用户名: 密码: 验证码:
二氧化钛纳米材料的溶胶凝胶法制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛(Ti02)光催化材料具有氧化能力强、光催化活性高、稳定、无毒等优点,在环保领域,建筑领域,农业领域等得到了广泛的应用。本研究通过溶胶-凝胶法制备了三种不同形态的Ti02纳米材料,分别为Ti02纳米粉末,Ti02薄膜和Ti02纤维,并分别对其各项性能进行了研究。
     本文首先介绍了Ti02纳米材料及其光催化机理和影响因素,突出了Ti02在光催化领域的优势。在此基础上,展开了Ti02纳米晶的溶胶凝胶法低温制备的研究,并通过添加不同的成膜剂来制备Ti02薄膜,从而达到固定Ti02的目的。研究发现Ti02薄膜的光催化活性远差于Ti02纳米晶,于是本研究又利用溶胶凝胶法制备了Ti02纤维,提高了Ti02的光催化性能,同时也固定了Ti02,并通过Au的掺入来提高Ti02纤维的光催化活性。本研究利用X-Ray衍射(XRD),透射电镜(TEM),高分辨透射电镜(HRTEM),能量弥散X射线探测器(EDS),紫外可见吸收光谱(UV-Vis Abs),原子力显微镜(AFM)及接触角等测试手段研究了Ti02的结晶性能、微观结构、亲水性能及光催化性能,主要研究如下:
     在室温下,利用钛酸丁酯在过量的水中进行水解缩聚反应制得锐钛矿相的TiO2纳米晶,粒径为3-4 nm,且晶粒尺寸分布均匀。研究发现,样品的光催化活性随着水与钛酸丁酯的摩尔比n的增大先增大后减小,当n=120时,样品光催化活性最高。另外,将制得的Ti02粉末分别对甲基橙、亚甲基蓝及罗丹明B进行光降解发现,罗丹明B最易降解,其次为亚甲基蓝,甲基橙最难降解。
     在水性Ti02溶胶中加入有机成膜剂(PVP、PEG)并通过喷涂法制得Ti02薄膜样品。研究结果表明,添加PVP的Ti02薄膜表面较平整,膜厚度约为600 nm;添加PEG的Ti02薄膜表面粗糙度大,膜厚约为300 nm。另外,PVP及PEG的加入均提高了Ti02薄膜的亲水性能;当加入PVP或小分子量的PEG时,薄膜光催化性较差,而加入大分子量PEG,薄膜光催化性能较好。当PEG分子量为6000,加入量为10%时,Ti02薄膜样品的各项性能最好。
     采用溶胶凝胶法制备了TiO2及Au/TiO2复合纤维,研究结果表明,热处理后的Ti02呈锐钛矿结构,随着温度的升高,Ti02结晶度提高;加入的Au在Ti02纤维中形成了Au颗粒,颗粒尺寸为7-15 nm。Au的掺入显著地提高了Ti02纤维的光催化活性,且其光催化活性随着Au的掺入量的增加而增大。
Nano-scaled TiO2 materials, which have many good characteristics such as powerful oxidation strength, high photocatalytic activity, high chemical stability, nontoxicity and so on, have been widely used in the field of environmental protection, construction and agriculture. In this study, sol-gel method was employed to prepare three different forms of TiO2 nano-scaled materials, including TiO2 nanopowder, TiO2 thin films and TiO2 fibers.
