用户名: 密码: 验证码:
氧化锌微纳米结构的可控生长及物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种直接宽带隙半导体,其室温禁带宽度为3.37eV,激子束缚能为60meV。由于ZnO的激子能够在室温下稳定存在,因而被认为是替代GaN的制备光电器件的理想材料。
     本文主要采用水热法可控生长氧化锌微纳米材料,在此基础上研究其光学、电学及磁学性质。首先,我们通过调控生长条件分别制备了氧化锌微纳米柱、微纳米柱薄膜、多孔球和多孔薄膜,并深入探讨了其生长机理我们发现衬底上的氧化锌籽晶层和反应前驱液中柠檬酸钠在反应过程中起着决定性的作用:衬底控制着成核过程,而柠檬酸钠则决定了产物的晶相。因此,我们通过控制氧化锌籽晶层和反应前驱液成分,就可以非常容易地选择性生长氧化锌微纳米柱、阵列薄膜、多孔球以及多孔薄膜的方法。
     接着我们研究了微纳米柱薄膜的导电性能,实验结果表明该薄膜具有优良的导电特性,其载流子迁移率达到了54.8 cm2·V-1·s-1,载流子浓度为-2.73×1018cm-3。简单的工艺,低廉的成本以及突出的电学性能将会使这种结构具备极大潜在应用价值。为了深入了解这种材料的导电机制,我们分别利用光致发光谱,电子顺磁共振谱和X射线光电子能谱,对样品进行了详细地分析,结果表明样品中存在大量的间隙氢缺陷,这可能是微纳米柱薄膜n型载流子的来源。
     另外我们研究了氧化锌多孔球的光学及磁学性能。通过热分解新型的多孔材料(Zn5(OH)8Ac2·2H2O, LBZA)就可获得具有巨大比表面积(42m2/g)的氧化锌多孔球,这种结构的氧化锌还未见报道。更有意思的是我们发现氧化锌多孔微球具有比较弱的室温铁磁性。我们利用XPS, EPR, PL和SQUID等分析测试手段对这种球状氧化锌的微观结构和物理性质进行了系统的测试和分析,试图探究其室温铁磁性的来源。实验结果表明,未掺杂氧化锌多孔球的室温铁磁性能来源于一种浅施主能级缺陷,位于表面处以氢锌键形式存在的氢缺陷可能就是这种浅施主缺陷。
Zinc Oxide is a kind of semiconductor with a direct band gap of 3.37 eV at room temperature and exciton binding energy of 60 meV. On behalf of the large exciton binding energy, the exciton can keep stable under room temperature, which makes it potential for blue-ultraviolet and white light-emitting devices, as a substitution of GaN.
     In this thesis, the growth of micro/nano ZnO material was controlled by hydrothermal method and their optical, electrical and magnetic properties were studied. After the ZnO micro-/nano-rods, rods based thin film, porous spheres and porous film were successfully fabricated by controllable growth process, we figured out the growth mechanism of these structures. Both the substrate coated with ZnO seed layer and sodium citrate in the precursor solution played a key role in leading the products. The citrate anions not only modify the morphology but also decide the phase of the grown zinc compounds. The ZnO thin layer coated on glass substrate is used to control the nucleation event and finally modifies the morphology of the grown ZnO. In conclusion, we can selectively grow the four kinds of structures mentioned above through the control of ZnO seed layer and precursor solution.
     We continued to study the conduction of nano rods based thin film, and it was found to have predominantly electrical properties. Its carrier mobility is as high as 54.8 cm2·V-1·s-1 and concentration-2.73x1018 cm-3. Simple growth process, low cost and superior conductivity make this film of great potential for practical application. In order to understand the mechanism of conduction, photoluminescence, electron paramagnetic resonance, Fourier transform infrared spectra and X-ray photoelectron spectroscopy were used to analyze its crystal structure and internal properties. A high concentration of interstitial hydrogen existed on the surface of nano rods, which may be the source of most carriers in the film.
