell biosensor and flow cytometry to detect AHL production by an indigenous soil community during decomposition of litter. Microbial Ecology, 2005, 50 (2): 221-229
    [22] DeAngelis K M., Firestone M K, Lindow S E. Sensitive whole-cell biosensor suitable for detecting a variety of N-acyl homoserine lactones in intact rhizosphere. Microbial Communities Applied and Environmental Microbiology, 2007, 73 (11): 3724-3727
    [23] Drummond T G, Hill M G., Barton J K. Electrochemical DNA sensors. Nature Biotechnology, 2003, 21 (10): 1192-1199
    [24] Erdem A, Ozsoz M. Electrochemical DNA Biosensors Based on DNA-Drug Interactions. Electroanalysis, 2002, 14 (14): 965-970
    [25] Gooding J J. Electrochemical DNA hybridization biosensors. Electroanalysis, 2002, 14 (17): 1149-1156
    [26] Kerman K, Kobayashi M, Tamiya E. Recent trends in electrochemical DNA biosensor technology. Meas. Sci. Technol, 2004, 15: R1-R11
    [27] Wang J. From DNA biosensors to gene chips. Nucleic Acids Res, 2000, 28 (16): 3011-3016
    [28] Wang J. Electrochemical nucleic acid biosensors. Anal. Chim. Acta, 2002, 469 (1): 63–71
    [29] Wang J, Rivas G., Ozsoz M, Grant D H, Cai X, Parrado C. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage. Anal. Chem, 1997, 69 (7): 1457-1460
    [30] Ikebukuro K, Kohiki Y, Sode K. Amperometric DNA sensor using the pyrroquinoline quinone glucose dehydrogenase-avidin conjugate. Biosensors and Bioelectronics, 2002, 17 (11-12): 1075-1108
    [31] Wang J, Kawde A-N. Magnetic-field stimulated DNA oxidation. Electrochemistry Communications, 2002, 4 (4): 349-352
    [32] Ren Y, Jiao K, Xu G., Sun W, Gao H. An electrochemical DNA sensor based on electrodepositing aluminum ion films on stearic acid-modified carbon paste electrode and its application for the detection of specific sequences related to bar gene and CP4 epsps gene. Electroanalysis, 2005, 17 (23): 2182-2189
    [33] Liu S Q, Xu J J, Chen H Y. ZrO2 gel-derived DNA-modified electrode and the effect of lanthanide on its electron transfer behavior. Bioelectrochemistry, 2002, 57 (2): 149-154
    [34] Chen S-M, Chen S-V. The bioelectrocatalytic properties of cytochrome C by direct electrochemistry on DNA film modified electrode. Electrochimica Acta, 2003, 48 (5): 513-529
    [35] Lee T Y, Shim Y B. Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer. Anal. Chem, 2001, 73 (22): 5629-5632
    [36] Pedano M. L., Rivas G. A. Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors. Biosensors and Bioelectronics, 2003, 18 (2-3): 269-277
    [37] Wang J, Cai X, Fernandes J R, Grant D H, Ozsoz M. Carbon fiber microelectrodes for adsorptive stripping analysis of trace nucleic acids. Journal of Electroanalytical Chemistry, 1998, 441 (1-2): 167-172
    [38] Hassmann J, Misch A, Schulein J, Krause J, Gral B, Muller P, Bertling W M. Development of a molecular diagnosis assay based on electrohybridization at plasticelectrodes and subsequent PCR. Biosensors and Bioelectronics, 2001, 16 (9-12): 857-886
    [39] Stall C, Johnson A T, Chen M, Gelperin A. DNA-decorated carbon nanotubes for chemical sensing. Nano letters(Print), 2005, 5 (9): 1774-1778
    [40] Lee S W, I Ichinose, Kunitake T. Enantioselective binding of amino acid derivatives onto imprinted Ti02 ultrathin films. Chem Lett, 2002, 7 (3): 678-679