     At first, the TiO2 nano-scaled materials and the photocatalysis mechanism of TiO2 were introduced. Then the absolute advantage of the TiO2 nanocrystallines in the photocatalysis filed was highlighted. The study of sol-gel-derived TiO2-based nanocrystallines under low temperature was carried. Then the TiO2 thin films were prepared by adding different organic film-forming agent, in order to fix the TiO2. However, because the photocatalytic activity of thin films was far worse than the powder sample, we had prepared TiO2 fibers which not only had high photocatalytic properties, but also fixed the TiO2 through sol-gel method. Furthermore, the incorporation of Au could greatly enhance the photocatalytic activity of TiO2 fibers. X-ray diffraction (XRD), transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), Energy Dispersive X-ray Detector (EDS), UV-Vis Absorption Spectra(UV-Vis Abs), Atomic Force Microscope (AFM) and water contact angle were used to understand the crystallization property, microstructure, optical property, hydrophilicity and photocatalytic property of the prepared TiO2 nano-scaled materials. The main research results were as follows:
     Tetrabutyl titanate was chosen as titanium precursor. TiO2 nanocrystallines were prepared by sol method under room temperature. The crystal size was 3-4 nm, and the size was well-distributed. The results demonstrated that as the water amount (n) increased, the crystal size increased, the photocatalytic activity increased first and then decreased. The TiO2 nanocrystallines had the highest photocatalytic activity when n=120. In addition, this paper researched the photodegradation of different TiO2 nanocrystallines to methyl orange, methyl ene blue and rhodamine B. It was found that rhodamine B was easy to degrade, methylene blue was the next, and methyl orange was difficult to degrade.
     The TiO2 thin films were obtained by adding organic film-forming agent (PVP, PEG) into water-based TiO2 sol. The research results showed that the surface of PVP-TiO2 thin films was smooth, and the thickness was about 600 nm. The surface of PEG-T1O2 thin films was rough, and the thickness was about 300 nm. And the addition of PVP and PEG was favourable to improve the performance of film hydrophilic. When the agent was PVP or small molecular weight of PEG, the photocatalytic of TiO2 film was low, and when the agent was large molecular weight PEG, the TiO2 film showed better photocatalytic properties. The TiO2 thin films showed the best properties when the molecular weight of PEG was 6000, and the addition of PEG were 10%.
     TiO2 fibers and Au/TiO2 composite fibers were developed via sol-gel approach. The results demonstrated that TiO2 was anatase after the heat treatment, and the size of Au particles was 7-15 nm. The incorporation of Au could greatly enhance the photocatalytic activity of TiO2, which increased with the addition of Au incorporation.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [2]S.N. Frank, A.J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society,1977,99 (1): 303-304.
    [3]A.L. Pruden, et al. Photoassisted heterogeneous catalysis, the degradation of triehloroethylene in water. Journal of Catalysis,1983, (82):404-408.
    [4]H. Hidaka, S. Yamada, S. Suenaga, et al. Photodegradation of Complete degradation of anionic, cationic and nonionic surfactants in aqueous dispersions. Journal of Molecular Catalysis A: Chemical,1990,59:279-290.
    [5]D.F. Ollis, E. Pelizzetti, N. Serpone. Photocataiytic purification and treatment of water and air. Environment Science& Technology,1991,25(9):1523-1527.
    [6]A. Aboel-Magd, A.E. Gaber. Ti02-photocatalytic oxidation of selected heterocyclic sulfur compounds. Journal of Photochemistry and Photobiology A:Chemistry,1998,114(3): 213-218.
    [7]J.M. Herrtnann. Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today,1999,53:115-129.
    [8]R.B. Draper, M.A. Fox. Titanium dioxide photooxidation of thiocyanate (SCN)2-studied by diffuse reflectance flash photolysis. Journal of Physical Chemistry,1990,94:4628-4634.
    [9]M.I. Litter. Heterogeneous photocatalysis:Transition metal ions in photocatalytic systems. Catalysis B:Environmental,1999,23:89-114.
    [10]K. Sunade. Y. Kikuechi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science& Technology,1998,32:726-728.
    [11]上官文峰.太阳能光解水制氢的研究进展.无机化学学报,2001,17(5):619-626.
    [12]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [13]R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus. Size effects in the excited electronic states of small colloidal Cds crystallites, Journal of Chemical Physics.1984,80:4464-4469.
    [14]Y. Wang, N. Toshima. Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. Journal of Physical Chemistry B,1997,101(27):5301-5306.
    [15]C.X. Wang, G.W. Yang. Thermodynamics of metastable phase nucleation at the nanoscale. Materials Science and Engineering:R:Reports,2005,49(6):157-202.
    [16]F. Adams, L. Van Vaeck, R. Barrett. Advanced analytical techniques:platform for nano materials science. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(1):13-26.