     We also studied the optical and magnetic properties of the ZnO porous spheres. They can be obtained through thermal decomposition of Zn5(OH)8Ac2·2H2O or LBZA, which was reported for the first time. The BET surface area of this kind of ZnO reached 42 m2/g. It's interesting that porous ZnO shows significant room temperature ferromagnetic even without any transition metal doping. In order to found out the origin of the room temperature ferromagnetic, we systematically analyze its micro structure and related physical properties with the help of X-ray photoelectron spectroscopy, electron paramagnetic resonance, photoluminescence and SQUID. It turned out to be the shallow donors caused by hydrogen perhaps play an important role in triggering magnetic order in ZnO samples. Hydrogen should be located on the surface of the material combined with the atom of zinc.
引文
[1] Klingshirn C. ZnO: Material, Physics and Applications[J]. ChemPhysChem,2007,8(6):782-803.
    [2]Ozgiir U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005,98:41301.,广东高等教育出版社,2000.
    [3]刘栩纶.基础元素化学[M].高等教育出版社,1929.
    [4]张霖霖杨作新.无机化学「M〕.广东高等教育出版社,0200.
    [5] Yang P D, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their opticalproperties[J]. ADVANCED FUNCTIONAL MATERIALS, 2002,12(5):323-331.
    [6] Kim J H, Andeen D, Lange F F. Hydrothermal growth of periodic, single-crystal ZnOmicrorods and microtunnels[J]. ADVANCED MATERIALS, 2006,18(18):2453.
    [7] Cheng B, Samulski E T. Hydrothermal synthesis of one-dimensional ZnO nanostmctureswith different aspect ratios[J]. CHEMICAL COMMUNICATIONS, 2004(8):986-987.
    [8] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003,125(15):4430-4431.
    [9] Liang J B, Liu J W, Xie Q, et al. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles[J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005,109(19):9463-9467.
    [10] Li Q C, Kumar V, Li Y, et al. Fabrication of ZnO nanorods and nanotubes in aqueoussolutions[J]. CHEMISTRY OF MATERIALS, 2005,17(5): 1001-1006.
    [11] Q. Yang K T J Z. Appl. Phys. A., 2004,79(1847).
    [12]Kuo C L, Kuo T J, Huang M H. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostmctures [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005,109(43):20115-20121.
    [13]Thomas D G J.Phys.Chem.Solids, 1960,15(86).
    [13]Thomas D G J.Phys.Chem.Solids, 1960,15(86).
    [14]Jaffe J R Hrss A C* Hartrfie-Fnr.k shiriv of nha.se chances in ZnO at hiph nressnrp.ril
    [15]Jaffe J E, Snyder J A, Lin Z, et al. LDA and GGA calculations for high-pressure phasetransitions in ZnO and MgO[J]. Physical Review B, 2000,62(3): 1660.
    [16]Zwicker G, Jacobi K. Experimental band structure of ZnO[J]. Solid StateCommunications, 1985,54(8):701-704.
    [17]Girard R T, Tjernberg O, Chiaia G, et al. Electronic structure of ZnO(OOOl) studied byangle-resolved photoelectron spectroscopy[J]. Surface Science, 1997,373(2-3):409-417.
    [18]Janotti A, Van de Walle C G. Native point defects in ZnO[J]. PHYSICAL REVIEW B,2007,76(16):-.
    [19]Djurisic A B, Leung Y H. Optical properties of ZnO nanostructures[J]. Small,2006,2(8-9):944-961.
    [20]Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism inzinc-blende magnetic semiconductors!J]. Science, 2000,287(5455): 1019-1022.
    [21]Yu U, Nili A M, Mikelsons K, et al. Nonlocal Effects on Magnetism in the DilutedMagnetic Semiconductor Gal-xMnxAs[J]. PHYSICAL REVIEW LETTERS,2010,104:37201.
    [22]Xu Q Y, Hartmann L, Zhou S Q, et al. Spin manipulation in Co-doped ZnO[J].PHYSICAL REVIEW LETTERS, 2008,101:76601.