    [41] Zhu Q Z, Haupt K, Knopp D, etal. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Analytica Chimica Acta, 2002, 468 (2): 217-227
    [42] Suarez Rodrguez J L, Daz Garca M E. Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers. Biosensor Bioelectronics, 2001, 16 (6): 955-961
    [43] Piletsky, Sergey A. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosensors Bioelectronics, 2001, l6 (7): 701-707
    [44] Nieuwenhuizen M S, Harteveld J L N. Studies on a surface acoustic wave(SAW) dosimeter sensor for organophosphorous nerve agents. Sensors and Actuators B, 1997, 40 (1): 167-173
    [45] Tan Y, Yin J. A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine. Bioelectrochemistry, 2001, 53 (1): 141-148
    [46] Bakker E, Telting-Diaz M. Electrochemical sensors. Anal. Chem, 2002, 74 (12): 2781–2800
    [47] Chemla Y R, Grossman H L, Poon Y, McDermott R, Stevens R, Alper M D, Clarke J. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proceedings of the National Academy of Sciences, 2000, 97 (26): 14268-14278
    [48] Homola J. Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003, 377 (3): 528-539
    [49] Ramanathan K, Jonsson B. R, Danielsson B. Sol-gel based thermal biosensor for glucose. Analytica Chimica Acta, 2001, 427 (1): 1-10
    [50] Babacan S, Pivarnik P, Letcher S, Rand A. G. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron, 2000, 15 (11-12): 615-621
    [51]张全勤,张继文.纳米技术新进展.北京:国防工业出版社, 2005,46-102
    [52]刘吉平,廖莉玲.无机纳米材料.北京:科学出版社, 2004, 17-22
    [53]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社, 2006,7-10
    [54]曹茂盛,蒋成禹,田永君.纳米材料导论.哈尔滨:哈尔滨工业大学出版社. 2001,12-14
    [55]邓永沛,赵红秋,江龙.纳米金颗粒在仿生工程中的应用.中国基础科学. 2000,9 (1): 11-17
    [56]吴维明,蔡强,陈裕泉.纳米金在生物检测中的应用.国外医学生物医学工程分册. 2003,26 (5): 193-197
    [57] Zhuo Y, Yuan R, Chai Y Q, Tang D P, Zhang L Y, Wang N, Li X L, Zhu Q. A reagentless amperometric immunosensor based on gold nanoparticles/thionine/nafion membrane modified gold electrode for determination ofα-1-fetoprotein. Electrochem. Commun, 2005, 7 (2): 355-360
    [58] Fiorito P A, Goncales V R, Ponzio E A, de Torresi S I C. Synthesis, characterization and immobilization of prussian blue nanoparticales: a potential tool for biosensing devices. Chem.Commun, 2005, 149 (2): 366-368
    [59] Xiao Y, Patolsky F, Katz E, Hainfeld J F and Willner I.“Plugging into Enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299 (5614): 1877-1881
    [60] Cai H, Xu Y, Zhu N N, He P and Fang Y Z. An Electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst, 2002, 127 (6): 803-808
    [61] Xu J J, Zhao W, Luo X L and Chen H Y. A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem.Commun, 2005, 6: 792-794
    [62] Kealy T J ,Panson P L. A new type of organo-iron compound. Nature, 1951 ,168 (4285): 1039-1040
    [63]吴宝艳,王艳艳,杨钰,宋昭,尹峰,陈强.纳米金与二茂铁在葡萄糖传感器中的相互作用.传感器技术,2005,24 (10):10-12
    [64]黄耀曾,钱延龙.金属有机化学进展.北京化学工业出版社
    [65] Tamio H, Takaya M, Motoo F, etal. Asymmetric sysnthesis catalyzed by chiral ferrocenyl-phosphine-transition metal complexes. Bull Chem Soc Jpn, 1980, 53 (4): 1138-1145
    [66]柴向东,姜月顺,杨文胜.推拉电子取代基对二茂铁衍生物性质及电子结构的影响.高等学校化学学报, 1996, 17 (12): 159-162
    [67]屠一锋,孙如.金电极的逐层自组装修饰.苏州大学学报(自然科学), 1998, 14 (2): 74-77
    [68]陈卫民,曾陇梅.二茂铁化学修饰电极测定丙二醛的研究.分析测试学报,1998,17 (l): 50-53