    [17]X.J. Li, Y.D. Qu, G.L. Sun, D.A. Jiang, X. Ouyang. Study on the lattice distortion of the As-prepared nanosized TiO2 particles via detonation method. Journal of Physics and Chemistry of Solids,2007,68(12):2405-2410.
    [18]B.T. Su, Z.Y. Ma, S.X. Min, S.X. She, Z.Y. Wang. Preparation of TiO2/PS complex nanoparticles. Materials Science and Engineering:A,2007,458(1-2):44-47.
    [19]J. Arana, J.M.D. Rodriguez, O.G. Diaz, J.A.H. Melian, C.F. Rodriguez, J.P. Pena. The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol. Applied Catalysis A: General,2006,299:274-284.
    [20]S. Horikoshi, A. Tokunaga, N. Watanabe, H. Hidaka, N. Serpone. Environmental remediation by an integrated microwave/UV illumination technique:Ⅸ. Peculiar hydrolytic and co-catalytic effects of platinum on the TiO2 photocatalyzed degradation of the 4-chlorophenol toxin in a microwave radiation field. Journal of Photochemistry and Photobiology A: Chemistry,2006,177(2-3):129-143.
    [21]P. Chin, L.P. Yang, D.F. Ollis. Formaldehyde removal from air via a rotating adsorbent combined with a photocatalyst reactor:Kinetic modeling. Journal of Catalysis,2006,237(1): 29-37.
    [22]陶跃武,赵梦月.空气中有害物质的光催化去除.催化学报,1997,18(4):345-347.
    [23]R. Wang, K. Hashimoto, A. Fujishima. Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials,1998,10:135-138.
    [24]M. Gratzel. Heterogeneous photochemical electron transfer. CRC Press, Boca Raton, Fla. 1989.
    [25]M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann. Environmental applications of semiconductor photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [26]E. Brillas, E. Mur, R. Sauleda, et al. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental,1998,16:31-42.
    [27]W. Zhao, W.H. Ma, C.C. Chen, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of American Chemical Society,2004, 126(15):4782-4783.
    [28]S. Cassaignon, M. Koelsch, J.P. Jolivet. From TiCl3 to TiO2 nanoparticles (Anatase, Brookite and Rutile):thermohydrolysis and oxidation in aqueous medium. Journal of Physics and Chemistry of Solids,2007,68:695-700.
    [29]孙奉玉,吴鸣,李文钊.二氧化钛尺寸与光催化活性的关系.催化学报,1998,19:229-233
    [30]R.I. Bickley, G.C.Teresita, J.S. Lees, L. Palmisano, J.D. Tilley. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry,1991,92:178-190.
    [31]魏字栋,殷菲,谭君.TiO2光催化氧化研究进展.化学通报,2001,64:76-78.
    [32]孙爱玲.纳米TiO2光催化材料的制备与改性研究[硕士学位论文].济南:山东大学材料系,2008.
    [33]王怡中.符雁,汤鸿霄.二氧化钛悬浆体系太阳光催化降解甲基橙研究.环境科学学报,1999,19(1):63-67.
    [34]贡宇恒,李贺,张卫国,周亚松.纳米二氧化钛薄膜光催化氧化降解苯胺的研究.工业催化,2005,13(5):36-39.
    [35]H. Tada, M. Tanaka. Dependence of TiO2 photocatalytic activity upon its film thickness. Langmuir,1997,13(2):360-364.
    [36]T. Umebayashia, T. Yamakib, H. Itohb, K. Asai. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids,2002,63:1909-1920.
    [37]K. Takeshita, A. Yamakata, T. Ishibashi, H. Onishi, K. Nishijima, T. Ohno. Transient 1R absorption study of charge carriers photogenerated in sulfur-doped TiO2, Journal of Photochemistry and Photobiology A:Chemistry,2006,177:269-275.
    [38]H. Kisch, W. Macyk. Visible-light photocatalysis by modified titania. ChemPhysChem,2002, 3:399-400.
    [39]R. Wang, K. Hashimoto, A. Fujishima, et al. Light induced amphiphilic surface. Nature,1997, 388:431-432.
    [40]N. Sakai, Y. Komoda, et al. Effect of adsorbed water on the photoeleetrotheology of TiO2 particle suspensions. Journal of Electroanalytieal Chemistry,1998,445:1-6.