    [23]Neal J R, Behan A J, Ibrahim R M, et al. Room-temperature magneto-optics offerromagnetic transition-metal-doped ZnO thin films[J]. PHYSICAL REVIEWLETTERS, 2006,96:197208.
    [24]Coey J, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide[J]. PHYSICALREVIEW B, 2005,72(0244502).
    [25]Khalid M, Ziese M, Setzer A, et al. Defect-induced magnetic order in pure ZnO films[J].PHYSICAL REVIEW B, 2009,80(3):35331.
    [26] Wang Q, Sun Q, Chen G, et al. Vacancy-induced magnetism in ZnO thin films andnanowires[J]. PHYSICAL REVIEW B, 2008,77(20):205411.
    [27] Sundaresan A, Bhargavi R, Rangarajan N, et al. Ferromagnetism as a universal feature of
    [28]Hong N H, Sakai J, Poirot N, et al. Room-temperature ferromagnetism observed inundoped semiconducting and insulating oxide thin films[J]. PHYSICAL REVIEW B,2006,73(13):132404.
    [29]Hong N H, Sakai J, Gervais F. Magnetism due to oxygen vacancies and/or defects inundoped semiconducting and insulating oxide thin films[J]. JOURNAL OFMAGNETISM AND MAGNETIC MATERIALS, 2007,316(2):214-217.
    [30]Pemmaraju C D, Sanvito S. PHYSICAL REVIEW LETTERS, 2005,94:217205.
    [31] Sanchez N, Gallegeo S, Cerda J, et al. Tuning surface metallicity and ferromagnetism byhydrogen adsorption at the polar ZnO(OOOl) surface[J]. PHYSICAL REVIEW B,2010,81(ll):115301.
    [32]Spanhel L. Colloidal ZnO nanostructures and functional coatings: A survey[J].JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2006,39(1 ):7-24.
    [33]Hosono E, Fujihara S, Kimura T, et al. Growth of layered basic zinc acetate in methanolicsolutions and its pyrolytic transformation into porous zinc oxide films[J]. JOURNAL OFCOLLOID AND INTERFACE SCIENCE, 2004,272(2):391-398.
    [34]Lu X B, Zhang H J, Ni Y W, et al. Porous nanosheet-based ZnO microspheres for theconstruction of direct electrochemical biosensors[J]. BIOSENSORS &BIOELECTRONICS,2008,24(l):93-98.
    [35]Ku C H, Yang H H, Chen G R, et al. Wet-chemical route to ZnO nanowire-layered basiczinc acetate/ZnO nanoparticle composite film[J]. CRYSTAL GROWTH & DESIGN,2008,8(1):283-290.
    [1] Wang B Q Shi E W, Zhong W Z. Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions[J]. CRYSTAL RESEARCH AND TECHNOLOGY, 1998,33(6):937-941.
    [2]Xia Z B. Sha J. Fane Y .T. et al. Purnosed Built ZnO/Zn-5COHV8Uc-2 center dot 2H(2)O Architectures by Hydrothermal Synthesis[J]. CRYSTAL GROWTH & DESIGN,2010,10(6):2759-2765.
    [3] Li W J, Shi E W, Zhong W Z, et al. Growth mechanism and growth habit of oxidecrystals[J]. JOURNAL OF CRYSTAL GROWTH, 1999,203(1-2): 186-196.
    [4] Sekiguchi T, Miyashita S, Obara K, et al. Hydrothermal growth of ZnO single crystalsand their optical characterization[J]. JOURNAL OF CRYSTAL GROWTH,2000,214:72-76.
    [5] Kim J H, Andeen D, Lange F F. Hydrothermal growth of periodic, single-crystal ZnOmicrorods and microtunnels[J]. ADVANCED MATERIALS, 2006,18(18):2453.
    [6]Maeda K, Sato M, Niikura I, et al. Growth of 2 inch ZnO bulk single crystal by thehydrothermal method[J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY,2005,20(4):S49-S54.