    [69] Pandey P C, Upadhyay S. Bioelectrochemistry of glucose oxidase immobilized on ferrocene encapsulated ormosil modified electrode. Sensor and acruat B-chem, 2001, 76(1-3): 193-196
    [70]袁耀峰,叶素明,张文.具有生物(理)活性的二茂铁衍生物.化学通报, 1995,5:24-27
    [71] Eberhard W N, Maria G M, Norman F B, Metallocene-containg platinum complexes as potential antitumor agents. Organometallics, 1988, 7 (12): 2562-2565
    [72] David R K, Mark A R, Tobin J M. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev, 1994, 94 (1): 195-242
    [73] Edward E I, Epton R, Marr G J. A new class of semi-synthetic antibiotics: ferrocenyl-penicillins and cephalosporins. J Organoment Chem, 1976, 107 (3-9): 351
    [74] George M, Bernard W R. Ferrocene: Annual survey covering the year 1984, J Organoment Chem, 1986, 298: 133-205
    [75] Fiorina V J, Dubois R J. Stereoselective Synthesis in the microbial reduction of (trifloacetly) ferrocene and 2-fluoroacetophenones. J Med Chem, 1978, 21: 393-395
    [76] Zhang S Z,Yang W W. Multilayered construetion of glueose oxidaseand Poly(allylamine)ferroeene on gold eleetrodes by means of layer-by- layer covalent attachment. Sensor and Actuat B-chem,2004,101 (3): 387-392
    [77] Soichi Y, Fumio M. Hydrogen peroxide determination based on a glass carbon edlectrode coverd with polyion complex membrance bontaining peroxidasw and mediator. Sensor and Actrat B-chem, 2000, 65 (1-3): 49-55
    [78] Chen J, Burrell A K. Prepatation, eharaterisation and biosensor application of conducting Polymer based on ferroeene substituted thioPhene and trrthiophene. Eleetrochim. Aeta,2002,47 (17): 2715一2724
    [79]孙微,卢丹青等. PVC-碳糊修饰电极的研制.分析试验室,2003,22 (6): 40-42
    [80] Wang S F. Du D. Differential pulse voltammetry determination of acid with ferrrcene-L-cysteine self-assembled supramoleeular film modified eleetrode. Sensor and Actuat B-chem,2004,97 (2-3): 373-378
    [81]武雪梅,奕积毅,李敬芬等.酞菁包埋二茂铁聚合物膜修饰电极对抗坏血酸的电催化.黑龙江医药科学,2003,26 (4): 172-181
    [82]刘海鹰,邓家祺.二茂铁-Nafion葡萄糖传感器的研究.分析化学,1994,22 (12): 1282-1282
    [83] Lev O. Diagnostic applications of organically-doped sol-gel Porous. Analysis, 1992,20: 543-553
    [84] Wang J, Park D S,Pamidi P V A. Tailoring the macroposity and perfonnance of sol-gel derived carbon composite glueose sensors, 1997,434 (l-2): 185-189
    [85] Siegel B, Breslow R. Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents. J. Am. Chem. Soc, 1975, 97 (23): 6869-6870
    [86] Shoham B, Migron Y, Riklin A. Abilirubin biosensor based on a multilay network enzyme electrode. Biosens. Bioelectron, 1995, 10 (3-4): 341-352
    [87] Petersson M. Anal. A ferrocene-modified platinum electrode as a potentiometricsensor for L-ascorbic acid. Chim. Acta, 1983, 147(2): 359-363
    [88]李亚卓,张素霞,李晓芳,孙长青.基于溶胶-凝胶技术的聚.烯丙胺基二茂铁化学修饰电极的组装及其抗坏血酸的电催化氧化.高等学校化学学报,2003, 24 (8): 1373-1376
    [89] Lange M A, Chambers J Q. Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode. Anal. Chim. Acta, 1985, 175: 89-87
    [90]董绍俊,刘柏峰,毕军.一种新型的化学修饰电极电位传感器.科学通报,1994,29:348-351
    [91] Moutet J, Saint-Aman. E, Ion I. A barium selective ferrocene ionophore exhibiting remarkable electrochemical recognition behaviour. J. Electroanal. Chem, 1996, 415 (1-2): 187-189
    [92] Beer P D. Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc. Chem. Res, 1998, 31 (2): 71-80