    [41]宋姝.TiO2纳米晶的表面活性剂修饰及其超亲水性薄膜的设计合成[硕士学位论文].哈尔滨:黑龙江大学化学化工与材料学院,2008.
    [42]M. Miyanchi, A. Nakajiama, A.Fujishima, et al. Photo induced surface reactions on TiO2 and SrTiO3 films:photocatalytic oxidation and photoinduced hydrophilicity. Chemistry of Materials,2000,12:3-5.
    [43]Y. Takata, S. Hidaka, M. Masuda, et al. Pool boiling on a superhydrophilic surface. International Journal of Energy Research,2003,27:111-119.
    [44]柳清菊,吴兴惠,刘强等.TiO2薄膜超亲水特性的研究.功能材料与器件学报,2002,8(3):239.
    [45]A.V. Emeline, N. Serpone. Relaxation dynamics of processes in colloidal zirconia nanosols. Dependence on excitation energy and temperature. Chemical Physics Letters,2001,345: 105-110.
    [46]J.A. Rodriguez, T. Jirsak, G. Liu, et al. Chemistry of NO2 on oxide surfaces:formation of NO3 on TiO2(110) and NO2-O vacancy inieractlons. Journal of American Chemical Society, 2001,123:9597-9605.
    [47]张立德,牟秀美.纳米材料和纳米结构.北京:科学出版社,2001,413-450.
    [48]J. Premkumar. Development of super-hydrophilicity on nitrogen-doped TiO2thin film surface by photoelectrochemical method under visible light. Chemistry of Materials,2004,16: 3980-3981.
    [49]H. Irie, S. Washizuka, N. Yoshino, K. Hashimoto. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chemical Communications,2003,11: 1298-1299.
    [50]W. Ho, J.C Yu, S. Lee. Photocatalytic activity and photo-induced hydrophilicity of mesoporous TiO2 thin films coated on aluminum substrate. Applied Catalysis B: Environmental,2007,73(1-2):135-143.
    [51]S. Permpoon, M. Houmard, D. Riassetto, et al. Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films. Thin Solid Films,2008,516:957-966.
    [52]X.T. Zhang, A. Fujishima, M. Jin, A.V. Emeline, T. Murakami. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties. Journal of Physical Chemistry B,2006,110(50):25142-25148.
    [53]柳清菊,工庆辉,靳映霞,等.TiO2/Al2O3复合薄膜的亲水性能研究.功能材料,2003,4(34):458-460.
    [54]J. Livage, M. Henry, C. Sanchez. Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry,1988,18(4):259-341.
    [55]C.H. Lu, C.Y. Hu, C.H. Wu. Low-temperature preparation and characterization of iron-ion doped titania thin film. Journal of Hazardous Materials,2008,159(2-3):636-639.
    [56]B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, X. Zhao. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Journal of Hazardous Materials, 2007,169:1112-1118.
    [57]赵改青,丘志辉,高晓明.化学沉淀法合成纳米 TiO2粉体及其应用.材料导报,2003,17(11):47-49.
    [58]胡晓力,尹虹,胡晓洪.用均匀沉淀法制备纳米TiO2粉体.中国陶瓷,1997,33(4):5-8.
    [59]高恩勤,张莉,杨迈之.水热法合成纳米TiO2及其在电池中的应用,物理化学学报,2001,17(2):177-180.
    [60]李成玉,林原,李学萍,等.热液法低温制备纳晶TiO2多孔薄膜电极.科学通报,2005,50(6):527-530.
    [61]D.S Zhang, T. Yoshida, H. Minour, Low temperature fabrication of efficient porous titania photoelect rodes by hydrot hermal crystallization at t he solid/gas interface. Advanced Materials,2003,15:814-817.
    [62]杜永峰,吕方.微乳状液体系应用研究进展.北学世界,1999,40(10):511-514.
    [63]C. Mulder. Micro-Raman spectroscopy of fluorine-doped PCVD silica fiber performs. Journal of Non-Crystalline Solids,1985,72:243-8.
    [64]J.A. Byrne, B. Reggins, N.M.D. Brownetal. Immobilisation of TiO? powder for the treatment of polluted water. Applied Catalysis B:Environmental,1998,17:25-36.