    [7]Andeen D, Loeffler L, Padture N, et al. Crystal chemistry of epitaxial ZnO on (111)MgA12O4 produced by hydrothermal synthesis[J]. JOURNAL OF CRYSTAL GROWTH,2003,259(l-2):103-109.
    [8]Govender K, Boyle D S, Kenway P B, et al. Understanding the factors that govern thedeposition and morphology of thin films of ZnO from aqueous solution[J]. JOURNALOF MATERIALS CHEMISTRY, 2004,14(16):2575-2591.
    [9]Tang Z K, Wong G, Yu P, et al. Room-temperature ultraviolet laser emission fromself-assembled ZnO microcrystallite thin films[J]. APPLIED PHYSICS LETTERS,1998,72(25):3270-3272.
    [10]Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping[J].APPLIED PHYSICS LETTERS, 2000,76(22):3257-3258. [ll]Djurisic A B, Leung Y H. Optical properties of ZnO nanostructures[J]. Small,2006,2(8-9):944-961.
    [12]Ischenko V, Polarz S, Grote D, et al. Zinc oxide nanoparticles with defects[J].ADVANCED FUNCTIONAL MATERIALS, 2005,15(12):1945-1954.
    [13]Janotti A, Van de Walle C G. Native point defects in ZnO[J]. PHYSICAL REVIEW B,
    [14] Ming Z E A. Oxidation state of uranium in metamict and annealed zircon: near-infraredspectroscopic quantitative analysis[J]. Journal of Physics: Condensed Matter,2003,15(20):3445.
    [15]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M].New York: Wiley, 1986.
    [16]Poul L, Jouini N, Fievet F. Layered hydroxide metal acetates (metal = zinc, cobalt, andnickel): Elaboration via hydrolysis in polyol medium and comparative study[J].CHEMISTRY OF MATERIALS, 2000,12(10):3123-3132.
    [17]Liu H S, Chin T S, Yung S W. FTIR and XPS studies of low-melting PbO-ZnO-P2O5glasses[J]. MATERIALS CHEMISTRY AND PHYSICS, 1997,50:1-10.
    [18]Ischenko V, Polarz S, Grote D, et al. Zinc oxide nanoparticles with defects[J].ADVANCED FUNCTIONAL MATERIALS, 2005,15(12): 1945-1954.
    [19]Lavrov E V, Weber J, Rrnert F B. Hydrogen-related defects in ZnO studied by infraredabsorption spectroscopy[J]. PHYSICAL REVIEW B, 2002,66:165205.
    [20]Lavrov E V, Herklotz F, Weber J. Identification of Hydrogen Molecules in ZnO[J].PHYSICS REVIEW LETTER, 2009,102:185502.
    [21]Lavrov E V, Herklotz F, Weber J. Identification of two hydrogen donors in ZnO[J].PHYSICAL REVIEW B, 2009,79.
    [22] Van de Walle C G. Hydrogen as a cause of doping in zinc oxide[J]. PHYSICAL REVIEWLETTERS, 2000,85:1012-1015.
    [23]Schulz M. ESR EXPERIMENTS ON GA DONORS IN ZNO CRYSTALS[J]. PHYSICASTATUS SOLIDIA-APPLIED RESEARCH, 1975,27(1):K5-K8.
    [24]Block D, Herve A, Cox R T. OPTICALLY DETECTED MAGNETIC-RESONANCEAND OPTICALLY DETECTED ENDOR OF SHALLOW INDIUM DONORS INZNO[J]. PHYSICAL REVIEW B, 1982,25(9):6049-6052.
    [25]Garces N Y, Giles N C, Halliburton L E. Production of nitrogen acceptors in ZnO bythermal annealing[J]. APPLIED PHYSICS LETTERS, 2002,80(8):1334-1336.
    [26] Gonzalez C, Block D, Cox R T, et al. MAGNETIC-RESONANCE STUDIES OF SHALLOW DONORS IN ZINC-OXIDE[J].JOURNAL OF CRYSTAL GROWTH, 1982,59(l-2):357-362.