    [1] Hurdis E C, Romeyn Jr H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal. Chem,1954,26 (2):320-325
    [2] Matsubara C, Kawamoto N, Takamura K. Oxo [5, 10, 15, 20-tetra(4-pyridyl) porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992, 117 (11): 1781-1785
    [3] Nakashima K, Maki K, Kawaguchi S, S Akiyama, Tsukamoto Y, Kazuhiro I. Peroxyoxalate Chemiluminescence Assay of Hydrogen Peroxide and Glucose Using2,4,6,8-Tetrathio-morpholinopyrimido[5,4-d]pyrimidine as a Fluorescent Component. Anal. Sci, 1991, 7 (5): 709-713
    [4] Jia J B, Wang B Q, Wu A G., Cheng G. J, Li Z, Dong S J. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol?Gel Network. Anal. Chem, 2002, 74 (9): 2217-2223
    [5] Luo X L, Xu J J, Zhang Q, Yang G. J, Chen H Y. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens. Bioelectron, 2005, 21 (1): 190-196
    [6] Guo C L, Song Y H, Wei H, Li P C, Wang L, Sun L L, Sun Y J, Li Z. Room temperature ionic liquid doped DNA network immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Anal. Bioanal. Chem, 2007, 389 (2): 527-532
    [7] Song Y H, L. Wang, C.B. Ren, G.Y. Zhu, Z. Li. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrod Sensor. Actuat. B-Chem, 2006 (2), 114: 1001-1006
    [8] Ferapontova E, Schmengler K, B?rchers T, Ruzgas L T, Gorton. Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosens. Bioelectron, 2002, 17 (11): 953-963
    [9] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed, 2000, 39 (7): 1180-1218
    [10] Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner I. Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299: 1877-1881
    [11] Eftekhari A. Aluminum electrode modified with manganese hexacyanoferrate as a chemical sensor for hydrogen peroxide. Talanta, 2001, 55 (2): 395-402
    [12] Qiu J, Peng H, Liang R, Li J, Xia X. Synthesis, Characterization, and Immobilization of Prussian Blue-Modified Au Nanoparticles: Application to Electrocatalytic Reduction of H2O2. Langmuir, 2007, 23 (4): 2133-2137
    [13] You T, Niwa O, Tomita M, Hirono S. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal. Chem, 2003, 75 (9): 2080-2085
    [14] Fiorito P A, Córdoba de Torresi S I. Hybrid Nickel Hexacyanoferrate/Polypyrrole Composite as mediator for Hydrogen Peroxide detection and its application an Oxidase-Based Biosensors. Journal of Electroanalytical Chemistry. J. Electroanal. Chem, 2005, 581 (1): 31-37
    [15] Youichi S, Hiroki K, Satoko M, Norio M, Noboru Y, Sensor. Actuat. B- Chem, Sensing characteristics of hydrogen peroxide sensor using carbon-based electrodeloaded with perovskite-type oxide, 1996, 34 (1-3): 493-498
    [16] Zhang J, Li B, Wang Z, Cheng G., Dong S G. Functionalized inorganic–organic composite material derivated by sol–gel for construction of mediated amperometric hydrogen peroxide biosensor. Anal. Chim. Acta, 1999, 388 (1-2): 71-78
    [17] Liu Z, Yang Y, Wang H, Liu Y, Shen G., Yu R. A hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode. Sensor. Actuat. B-Chem, 2005, 106 (1): 394-400
    [18] Hanaoka S, Lin J, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal. Chim. Acta, 2001, 426 (1): 57-64
    [19] Gu T, Hasebe Y. Peroxidase and methylene blue-incorporated double stranded DNA–polyamine complex membrane for electrochemical sensing of hydrogen peroxide. Anal. Chim. Acta, 2004, 525 (2): 191-198