    [65]A. Femandez, Q. Lassaletta, V.M. Jimenez, et al, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel) comparative studies of photocatalytic activity in water purification. Applied catalysis B Environmental,1995,7:49-63.
    [66]卢晓平,戴文新,王绪绪,等.TiO2胶粒在铝合金表面的电泳沉积及所制薄膜的光催化性能研究.无机化学学报,2004,20:734-738.
    [67]M.A. Nawi, L.C. Kean, et al, Fabrication of photocatalytic TiO2-epoxidized nature rubber on Al plate via electrophoretic deposition. Applied Catalysis B:Environmental,2003,46(1): 165-174.
    [68]章少华.二氧化钛光催化薄膜的制备与表征研究[博士学位论文].南昌:南昌大学理学院化学系,2008.
    [69]J. Joo, S. Kwon, T. Yu, et al. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. Journal of Physical Chemistry B,2005,109(32):15297-15302.
    [70]胡军文.多晶相二氧化钛的低温制备及其高催化活性研究[硕士学位论文].广州:暨南大学无机化学系,2003.
    [71]张兰.微波辅助法二氧化钛溶胶的制备、掺杂及光催化活性研究[硕士学位论文].重庆:重庆大学化学化工学院,2009.
    [72]H.Y. Huo, H.J. Su, W. Jiang, T.W. Tan. Effect of trace Ag+adsorption on degradation of organic dye wastes. Biochemical Engineering Journal,2009,43:2-7.
    [73]L. Gomathi Devi, B. Narasimha Murthy, S. Girish Kumar. Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ions under solar light:Correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere 2009,76:1163-1166.
    [74]X.M. Song, J.M. Wu, M. Yan. Photocatalytic degradation of selected dyes by titania thin films with various nanostructures. Thin Solid Films,2009,517:4341-4347.
    [75]J. Wang, J. Li, Y.P. Xie, et al. Investigation on solar photocatalytic degradation of various dyes in the presence of Er+:YAlO3/ZnO-TiO2 composite. Journal of Environmental Management,2010,91:677-684.
    [76]孙振范,郭飞燕,陈淑贞.二氧化钛纳米薄膜材料及应用.广州:中山大学出版社,2009.
    [77]M. Miyauchi, H. Tokudome. Super-hydrophilic and transparent thin films of TiO2nanotube arrays by a hydrothermal reaction. Journal of Materials Chemistry,2007,17:2095-2100.
    [78]肖玲.聚合物多孔膜的亲水化改性[硕士学位论文].杭州:浙江大学材料与化学工程学院,2007.
    [79]T. Frelink, W. Visscher, J.A.R. Van Veen. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. Journal of Electroanalytical Chemistry,1995, 382(1-2):65-72.
    [80]田清华,赵高凌,韩高荣.PEG对二氧化钛薄膜的微观结构和染料吸附性能的影响.功能材料,2004,35(2):195-196.
    [81]包南,张锋,马志会,孟凡琳,孙剑.TiO2纤维制备与应用研究进展.化工进展,2007,26(3):345-349.
    [82]袁昌来,董发勤.(Ag,Nd)/TiO2纳米材料光催化活性及其表面能带结构分析.功能材料,2007,2(38):316-319.
    [83]卢晗锋,周瑛,徐柏庆,等.Au掺杂方式对锐钛矿TiO2光催化性能的影响.物理化学学报,2008,24(3):459-464.
    [84]M. Jakob, H. Levanon, P.V. Kamat. Charge distribution between uv-irradiated TiO2 and gold nanoparticles:determination of shift in the fermi level. Nano Letters,2003,3(3):353-358.
    [85]M. Epifani, C. Giannini, L. Tapfer, et al. Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. Journal of the American Ceramic Society, 2000,83(10):2385-2393.
    [86]H. Kozuka, S. Sakka. Preparation of gold colloid-dispersed silica-coating films by the sol-gel method. Chemistry of Materials,1993,5(2):222-228.
    [87]崔玉民.负载贵金属的TiO2光催化剂的研究进展.贵金属,2007,8(3):62-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700