    [27]Islam M N, Ghosh T B, Chopra K L, et al. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films[J]. THIN SOLID FILMS, 1996,280(l-2):20-25.
    [28]韩汝琦黄昆.固体物理学【M】.高等教育出版社,1985.
    [29]Agashe C, Kluth O, Hupkes J, et al. Efforts to improve carrier mobility in radio frequencysputtered aluminum doped zinc oxide films[J]. JOURNAL OF APPLIED PHYSICS,2004,95(4): 1911-1917.
    [30] Chen M, Pei Z L, Wang X, et al. Intrinsic limit of electrical properties of transparentconductive oxide films[J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS,2000,33(20):2538-2548.
    [1] Lu X B, Zhang H J, Ni Y W, et al. Porous nanosheet-based ZnO microspheres for theconstruction of direct electrochemical biosensors[J]. BIOSENSORS &BIOELECTRONICS,2008,24(l):93-98.
    [2]Ku C H, Yang H H, Chen G R, et al. Wet-chemical route to ZnO nanowire-layered basiczinc acetate/ZnO nanoparticle composite film[J]. CRYSTAL GROWTH & DESIGN,2008,8(l):283-290.
    [3]Xia Z B, Sha J, Fang Y J, et al. Purposed Built ZnO/Zn-5(OH)(8)Ac-2 center dot 2H(2)OArchitectures by Hydrothermal Synthesis[J]. CRYSTAL GROWTH & DESIGN,2010,10(6):2759-2765.
    [4]Hosono E, Fujihara S, Kimura T, et al. Growth of layered basic zinc acetate in methanolicsolutions and its pyrolytic transformation into porous zinc oxide films[J]. JOURNAL OFCOLLOID AND INTERFACE SCIENCE, 2004,272(2):391-398.
    [5]Poul L, Jouini N, Fievet F. Layered hydroxide metal acetates (metal = zinc, cobalt, andnickel): Elaboration via hydrolysis in polyol medium and comparative study[J].CHEMISTRY OF MATERIALS, 2000,12(10):3123-3132.
    [6]Tokumoto M S, Briois V, Santilli C V, et al. Preparation of ZnO nanoparticles: Structuralstudy of the molecular precursor^]. JOURNAL OF SOL-GEL SCIENCE ANDTECHNOLOGY, 2003,26(1 -3):547-551.
    [7]Spanhel L. Colloidal ZnO nanostructures and functional coatings: A survey[J].JOURNAL OF SOL-GEL SCIENCEAND AND TECHNOLOGY,2006,39(1):7-24.
    [8]Grasset F, Lavastre O, Baudet C, et al. Synthesis of alcoholic ZnO nanocolloids in thepresence of piperidine organic base: Nucleation-growth evidence of Zn-5(OH)(8)Ac-2center dot 2H(2)O fine particles and ZnO nanocrystals[J]. JOURNAL OF COLLOIDAND INTERFACE SCIENCE, 2008,317(2):493-500.
    [9]Ito K, Nakamura K. Preparation of ZnO thin films using the flowing liquid filmmethod[J]. Thin Solid Films, 1996,286(l-2):35-36.
    [10]Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueoussolutions[J]. JOURNAL OF MATERIALS CHEMISTRY, 2002,12(12):3773-3778.
    [11] Wang B G, Shi E W, Zhong W Z. Twinning morphologies and mechanisms of ZnOcrystallites under hydrothermal conditions[J]. CRYSTAL RESEARCH ANDTECHNOLOGY, 1998,33(6):937-941.
    [12]REICHLE R A, MCCURDY K G, HEPLER L G ZINC HYDROXIDE - SOLUBILITYPRODUCT AND HYDROXY-COMPLEX STABILITY-CONSTANTS FROM 12.5-75DEGREESC[J]. CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNEDECHIMIE, 1975,53(24):3841 -3845. -
    [13]Govender K, Boyle D S, Kenway P B, et al. Understanding the factors that govern thedeposition and morphology of thin films of ZnO from aqueous solution[J]. JOURNALOF MATERIALS CHEMISTRY, 2004,14(16):2575-2591.