    [20] Gu T, Hasebe Y. DNA–Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosens. Bioelectron, 2006, 21 (11): 2121-2128
    [21] Ren C, Song Y, Li Z, Zhu G.. Hydrogen peroxide sensor based on horseradish peroxidase immobilized on silver nanoparticles/cysteamine/gold electrode. Anal. Bioanal. Chem, 2005, 381 (1): 1179-1185
    [22] Wang L, Wang E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem. Commun, 2004, 6 (2): 225-229
    [23] Qian L, Yang X. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta, 2006, 68 (3): 721-727
    [24] Welch C M, Banks C E, Simm A O, Compton R G.. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of the hydrogen peroxide. Anal. Bioanal. Chem, 2005, 382 (1): 12-21
    [1] Zheng X, Guo D, Shao Y, Jia S, Xu S, Zhao B and Xu W. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir, 2008, 24 (8): 4394-4398
    [2] Guo H and Tao S. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sensor. Actuat. B- chem, 2007, 123 (1): 578- 582
    [3] Wu S, Zhao H, Ju H, Shi C and Zhao J. Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem. Commun, 2006, 8 (8): 1197-1203
    [4] Ren C, Song Y, Li Z and Zhu G. Hydrogen peroxide sensor based on horseradish peroxidase immobilized on a silver nanoparticles/cysteamine/gold electrode. Anal. Bioanal. Chem, 2005, 3819 (6): 1179-1185
    [5] Jia J, Wang B, Wu A, Cheng G., Li Z and Dong S. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem, 2002, 74 (9): 2217-2223
    [6] Song Y, Wang L, Ren C, Zhu G and Li Z. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens. Actuators B, 2006, 114 (2): 1001-1006
    [7] Guo C, Song Y, Wei H, Li P, Wang L, Sun L, Sun Y and Li Z. Room temperature ionic liquid doped DNA network immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Anal. Bioanal. Chem, 2007, 389(2): 527-532
    [8] Ferapontova E, Schmengler K, B?rchers T, Ruzgas T and Gorton L. Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosens. Bioelectron, 2002, 17 (11-12): 953-963
    [9] Willner I and Katz E. Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications. Angew. Chem. Int. Ed, 2000, 39 (7): 1180-1218
    [10] Xiao Y, Patolsky F, Katz E, Hainfeld J and Willner I. "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299 (5614): 1877-1881
    [11] You T, Niwa O, Tomita M and Hirono S. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal. Chem, 2003, 75 (9): 2080-2085
    [12] Polsky R, Gill R, Kaganovsky L and Willner I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem, 2006, 78 (7): 2268-2271
    [13] Niazov T, Shlyahovsky B and Willner I. Photoswitchable electrocatalysis and catalyzed chemiluminescence using photoisomerizable monolayer-functionalized surfaces and pt nanoparticles. J. Am. Chem. Soc, 2007, 129 (20): 6374-6375
    [14] Li J, Yu Q and Peng T. Electrocatalytic Oxidation of Hydrogen Peroxide and Cysteine at a Glassy Carbon Electrode Modified with Platinum Nanoparticle-deposited Carbon Nanotubes. Anal. Sci, 2005, 21 (4): 377-383
    [15] Qiu J, Peng H, Liang R, Li J and Xia X. An amperometric biosensor based on hemoglobin immobilized in poly(varepsilon-caprolactone) film and its application. Langmuir, 2007, 23 (10): 2133-2137
    [16] Wang L and Wang E. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun, 2004, 6 (1): 225-229
    [17] Sun Y, Bai Y, Yang W and Sun C. Controlled multilayer films of sulfonate-capped gold nanoparticles/thionine used for construction of a reagentless bienzymatic glucose biosensor. Electrochimica, 2007, 52 (25): 7352-7361
    [18] Huang J, Wang D, Hou H and You T. Electrospun Palladium Nanoparticle-Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Adv. Funct. Mater, 2008, 18 (3): 441-448
    [19] Ren C, Song Y, Li Z and Zhu G. Hydrogen peroxide sensor based on horseradish peroxidase immobilized on a silver nanoparticles/cysteamine/gold electrode. Anal. Bioanal. Chem, 2005, 381 (6): 1179-1185
    [20] Sun Y, Wei G, Song Y, Wang L, Sun L, Guo C, Yang T and Li Z. Type Icollagen-templated assembly of silver nanoparticles and their application in surface-enhanced Raman scattering. Nanotechnology, 2008, 19 (11): 115604(8pp)
    [21] Williamson T, Guo X, Zukoski A, Sood A, Diaz D and Bohn P. Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J. Phys. Chem. B, 2005, 109 (43): 20186-20191
    [22] Abdirisak A, Isse S, Chiara M and Armando G. Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride. Electrochem. Commun, 2006, 8 (11): 1707-1712
    [23] Welch C, Banks C, Simm A and Compton R. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal. Bioanal. Chem, 2005, 382 (1): 12-21
    [24] Cui K, Song Y, Yao Y, Huang Z and Wang L. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun, 2008 10 (4): 663-667
    [25] Ding Y, Jin G and Yin J. Electrodeposition of Silver Nanoparticles on MWCNT Film Electrodes for Hydrogen Peroxide Sensing. J. Chin. Chem, 2007, 25 (8): 1094-1098
    [26] Zhang Z and Han M. One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization. J. Mater. Chem, 2003, 13 (5): 641-643
    [27] Andersson M, Pedersen J and Palmqvist A. Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir, 2005, 21 (24): 11387-11396
    [28] Kumar A, Ramakrishnan V, Gonnade R, Ganesh K and Sastry M. Electrostatically entrapped DNA molecules in lipid thin films as templates for the in situ growth of silver nanoparticles. Nanotechnology, 2002, 13 (5): 597-600
    [29] Shang L and Dong S. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun, 2008, 9 (12): 1088-1090
    [30] Wei G, Wang L, Sun L, Song Y, Sun Y, Guo C, Yang T and Li Z. Type I collagen-mediated synthesis and assembly of UV-photoreduced gold nanoparticles and their application in surface-enhanced Raman scattering. J. Phys. Chem. C, 2007, 111 (5): 1976-1982
    [31] Alivisatos A. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271 (5251): 933-937
    [1] Smela E, Gadegaard N. Surprising volume change in PPy(DBS): an atomic force microscopy study Adv. Mate, 1999, 11 (11): 953-957
    [2] Dong S, Chu Q. Study of the electrode processes of hemoglobin at a polymerized Azure A film electrode. Electroanalysis, 1993, 5 (2): 135-140
    [3] Ma Y, Dong W, Hempenius M, Mohwald H, Vancso G. Redox-controlled molecular permeability of composite-wall microcapsules. Nat. Mater, 2006, 5 (3): 724-729
    [4] Deng Q, Dong S. Studies of ferrocene derivative diffusion and heterogeneous kinetics in polymer electrolyte by using microelectrode voltammetry. J. Electroanal. Chem, 1997, 435 (1-2): 23-30
    [5] Daum P, R. Murray W. Reduction of Plasma Polymerized Vinylferrocene Films. J. Phys. Chem, 1981, 85 (2): 389-396.