    [14]TADA H. DECOMPOSITION REACTION OF HEXAMINE BY ACID[J]. JOURNALOF THE AMERICAN CHEMICAL SOCIETY, 1960,82(2):255-263.
    [15]Kim J H, Andeen D, Lange F F. Hydrothermal growth of periodic, single-crystal ZnOmicrorods and microtunnels[J]. ADVANCED MATERIALS, 2006,18(18):2453.
    [16]Matzapetakis M, Raptopoulou C P, Tsohos A, et al. Synthesis, spectroscopic andstructural characterization of the first mononuclear, water soluble iron-citrate complex,(NH4)(5)Fe(C6H4O7)(2)center dot 2H(2)O[J]. JOURNAL OF THE AMERICANCHEMICAL SOCIETY, 1998,120(50): 13266-13267.
    [17]Han Y F, Liu Z H, Yang Z P, et al. Preparation of Ni2+-Fe3+ layered double hydroxidematerial with high crystallinity and well-defined hexagonal shapes[J]. CHEMISTRY OF MATERIALS,2008,20(2):360-363.
    [1] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism inzinc-blende magnetic semiconductors^]. Science, 2000,287(5455):1019-1022.
    [2] Wang Q, Sun Q, Chen G, et al. Vacancy-induced magnetism in ZnO thin films andnanowires[J]. PHYSICAL REVIEW B, 2008,77(20):205411.
    [3]Gacic M, Jakob G, Herbort C, et al. Magnetism of Co-doped ZnO thin films[J].PHYSICAL REVIEW B, 2007,75(20520620).
    [4]Venkatesan M, Fitzgerald C B, Coey J. Unexpected magnetism in a dielectric oxide[J].NATURE, 2004,430(7000):630.
    [5] Coey J, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide[J]. PHYSICALREVIEW B, 2005,72(0244502).
    [6] Hong N H, Poirot N, Sakai J. Evidence for magnetism due to oxygen vacancies inFe-doped HfO2 thin films[J]. APPLIED PHYSICS LETTERS, 2006,89(0425034).
    [7]Biswick T, Jones W, Pacula A, et al. Evidence for the formation of anhydrous zincacetate and acetic anhydride during the thermal degradation of zinc hydroxy acetate,Zn-5(OH)(8)(CH3CO2)(2)center dot 4H(2)O to ZnO[J]. SOLID STATE SCIENCES,2009,ll(2):330-335.
    [8]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M].New York: Wiley, 1986.
    [9] Poul L, Jouini N, Fievet F. Layered hydroxide metal acetates (metal = zinc, cobalt, andnickel): Elaboration via hydrolysis in polyol medium and comparative study[J].CHEMISTRY OF MATERIALS, 2000,12(10):3123-3132.
    [10] Jimenez-Gonzalez A E, Urueta J A S, Suarez-Parra R. Optical and electricalcharacteristics of aluminum-doped ZnO thin films prepared by solgel technique[J].JOURNAL OF CRYSTAL GROWTH, 1998,192(3-4):430-438.
    [ll]Ischenko V, Polarz S, Grote D, et al. Zinc oxide nanoparticles with defects[J].ADVANCED FUNCTIONAL MATERIALS, 2005,15(12):1945-1954.
    [12] Liu H S,Chin T S,Yung S W.FTIR and XPS studies of low-melting PbO-ZnO-P2O5 glasses[J]. MATERIALS CHEMISTRY AND PHYSICS,1997,50:1-10.
    [13]Kuo C L, Kuo T J, Huang M H. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures[J]. JOURNAL OF PHYSICAL CHEMISTRY B,2005,109(43):20115-20121.
    [14]Janotti A, Van de Walle C G. Native point defects in ZnO[J]. PHYSICAL REVIEW B, 2007,76(16):-.
    [15]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-Ray Photoelectron Spectroscopy:A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data[M]. Physical Electronics,1979.
    [16]Djurisic A B, Leung Y H. Optical properties of ZnO nanostructures[J]. Small, 2006,2(8-9):944-961.