    [6] Hale P D, Inagaki T, Karan H I, Okamoto Y, Skothein T A. A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator. J. Am. Chem. Soc, 1989, 111 (9): 3482-3483
    [7] Qian L, Gao Q, Song Y, Li Z, Yang X. Layer-by-layer assembled multilayer films of redox polymers for electrocatalytic oxidation of ascorbic acid. Sensor. Actuat B-Chem, 2005, 107 (1): 303-310
    [8] Hempenius M A, Robins N S, Peter M, Kooij E S, Vancso G J. Water-soluble poly(ferrocenylsilanes) for supramolecular assemblies by layer-by-layer deposition. Langmuir, 2002, 18 (20): 7629-7634
    [9] Nguyen M T, Diaz A F, Dementév V V, Pannell K H. High molecular weight poly (ferrocenediyl-silanes) : synthesis and electrochemistry of [-(C5H4)Fe(C5H4)SiR2-]n, R=Me,Et,n-Bu,n-Hex. Chem. Mater, 1993, 5 (2): 1389-1394
    [10] Chen H, Dong S D. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic–carbon nanotube nanocomposite film. Biosens. Bioelectron, 2007, 22 (8): 1811-1815
    [11] Niazov T, Shlyahovsky B, Willner I. Photoswitchable Electrocatalysis andCatalyzed Chemiluminescence Using Photoisomerizable Monolayer-Functionalized Surfaces and Pt Nanoparticles. J. Am. Chem. Soc, 2007, 129 (20): 6374-6375
    [12] Shipway A N, Lahav M, Willner I. Research news nanostructured gold colloid electrodes. Adv. Mater, 2000, 12 (13): 993-998
    [13] Wang L, Wang E. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun, 2004, 6 (1): 49-54
    [14] Granot E, Katz E, Basnar B, Willner I. Enhanced Bioelectrocatalysis Using Au-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured Rods Assembled on Electrodes. Chem. Mater, 2005, 17 (18): 4600-4609
    [15] Granot E, Basnar B, Cheglakov Z, Katz E, Willner I. Enhanced bioelectrocatalysis using single-walled carbon nanotubes (SWCNTs)/polyaniline hybrid systems in thin-film and microrod structures associated with electrodes. Electroanalysis, 2006, 18 (1): 26-34
    [16] Xiang C, Zou Y, Sun L, Xu F. Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem. Commun, 2008, 10 (1): 38-41
    [17] Lisdat F, Ge B, Krause B, Ehrlich A, Bienert H, Scheller F W. Nucleic Acid promoted electron transfer to cytochrome c. Electroanalysis, 2001, 13 (15): 1225-1230
    [18] Nassar A E F, Rusling J F. Electron transfer between electrodes and heme proteins in protein?DNA films. J. Am. Chem. Soc, 1996, 118 (12): 3043-3044
    [19] Song Y, Wang L, Ren C, Zhu G and Li Z. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens. Actuators B, 2006, 114: 1001-1006
    [20] Pournaghi-Azar M H, Ojani R. Electrode kinetic-parameters of the ferrocene oxidation at platinum, gold and glassy-carbon electrodes in chloroform. Electrochim. Acta, 1994, 39 (7): 953-955
    [21] Ma Y, Dong W, Hempenius M A, M?hwald H, Vancso G J. Layer-by-Layer Constructed Macroporous Architectures. Angew. Chem. Int. Ed, 2007, 46 (10): 1702-1705
    [22] Murray R W, Bard A J. A Series of Advances (Marcel Dekker, New York-Basel). Electroanalytical Chemistry, 1984, 13: 191-368
    [23] Finkley H O, Electroanal. Chem. Bard A J, Rubinstein, Eds. I., Marcel Dekker, Inc. New York, 1996, 19: 109-335.
    [24] Kissinger P T, Heineman W R. Cyclic voltammetry. J. Chem. Educ, 1983, 60, 702-706
    [25] Song Y, Guo C, Sun L, Wei G, Peng C, Wang L, Sun Y, Li Z. Effects of BridgeIons, DNA Species, and Developing Temperature on Flat-Lying DNA Monolayers. J. Phys. Chem. B, 2007, 111 (2): 461-468
    [26] Conroy R S, Coljee V W, Prentiss M. Impacts of magnesium ions on the unzipping of gimel-phage DNA. Biophys. J, 2006, 18 (14): S205-S213
    [27] Pournaghi-Azar M H, Ojani R. Catalytic oxidation of ascorbic by some ferrocene derivative mediators at the glassy carbon electrode. Application to the voltammetric resolution of ascorbic acid and dopamine in the same sample. Talanta, 1995, 42(1212): 1839-1848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700