    [17]Kakazey N G, Sreckovic T V, Ristic M M. Electronic paramagnetic resonance investigation of the evolution of defects in zinc oxide during tribophysical activation[J]. JOURNAL OF MATERIALS SCIENCE,1997,32(17):4619-4622.
    [18]Block D, Herve A, Cox R T. OPTICALLY DETECTED MAGNETIC-RESONANCE AND OPTICALLY DETECTED ENDOR OF SHALLOW INDIUM DONORS IN ZNO[J]. PHYSICAL REVIEW B,1982,25(9):6049-6052.
    [19]Garces N Y, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals[J]. APPLIED PHYSICS LETTERS,2002,81(4):622-624.
    [20]Gonzalez C, Block D, Cox R T, et al. MAGNETIC-RESONANCE STUDIES OF SHALLOW DONORS IN ZINC-OXIDE[J]. JOURNAL OF CRYSTAL GROWTH, 1982,59(1-2):357-362.
    [21]Schulz M. ESR EXPERIMENTS ON GA DONORS IN ZNO CRYSTALS[J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH,1975,27(1):K5-K8.
    [22]Garces N Y, Giles N C, Halliburton L E. Production of nitrogen acceptors in ZnO by thermal annealing[J]. APPLIED PHYSICS LETTERS,2002,80(8):1334-1336.
    [23]Hofmann D M, Hofstaetter A, Leiter F, et al. Hydrogen:A relevant shallow donor in zinc oxide[J]. PHYSICAL REVIEW LETTERS,2002,88(4):45504.
    [24]Janotti A, Van de Walle C G. Native point defects in ZnO[J]. PHYSICAL REVIEW B, 2007,76(16):-.
    [25]Selim F A, Weber M H, Solodovnikov D, et al. Nature of native defects in ZnO[J]. PHYSICAL REVIEW LETTERS,2007,99(8):85502.
    [26]Van de Walle C G. Hydrogen as a cause of doping in zinc oxide[J]. PHYSICAL REVIEW LETTERS,2000,85(5):1012-1015.
    [27]Khalid M, Ziese M, Setzer A, et al. Defect-induced magnetic order in pure ZnO films[J]. PHYSICAL REVIEW B,2009,80(3):35331.
    [28]Hong N H, Sakai J, Poirot N, et al. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films[J]. PHYSICAL REVIEW B, 2006,73(13):132404.
    [29]Inamdar D Y, Lad A D, Pathak A K, et al. Ferromagnetism in ZnO nanocrystals doping and surface chemistry[J]. Journal of Physical Chemistry C,2009,114(3):1451-1459.
    [30]Kim D Y, Yang J H, Hong J S. Ferromagnetism induced by Zn vacancy defect and lattice distortion in ZnO[J]. JOURNAL OF APPLIED PHYSICS,2009,106(1):13908.
    [31]Liu E Z, Jiang J Z. Magnetism of O-Terminated ZnO(0001) with Adsorbates[J]. JOURNAL OF PHYSICAL CHEMISTRY C,2009,113(36):16116-16120.
    [32]Podila R, Queen W, Nath A, et al. Origin of FM Ordering in Pristine Micro-and Nanostructured ZnO[J]. nano letters,2010,10(4):1383-1386.
    [33]Wang D, Chen Z Q, Wang D D, et al. Positron annihilation study of the interfacial defects in ZnO nanocrystals:Correlation with ferromagnetism[J]. JOURNAL OF APPLIED PHYSICS,2010,107(2):23524.
    [34]Zuo X, Yoon S D, Yang A, et al. Ferromagnetism in pure wurtzite zinc oxide[J]. JOURNAL OF APPLIED PHYSICS,2009,105(7):7C-508C.
    [35]Li L Y, Cheng Y H, Luo X G, et al. Room-temperature ferromagnetism and the scaling relation between magnetization and average granule size in nanocrystalline Zn/ZnO core-shell structures prepared by sputtering[J]. NANOTECHNOLOGY,2010,21(14):145705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700